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Based on the notes by Jelle Hartong, Section 10

1 Constrained Extremisation of Functionals via Functions

• How do functions impose constraints on functionals?

– we saw that we can extremise a functional J [y] subject to a constraint from another functional
I[y] = 0

– we can also extremise J [x] =
´
K(x, ẋ, t)dt subject to a function constraint G(x, ẋ, t) = 0

• How do rheonomic constraints differ from scleronomic constraints?

– a scleronomic constraint depends explicitly on time t

– a rehonomic constriant doesn’t depend explicitly on t

• What is a holonomic constraint?

– a holonomic constraint doesn’t depend explicitly on the velocities ẋ (in general it will only
relate to positions)

– a non-holonomic constraint is one which deosn’t depend explicitly on velocity, and which can’t
be integrated into a holonomic constraint

– for example:
ẋ1 + ẋ2 = 0

isn’t non-holonomic, since if we integrate with respect to time:

x1 + x2 = c

we get a holonomic constraint

– on the other hand:
(ẋ1)2 = 0

is non-holonomic
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2 Theorem: Euler-Lagrange Equations for Holonomic Constraints

Let:
x : [0, 1] → Rn, x ∈ C2(Rn)

be extrema for the functional:

J [x] =

ˆ 1

0

L(x, ẋ, t)dt

subject to the holonomic constraint:

g(x(t), t) = 0

and with:
∀t ∈ [0, 1], ∇g(x(t), t) ̸= 0

Then, ∃λ : [0, 1] → R, such that x satisfies the Euler-Lagrange Equa-
tions of:

L− λ(t)g

(Theorem 10.1)

Notice, the main difference, beyond g being just a function, is that λ is no longer a constant: it is an
explicit function of time.

Proof. We prove this for:
x : [0, 1] → R

where x is constrained by g(x, t) = 0 and:  ∂g
∂x1

∂g
∂x2

 ̸= 0

Say that:
x(0) = x0 x(1) = x1

Since g constrains x, we must have that:

g(x0, 0) = 0 g(x1, 1) = 0

Without loss of generality, assume that ∇g ̸= 0 because:

∂g

∂x2
̸= 0
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It could be the case that ∂g
∂x1 ̸= 0 instead, or that ∂g

∂x2 ̸= 0 on [t0, 1] whilst
∂g
∂x1 ̸= 0 on [0, t0]. In this case, we coud split the action integral into 2
based on t0, and perform the same analysis as we shall perform below. Ul-
timately, we will reach the same conclusion as by assuming that ∂g

∂x2 ̸= 0
always, so it is simpler to work under this assumption.

As we always do, we shall apply a variation:

x̂ = x+ sε

For ε to be an admissible variation, we shall require:

• ε ∈ C1

• x̂(0) = x0

• x̂(1) = x1

• ∀t ∈ [0, 1] if s is close to 0, then g(x̂, t) = 0

In particular, for s close to 0, admissible variations must satisfy:

ε(0) = ε(1) = 0

Moreover, our constraint becomes:

g(x̂, t) = g(x+ sε, t) = 0

By the Implicit Function Theorem, and since ∇g ̸= 0 (in particular since ∂g
∂x2 ̸= 0) tells us that g(x +

sε, t) = 0 allows us to write ε2 as a function of ε1 and s, whenever s is close to 0.

We now vary our functional. If x is an extrema of J [x], then:

d

ds
J [x̂]

∣∣∣∣
s=0

=
d

ds
J [x+ sε]

∣∣∣∣
s=0

= 0

Hence:

0 =
d

ds
J [x+ sε]

∣∣∣∣
s=0

=

ˆ 1

0

d

ds

(
L(x̂, ˙̂x, t)

)
dt

∣∣∣∣
s=0

=

ˆ 1

0

(
∂L

∂x̂1

∂x̂1

∂s
+

∂L

∂ ˙̂x1

∂ ˙̂x1

∂s
+

∂L

∂x̂2

∂x̂2

∂s
+

∂L

∂ ˙̂x2

∂ ˙̂x2

∂s

)
dt

∣∣∣∣∣
s=0

=

ˆ 1

0

(
∂L

∂x1
ε1 +

∂L

∂ẋ1
ε̇1 +

∂L

∂x2
ε2 +

∂L

∂ẋ2
ε̇2
)
dt

Applying integration by parts:

ˆ 1

0

∂L

∂ẋi
ε̇idt =

[
∂L

∂ẋi
εi
]1
0

−
ˆ 1

0

d

dt

(
∂L

∂ẋi

)
εidt =

ˆ 1

0

d

dt

(
∂L

∂ẋi

)
εidt
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where we have used that ε is an admissible variation, so εi(0) = εi(1) = 0.

