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Based on the notes by Jelle Hartong, Section 9

1 Lemma: The Method of Lagrange Multipliers in Several Vari-
able Calculus

Let:
f,9:U—>R, UcCR"

Let x, be an interior point of U, such that x, is an extremum of f, sub-
ject to g(z) = 0.

Then, if:
Vg(zy) # 0
there exists a Lagrange multiplier \ € R, such that (z,, \) is a critical
point of:
F:UxR—=R

F(z,\) = f(z) — Ag(z)

In particular, we have a necessary condition for a critical point of f
constrained by g = 0: if z, is a critical point, then 3Ny € R such that:

oF

520 o g(z) =0
V= = OF _ o v X ag) = 202 (zy)
Ort T Qar Y T M0 0

(Lemma 9.1)
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2 Constrained Optimisation in Functionals

2.1 Motivation: The Isoperimetric Problem

2.1.1 Theorem: Green’s Theorem

Let C be a:

positively oriented (i.e can be traversed counterclockwsise)

e piecewise smooth

stmple (i.e not self-intersecting)
e closed

curve, enclosing a region D.
Moreover, let F,G € C" be functions R? — R.
Then, Green’s Theorem states:

55 Fdx + Gdy = // (8_G — 8—F) dxdy
C p \O0xr Oy

Moreover, if we parametrise C' via:

z = (2(t),y(t))
we have that:

[ teena + cawiioia = | (52 -50) ey

Green’s Theorem can be thought of a two-dimensional fundamental theorem of calculus, relating a line
integral to an area integral. For concreteness, an example for C, and D could be:
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2.1.2 Corollary: Area Formulae from Green’s Theorem

Notice, if:

oG _or
or 0Oy

Then Green’s Theorem tells us that:

Area(D) = 51{ Fdx + Gdy
c

Sensible choices for F, G then give:

Flz,y)=-y & G(z,y)=0 = Area(D) =

F(z,y) =0 & G(z,y)=2 = Area(D)=

1
F(z,y) = —% & Gz,y) = g = Area(D) = 5 %xdy — ydx

2.1.3 The Isoperimetric Problem

The Isoperimetric Problem is the following:

Find the closed plane curve of a given length that encloses the
largest area.

This can be reformulated as a variational problem in terms of functionals:
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Let:
z:[0,1] - R?

be a continuously differentiable (C') closed curve:
2(0) = z(1)

The area enclosed by x is a functional:

(by using Green’s Theorem)
Its perimeter is our well known arclength functional:

o) = [ el = [ @7+ @a

The isoperimetric problem requires that we extremise Alzx], subject to
the functional constraint S|x] = (.

Notice, this is reminiscent of constrained optimisation in SVC, but this time we extremaise function-
als, and use functional constraints. Hence, we will have to develop Lagrange Multipliers for variational
calculus to solve the Isoperimetric Problem.
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2.2 Theorem: The Method of Lagrange Multipliers for Functionals

Let: .
J[y]:/ L(y,y', x)

W= [ K

be functionals for a C' function:

/,x)

<

y:[0,1] - R"

subject to the boundary conditions:

Now, suppose that y(x) extremises J, subject to the isoperimetric
constraint:

Ily| =0

Then, ify is not an extremal of I[y], there is a Lagrange multiplier
A € R, such that y extremises the functional:

Ply] = Jly] — My

(Theorem 9.2)

Note, an isoperimetric problem is a general problem were a functional is extremised subject to a
functional constraint.
Moreover, note the similarities with Lagrange Multipliers in SVC:

g(x) =0 <= Iy =0

Vg(z) #0 <=y doesn’t extremise I[y]
F=f—-Xg,VF(z,\) =0 <= y,A\ extremise P =.J — Al

Proof. We prove this for a one-dimensional curve:
y:[0,1] = R

Suppose that y extremises J. Then, J[y + s¢], where ¢ is a variation, has an extrema at s = 0. In other
words:

d
iJ[y + se] T 0
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The problem is that we require that the variation e also satisfy the isoperimetric constraint; however, we
have no guarantee that such (non-zero) variations even exist. As such, we introduct a correction term via
rn, such that:

§(x) = y(x) + se(x) + rn(z)
where rn(z) ensures that for fixed, arbitrary ¢, and small s in the neighbourhood of 0, § satisfies the
isoperimetric condition:

1151 =0

Now, notice our functionals now become functions of 2 variables, r, s:
frys) = Jlg] = Jly + se + 1]

g(r,s) =1[g] = Ily + s + 1)
These function will be differentiable, assuming that L, K are differentiable. Now, we are in a setting where

Lagrange Multipliers can be applied: y extremises J subject to I, so in particular it follows that (0,0) is a
critical point of f, and y obeys the isoperimetric constraint:

Iyy=0 = ¢(0,0)=0

Moreover, if we assume that Vg(0,0) # 0, by the Lemma on Lagrange multipliers, 3\ € R, such that (0,0, \)
is a critical point of:
F(r,s,\) = f(r,s) — Ag(r, s)
In other words, we must have that VF(0,0,A) = 0, so we get the following equations:
F F F

oF _g 9F _g 9 —0

95 {(0,0,%) I { 0,00 I 0,00
The last equation just tells us that:

9(0,0) =0

which is just our constraint satisfaction equation I[y] = 0.

