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Based on the notes by Jelle Hartong, Section 9

1 Lemma: The Method of Lagrange Multipliers in Several Vari-
able Calculus

Let:
f, g : U → R, U ⊂ Rn

Let x0 be an interior point of U , such that x0 is an extremum of f , sub-
ject to g(x) = 0.
Then, if:

∇g(x0) ̸= 0

there exists a Lagrange multiplier λ ∈ R, such that (x0, λ) is a critical
point of:

F : U × R → R
F (x, λ) = f(x)− λg(x)

In particular, we have a necessary condition for a critical point of f
constrained by g = 0: if x0 is a critical point, then ∃λ0 ∈ R such that:

∇F (x0, λ0) = 0 =⇒


∂F

∂λ
= 0 ∴ g(x0) = 0

∂F

∂xi
= 0 ∴

∂f

∂xi
(x0) = λ0

∂g

∂xi
(x0)

(Lemma 9.1)
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2 Constrained Optimisation in Functionals

2.1 Motivation: The Isoperimetric Problem

2.1.1 Theorem: Green’s Theorem

Let C be a:

• positively oriented (i.e can be traversed counterclockwsise)

• piecewise smooth

• simple (i.e not self-intersecting)

• closed

curve, enclosing a region D.
Moreover, let F,G ∈ C1 be functions R2 → R.
Then, Green’s Theorem states:

˛
C

Fdx+Gdy =

¨
D

(
∂G

∂x
− ∂F

∂y

)
dxdy

Moreover, if we parametrise C via:

x = (x(t), y(t))

we have that:ˆ 1

0

[F (x(t))ẋ(t) +G(x(t))ẏ(t)] dt =

¨
D

(
∂G

∂x
− ∂F

∂y

)
dxdy

Green’s Theorem can be thought of a two-dimensional fundamental theorem of calculus, relating a line
integral to an area integral. For concreteness, an example for C, and D could be:
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D

C

2.1.2 Corollary: Area Formulae from Green’s Theorem

Notice, if:
∂G

∂x
− ∂P

∂y
= 1

Then Green’s Theorem tells us that:

Area(D) =

˛
C

Fdx+Gdy

Sensible choices for F,G then give:

F (x, y) = −y & G(x, y) = 0 =⇒ Area(D) =

˛
C

−ydx

F (x, y) = 0 & G(x, y) = x =⇒ Area(D) =

˛
C

xdy

F (x, y) = −y

2
& G(x, y) =

x

2
=⇒ Area(D) =

1

2

˛
xdy − ydx

2.1.3 The Isoperimetric Problem

The Isoperimetric Problem is the following:

Find the closed plane curve of a given length that encloses the
largest area.

This can be reformulated as a variational problem in terms of functionals:
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Let:
x : [0, 1] → R2

be a continuously differentiable (C1) closed curve:

x(0) = x(1)

The area enclosed by x is a functional:

A[x] =
1

2

ˆ 1

0

(x1ẋ2 − x2ẋ1)dt

(by using Green’s Theorem)
Its perimeter is our well known arclength functional:

S[x] =

ˆ 1

0

∥ẋ(t)∥dt =
ˆ 1

0

√
(ẋ1)2 + (ẋ2)2dt

The isoperimetric problem requires that we extremise A[x], subject to
the functional constraint S[x] = ℓ.

Notice, this is reminiscent of constrained optimisation in SVC, but this time we extremise function-
als, and use functional constraints. Hence, we will have to develop Lagrange Multipliers for variational
calculus to solve the Isoperimetric Problem.
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2.2 Theorem: The Method of Lagrange Multipliers for Functionals

Let:

J [y] =

ˆ 1

0

L(y, y′, x)

I[y] =

ˆ 1

0

K(y, y′, x)

be functionals for a C1 function:

y : [0, 1] → Rn

subject to the boundary conditions:

y(0) = y
0

y(1) = y
1

Now, suppose that y(x) extremises J , subject to the isoperimetric
constraint:

I[y] = 0

Then, if y is not an extremal of I[y], there is a Lagrange multiplier
λ ∈ R, such that y extremises the functional:

P [y] = J [y]− λI[y]

(Theorem 9.2)

Note, an isoperimetric problem is a general problem were a functional is extremised subject to a
functional constraint.
Moreover, note the similarities with Lagrange Multipliers in SVC:

g(x) = 0 ⇐⇒ I[y] = 0

∇g(x) ̸= 0 ⇐⇒ y doesn’t extremise I[y]

F = f − λg,∇F (x, λ) = 0 ⇐⇒ y, λ extremise P = J − λI

Proof. We prove this for a one-dimensional curve:

y : [0, 1] → R

Suppose that y extremises J . Then, J [y + sε], where ε is a variation, has an extrema at s = 0. In other
words:

d

ds
J [y + sε]

∣∣∣∣
s=0

= 0

Page 6



The problem is that we require that the variation ε also satisfy the isoperimetric constraint; however, we
have no guarantee that such (non-zero) variations even exist. As such, we introduct a correction term via
rη, such that:

ŷ(x) = y(x) + sε(x) + rη(x)

where rη(x) ensures that for fixed, arbitrary ε, and small s in the neighbourhood of 0, ŷ satisfies the
isoperimetric condition:

I[ŷ] = 0

Now, notice our functionals now become functions of 2 variables, r, s:

f(r, s) = J [ŷ] = J [y + sε+ rη]

g(r, s) = I[ŷ] = I[y + sε+ rη]