Hence: ˆ 1

0

[(
∂L

∂x1
− d

dt

(
∂L

∂ẋ1

))
ε1 +

(
∂L

∂x2
− d

dt

(
∂L

∂ẋ2

))
ε2
]
dt = 0

Now, recall that we can regard ε2 as a function of ε1, so ε2 isn’t some arbitrary C1 function, and so,
we can’t immediately apply the Fundamental Lemma. Notice, the relation of ε1 and ε2 arises from the
constraint g(x̂, t) = 0; if we differentiate this with respect to s and evaluate at s = 0:

0 =
d

ds
g(x̂, t)

∣∣∣∣
s=0

=
∂g

∂x1
ε1 +

∂g

∂x2
ε2

Since ∂g
∂x2 ̸= 0, we can divide through to obtain:

ε2 = −
∂g
∂x1

∂g
∂x2

ε1

Now, define (!) a function λ(t), such that it satisfies:

∂L

∂x2
− d

dt

∂L

∂ẋ2
= λ(t)

∂g

∂x2

Notice, L is smooth by definition and x ∈ C2, so ∂L
∂x2 − d

dt
∂L
∂ẋ2 is a continuous function of t; similarly, ∂g

∂x2

will also be continuous, so λ(t) is a continuous function.

Plugging this back into our expression:

0 =

ˆ 1

0

[(
∂L

∂x1
− d

dt

(
∂L

∂ẋ1

))
ε1 +

(
∂L

∂x2
− d

dt

(
∂L

∂ẋ2

))
ε2
]
dt

=

ˆ 1

0

[(
∂L

∂x1
− d

dt

(
∂L

∂ẋ1

))
ε1 +

(
λ(t)

∂g

∂x2

)(
−

∂g
∂x1

∂g
∂x2

ε1

)]
dt

=

ˆ 1

0

[(
∂L

∂x1
− d

dt

(
∂L

∂ẋ1

)
− λ(t)

∂g

∂x1

)
ε1
]
dt

ε1 is now an arbitrary C1 function, so by the Fundamental Lemma, we must have that:

∂L

∂x1
− d

dt

(
∂L

∂ẋ1

)
− λ(t)

∂g

∂x1
= 0

which are precisely the Euler-Lagrange equations of L− λg, as required.

In general, if we had more constraints, we’d just have to add more Lagrange multipliers λi(t).

• What is the constraint force?

– recall, ∂L
∂xi is the force on the system defined by L

– similarly, we call the term:

−λ
∂g

∂xi

the constraint force: it is the force exerted on a system, such that the constraint is enforced

– finding λ thus allows us to see the forces enforcing the constraint g
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3 Constraint Examples

3.1 Holonomic Constraints: Geodesics Over Surfaces

Say we have a regular surface (i.e non-zero gradient) Σ ⊂ R3 defined implicitly by:

g(x1, x2, x3) = 0

To find a geodesic, we seek to minimise the arclength:

S[x] =

ˆ 1

0

∥ẋ∥dt

subject to the constraint g(x) = 0 (i.e that x lies on Σ). This is a holonomic constraint, since it purely
depends on the position.

If we define:
L = ∥ẋ∥ − λg(x)

we can compute the Euler-Lagrange Equations:

∂L

∂xi
=

∂g

∂xi

∂L

∂ẋi
=

ẋi

∥ẋ∥
Thus, the Euler-Lagrange Equations are:

d

dt

(
ẋi

∥ẋ∥

)
= λ

∂g

∂xi

If we multiply both sides by ẋi

∥ẋ∥ and add over all i, we get:

n∑
i=1

ẋi

∥ẋ∥
d

dt

(
ẋi

∥ẋ∥

)
= λ

n∑
i=1

∂g

∂xi

ẋi

∥ẋ∥

=⇒ 1

2

d

dt

(
n∑

i=1

ẋiẋi

∥ẋ∥

)
= λ

n∑
i=1

∂g

∂xi

ẋi

∥ẋ∥

=⇒ 0 = λ

〈
∇g,

ẋ

∥ẋ∥

〉

If x lies on the surface, this is clearly true, since then g = 0 =⇒ ∇g = 0. In other words, the tangent
vectors ẋi of the geodesic will be orthogonal to the direction of the constraint g, which itself is the
normal of Σ. In other words, geodesics will be tangent to the surface Σ.