The remaining equations can be rewritten as:

9 g - A =o

s . (J[9] = M[9]) =0

s=r=0

9
or

Using:
J=y+se+rn
7=y +se'+ry

we compute:
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Now, if we apply integration by parts, we know that:
oL d 0L
= d

oy T woy
dv=¢ v=¢
so: ) . )
oL oL d OL
——edr=|e—| — ———d
0 oy~ {gay’]o E/o dw oy ™
Assuming a fixed-point variation €(0) = (1) = 0 (since y(0),y(1) are fixed constants for any s), this gives
us:
0 ' (0L d oL
—J[g = — - ———|d
85J[y] s—r—0 /0 c <8y dx 8y> “
Similarly:
0 ' (0K d 0K
—1I[j = — - ——d
0Os 9] s=r—0 /0 c ( oy dzx 8y> v

so it follows that:

= (716] — M(3))

! 8L d oL 0K d 0K
e /ofKay‘dzay)”(ay‘dzay)]dM

€ was arbitrary, so by the Fundamental Lemma:

oL 4oLy (0K d oKy,
Oy dx Oy oy dx oy )

Defining M = L — MK, this is nothing by the Euler-Lagrange Equation for M:

oM _ d oM _
oy dx Oy
Now, we don’t even need to compute:
Dl M| =0
or Y Y s=r=0 a

Since we are assuming Vg(0,0) # 0, that means that g isn’t singular at (0,0), so by the implicit function
theorem, the constraint:

g(r,s) =0

tells us that for small values of s, » = r(s) can be thought of as a function of s (alternatively, s could be
a function of 7). Because of this,  can be thought of as being part of a smaller variation class than e.
If alternatively we have s = s(r), then n would’ve been our variation, and we would’ve reached the same
conclusion, albeit by taking the partial derivative with respect to r.

The last step is to consider the effect of assuming Vg(0,0) # 0. If Vg(0,0) = 0, then this is equivalent
to y extremising I[y]. Hence, for our Lagrange multipliers to apply, we must ensure that the constraint is
satisfied (I[y] = 0) and that y doesn’t extremise y. O
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2.2.1 Remarks

1. If y is an extremal of I (Vg(0,0) = 0), the problem is abnormal. In this case, 3\, u € R, not both 0,
such that y is an extremal of:
wd — I

2. If we have many constraints, then we have to determine the extremal of the Lagrangian:

M=L—-MK; —XKy—...- K,

3 Worked Examples

3.1 Solving Constrained Optimisation Problems with Functionals

The following are the steps to following when extremising J[y|, subject to
Ify] = 0:

1. Determine the extremals of Iy, and ensure none of them satisfies:
Iyl =0
2. Solve the Euler-Lagrange Equation for:
M=L-)\K

3. Determine constants of integrations by using the boundary
conditions:

y0) =y  y(1)=wn

4. Determine \ by using the constraint I[y] =0

3.2 A Variant of the Isoperimetric Problem

Consider a curve:
y(x):[0,1] =R,  Vze[0,1],y(z) 20
where y(0) = y(1) = 0 are the only points were y = 0.

Determine y, such that it maximises the area under the curve, provided
that he arclength of y 1s £ > 1.

This corresponds to maximising the area functional:
1
Alz] = / ydx
0
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subject to:
1
Sly] = / V1+y(x)2de=1¢
0

(to adhere to the formulation we have used, we define:

so that we have the constraint I[y] = 0)

@

We know that the arclength functional S has an extremum given by a straight line. Hence, S[y] = 1 in
such a case. However, we are looking for y with arclength ¢ > 1, so any y satisfying the constraint I[y] = 0
won’t be an extremum of I, and thus, we can use Lagrange Multipliers.

®

We compute the Euler-Lagrange Equation for:

M=y = AMV1+(y'(2))* 1)

Indeed:
oM _
dy
oM Ay’
W TP

which gives us the Euler-Lagrange Equation:

d Ay’
1+ —=L—] =0
dz \ 1+ (y)?
Integrating once:
Ay’

T+ —= =0
1+ (y')?
We simplify:
A !
LN
1+ (y')?