Using this, if we define ∥x∥ = 1, we can prove that geodesics of spheres must be great circles: circles
obtained by planes cutting the sphere through the origin.
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3.2 Non-Holonomic Constraints: Pfaffian Constraints

A Pfaffian constraint is a non-holonomic constraint, such that:

g(x, ẋ, t) = 0

is at most linear in the velocities

Using Pfaffian constraints, we can find the Euler-Lagrange equations for Lagrangians which depend on
derivatives of x beyond just ẋ. Whilst this can be done by using additional variations, Pfaffian constraints
ensure that we can find teh EL equation using the tools which we already have.

Consider L(x, ẋ, ẍ, t), where x ∈ C3. Extremising the action involving L is equivalent to extremising
L(x, ẋ, ẏ, t) subject to the constraint y = ẋ.

If we define:
M = L− λ(y − ẋ)

then:
∂M

∂x
=

∂L

∂x

∂M

∂ẋ
=

∂L

∂ẋ
+ λ

∂M

∂y
= −λ

∂M

∂ẏ
=

∂L

∂ẏ

Thus, the EL equations are:
d

dt

(
∂L

∂ẋ
+ λ

)
=

∂L

∂x

and:
d

dt

(
∂L

∂ẏ

)
= −λ

Combining them, we get that:

d

dt

(
∂L

∂ẋ
− d

dt

(
∂L

∂ẏ

))
=

∂L

∂x
=⇒ ∂L

∂x
− d

dt

(
∂L

∂ẋ

)
+

d2

dt2

(
∂L

∂ẍ

)
= 0

where we have used the constraint ẏ = ẍ.

3.3 Holonomic Constraints: Rolling Without Slipping

Consider the following setup: we have a cylinder of radius R, on top of which there is a hoop (hollow ring)
of radius r. The hoop starts at the top of the cylinder, and begins to roll without slipping (i.e each time
the hoop completes one full rotation, it has traversed one circumference-worth of distance atop the cylinder).
The question is: at what angle θ does the hoop fall off the cylinder?

It helps to draw a diagram:
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We let θ denote the angle travelled by the hoop with respect to the surface. Similarly, ϕ corresponds to
the angle between a vertical line through the hoop, and the original position of the hoop. We seek to find θ
at the point where the hoop stops rolling, and falls from the cylinder.

The first constraint is that if ρ is the distance between the centres of the cylinders, and the hoop is rolling
atop the cylinder, then:

ρ = R+ r

This is a holonomic constraint.

We have a second constraint: the hoop must roll without slipping. What this means is that the distance
travelled by the hoop on the cylinder must be equal to the amount of circumference of the hoop which has
been in contact with the cylinder. In other words:

r(ϕ− θ) = Rθ

This can be obtained from the diagram: there is a z angle, which tells us that the angle traversed by the
hoop is ϕ− θ. This just tells us that the blue lines in the diagram must be of equal length.

We now need to find a Lagrangian defining this problem. We can take this to be T −V , where T is the
kinetic energy, and V is the potential energy.

The hoop falls under the influence of gravity. The centre of mass of the hoop is at its centre, and gravity
acts vertically through this centre of mass. Since V (x) is defined up to a constant, we can define the origin
(where V = 0) as the horizontal line going through the centre of the cylinder. Then:

V = mgh = mg(ρ cos θ)
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The kinetic energy is a bit more complicated: there is kinetic energy associated with the translation of the
hoop (as a result of the movement of its centre of mass), but also due to rotation:

T =
1

2
m(ρ̇2 + ρ2θ̇2)︸ ︷︷ ︸

centre of mass movement

+
1

2
mr2ϕ̇2︸ ︷︷ ︸

rotation movement

Thus, our Lagrangian, subject to the constraints, becomes:

L =
1

2
m(ρ̇2 + ρ2θ̇2)︸ ︷︷ ︸

centre of mass movement

+
1

2
mr2ϕ̇2︸ ︷︷ ︸

rotation movement

− mg(ρ cos θ)︸ ︷︷ ︸
potential energy

− λ(ρ− r −R)︸ ︷︷ ︸
hoop in contact with cylinder

− µ(rϕ− (R+ r)θ)︸ ︷︷ ︸
rolling without slipping

The variables defining the EL equations will be θ, ϕ, ρ, whilst R, r, λ, µ are constants (notice, we can’t jsut
take ρ to be constant: we first have to derive equations using EL, and then we can apply the constraints).

Thus:

∂L

∂ρ̇
= mρ̇

∂L

∂ρ
= mρθ̇2 −mg cos θ − λ

∂L

∂θ̇
= mρ2θ̇

∂L

∂θ
= mgρ sin θ + µ(R+ r)

∂L

∂ϕ̇
= mr2ϕ̇

∂L

∂ϕ
= −µr

alongside the constraints:
ρ = R+ r r(ϕ− θ) = Rθ

For ρ:
mρ̈−mρθ̇2 +mg cos θ + λ = 0

For θ:

m
d

dt
(ρ2θ̇)−mgρ sin θ − µ(R+ r) = 0

For ϕ:
mr2ϕ̈+ µr = 0

Since ρ = r +R must be constant ρ̈ = 0, the equation for ρ becomes:

−m(R+ r)θ̇2 +mg cos θ + λ = 0
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and the equation for θ becomes:

m(R+ r)2θ̈ −mg(R+ r) sin θ − µ(R+ r) = 0 =⇒ m(R+ r)θ̈ −mg sin θ − µ = 0

We can use the EL for ϕ to determine µ:

mr2ϕ̈+ µr = 0 =⇒ µ = −mrϕ̈

and using the no-slip constraint:

r(ϕ− θ) = Rθ =⇒ r(ϕ̈− ¨
θ) = Rθ̈ =⇒ rϕ̈ = θ̈(R+ r)

so:
µ = −m(R+ r)θ̈

and thus, the equation for θ becomes:

m(R+ r)θ̈ −mg sin θ − µ = 0 =⇒ 2m(R+ r)θ̈ −mg sin θ = 0

If we multiply through by θ̇:
2m(R+ r)θ̈θ̇ − θ̇mg sin θ = 0

where notice that:
d

dt
(θ̇2) = 2θ̇θ̈

d

dt
(mg cos θ) = −θ̇mg sin θ

so integrating we get that:
2m(R+ r)θ̇2 = −mg cos θ + C

Now, if θ = 0 (and assuming that θ̇ = 0 - the hoop is put into movement by applying a negligible force) this
forces C = mg. Thus, we have that:

m(R+ r)θ̇2 = mg(1− cos θ)

Finally, we go back to the ρ equation to get:

−m(R+ r)θ̇2 +mg cos θ + λ = 0 =⇒ −mg(1− cos θ) +mg cos θ + λ = 0

so that:
λ = mg(1− 2 cos θ)

Recall, λ is used to define the constraint force −λ ∂g
∂xi . When λ = 0, the constraint force no longer acts; that

is, without a constraint force, the hoop will no longer remain in contact with the cylinder. Hence, when
θ = π

3 , λ = 0, and so, the hoop falls from the cylinder.

Notice, the force will act normally to the hoop: it is an outward force which acts to oppose the gravita-
tional force. In fact, if we compute the total force acting on the hoop radially (along ρ):

∂L

∂ρ
= −mg cos θ +m(r +R)θ̇2 − λ = 0

by using the constraints.

However, along θ the forces won’t cancel:

1

ρ

∂L

∂θ
= mg sin θ + µ = m(r +R)θ̈
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where µ = − 1
2mg sin θ is the friction force, derived by the constraint that we must have rolling without

slipping.

The above framework is very generalisable, and can apply to a multitude of shapes rolling on different
surfaces. All that changes will be the kinetic energy terms, which depend on how the objects rotate. for
instance, if instead of a hooop we had a solid cylinder, the rotational kinetic energy will be:

1

4
mr2ϕ̇2
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