N(y')?

i

1+ (y
= N@Y)? = (a—2)*(1+ )%
= ()2 (N = (a1 —2)%) = (e1 — @)

(e —2)?
A2 — (¢ — x)?

=y =&

! (c1 — )2

d
o VX (e —ap2™
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Now, using:

d
u=X—(c —2)? = ﬁz—?(cl—x)
so:
y—+ (a—x)*  du
u 2(c; —x)

where we have taken y to be positive. Notice, y will trace out a segment of a circle of radius A, centered at

(c1,c2).

®

Now, we require that y(0) = y(1) = 0, so:
y0)=1 = N =i+
y) =1 = N =c+(1-c)?

S0:
1
A=1-c¢)? = 1-2q0+¢= = =g

/ 1
Cy = Az_i

Thus, y traces out a segment of a circle, centered at:

1 1
- 2 _ —

Hence:

®

The final step is determining A. For this we have to use our constraint:

Iy =0
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which gives the arclength/perimeter of our segment about the x-axis. Indeed:

Now define:

When z = 0:

and wehn z = 1:

so that:

=

=

This is a transcendental equation, but it does have real solutions.

A =~ £0.52757. We can plot this:

Sly]—€=0

/Olmdx:e

=

1
(0.5 —x)?
1+ ———>——dax ="/
— /0 \/ TN (05— a2™
1
)\2
— ~ _dr=
:>/0 X (05 22"
! 1
A ——dr =/
— MoV 05 —22™
05—z = Asinf — d—x——)\COSH
' o de

1
0 = arcsin —
arcsin 2)\

1
9 - — in —
arcsin I

! 1
L
’\/0 X2 (05—a)2
— arcsin 5 1
_ )\2/ St cosfdo = ¢
arcsin ﬁ A2 — N2 Sin2 0 oo

— arcsin %
—A / do=1¢
arcsin %

1
2Marcsin — =/
arcsin o~

4
2Asin — =1
sin o+
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0.5+

0.5

—0.5+

Figure 1: Inred, y(z) = /A2 — (¢c1 — 2)?+c2 using A = 0.52757. In blue the corresponding negative solution.

3.3 Solving the Isoperimetric Problem

The isoperimatric problem corresponds to extremising the functional:

Pla] = /01 B(xlﬁ — 22Y) = A/ T (PR dt
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3.4 The Catenary

Consider a uniform chain of length £, hanging udner it sown weight from
2 poles a height h from the ground, and a distance 26y < ¢ apart.

Let H(s) denote the height of the chaing, as a function of arclength s. The
chain will try to minimise its gravitational potential energy, which is

given by:
¢
/ H(s)dx
0

If we parametrise the height of the chain by:

y(x) = H(s(z))

where x € [—{y, by, we have that the potential energy will be:

/ " y(@) /1Ty @Pds

—to

subject to the boundary conditions:

y(—Lo) = y(lo) = h

and the isoperimetric constraint:

Lo
/ V1+y'(x)2de =74
4

@

Since we once have an arclength constraint, the curve which extremises it is a striaght line, whose length
will be 2¢y. Since ¢ > 2{;, any y satisfying the constraint won’t be a straight line, so Lagrange Multipliers

apply.

©)

If we define:

Ly, v 2) =yv/1+ )2 = A1+ W)= —-NV1+ )2
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then, and since the L doesn’t depend explicitly on x, by Beltrami’s Identity we get the the EL become:

/N
<
|
>
"
()
I
—_
+
—
@\
o

!

i — V)2 _ 2
y'=7 (y—A)?—c

x—c/\/mdy

Now recall:
cosh?(z) — sinh?(z) = 1

% cosh(z) = sinh(z)

d .

e sinh(z) = cosh(z)
Thus, let:

y—A=ccosh(d) = % = c¢sinh(6)

Our integral becomes:
1
T=c / —dy
(y—A)P—¢

2/ 1

rx=c

\/ 2 cosh? (0) — ¢2
= x:c/dﬁ

rz=cl+d

sinh(0)do

I

r—d

I

y — A = ccosh

®

Now, we apply the boundary conditions:

—{ ly+d

—d
y(—lp) =h = h— A =ccosh = ccosh
c

(since cosh is even)
ly—d

y(lp) =0 = h —X=ccosh
c

Notice, this implies that:

Lo

d by —
osh 2_ = cosh >

d=0
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by using the fact that cosh is a monotone function.

Hence: .
y = ccosh — + A
c

@

The work above already gives us A:
h—)\:ccosh%O = )\:h—ccosh%o

so that:

¢
y:ccoshf + h — ccosh
c c
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