These function will be differentiable, assuming that L,K are differentiable. Now, we are in a setting where
Lagrange Multipliers can be applied: y extremises J subject to I, so in particular it follows that (0, 0) is a
critical point of f , and y obeys the isoperimetric constraint:

I[y] = 0 =⇒ g(0, 0) = 0

Moreover, if we assume that ∇g(0, 0) ̸= 0, by the Lemma on Lagrange multipliers, ∃λ ∈ R, such that (0, 0, λ)
is a critical point of:

F (r, s, λ) = f(r, s)− λg(r, s)

In other words, we must have that ∇F (0, 0, λ) = 0, so we get the following equations:

∂F

∂s

∣∣∣∣
(0,0,λ)

= 0
∂F

∂r

∣∣∣∣
(0,0,λ)

= 0
∂F

∂λ

∣∣∣∣
(0,0,λ)

= 0

The last equation just tells us that:
g(0, 0) = 0

which is just our constraint satisfaction equation I[y] = 0.

The remaining equations can be rewritten as:

∂

∂s
(J [ŷ]− λI[ŷ])

∣∣∣∣
s=r=0

= 0
∂

∂r
(J [ŷ]− λI[ŷ])

∣∣∣∣
s=r=0

= 0

Using:
ŷ = y + sε+ rη

ŷ′ = y′ + sε′ + rη′

we compute:

∂

∂s
(J [ŷ])

∣∣∣∣
s=r=0

=

ˆ 1

0

∂

∂s
L(ŷ, ŷ′, x)

∣∣∣∣
s=r=0

dx

=

ˆ 1

0

∂L

∂ŷ

∂ŷ

∂s
+

∂L

∂ŷ′
∂ŷ′

∂s

∣∣∣∣
s=r=0

dx

=

ˆ 1

0

∂L

∂ŷ
ε+

∂L

∂ŷ′
ε′
∣∣∣∣
s=r=0

dx

=

ˆ 1

0

(
∂L

∂y
ε+

∂L

∂y′
ε′
)
dx
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Now, if we apply integration by parts, we know that:

u =
∂L

∂y′
du =

d

dx

∂L

∂y′

dv = ε′ v = ε

so: ˆ 1

0

∂L

∂y′
ε′dx =

[
ε
∂L

∂y′

]1
0

− ε

ˆ 1

0

d

dx

∂L

∂y′
dx

Assuming a fixed-point variation ε(0) = ε(1) = 0 (since y(0), y(1) are fixed constants for any s), this gives
us:

∂

∂s
J [ŷ]

∣∣∣∣
s=r=0

=

ˆ 1

0

ε

(
∂L

∂y
− d

dx

∂L

∂y

)
dx

Similarly:
∂

∂s
I[ŷ]

∣∣∣∣
s=r=0

=

ˆ 1

0

ε

(
∂K

∂y
− d

dx

∂K

∂y

)
dx

so it follows that:

∂

∂s
(J [ŷ]− λI[ŷ])

∣∣∣∣
s=r=0

= 0 =⇒
ˆ 1

0

ε

[(
∂L

∂y
− d

dx

∂L

∂y

)
− λ

(
∂K

∂y
− d

dx

∂K

∂y

)]
dx = 0

ε was arbitrary, so by the Fundamental Lemma:(
∂L

∂y
− d

dx

∂L

∂y

)
− λ

(
∂K

∂y
− d

dx

∂K

∂y

)
= 0

Defining M = L− λK, this is nothing by the Euler-Lagrange Equation for M :

∂M

∂y
− d

dx

∂M

∂y′
= 0

Now, we don’t even need to compute:

∂

∂r
(J [ŷ]− λI[ŷ])

∣∣∣∣
s=r=0

= 0

Since we are assuming ∇g(0, 0) ̸= 0, that means that g isn’t singular at (0, 0), so by the implicit function
theorem, the constraint:

g(r, s) = 0

tells us that for small values of s, r = r(s) can be thought of as a function of s (alternatively, s could be
a function of r). Because of this, η can be thought of as being part of a smaller variation class than ε.
If alternatively we have s = s(r), then η would’ve been our variation, and we would’ve reached the same
conclusion, albeit by taking the partial derivative with respect to r.

The last step is to consider the effect of assuming ∇g(0, 0) ̸= 0. If ∇g(0, 0) = 0, then this is equivalent
to y extremising I[y]. Hence, for our Lagrange multipliers to apply, we must ensure that the constraint is
satisfied (I[y] = 0) and that y doesn’t extremise y.
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2.2.1 Remarks

1. If y is an extremal of I (∇g(0, 0) = 0), the problem is abnormal. In this case, ∃λ, µ ∈ R, not both 0,
such that y is an extremal of:

µJ − λI

2. If we have many constraints, then we have to determine the extremal of the Lagrangian:

M = L− λ1K1 − λ2K2 − . . .− λnKn

3 Worked Examples

3.1 Solving Constrained Optimisation Problems with Functionals

The following are the steps to following when extremising J [y], subject to
I[y] = 0:

1. Determine the extremals of I[y], and ensure none of them satisfies:

I[y] = 0

2. Solve the Euler-Lagrange Equation for:

M = L− λK

3. Determine constants of integrations by using the boundary
conditions:

y(0) = y0 y(1) = y1

4. Determine λ by using the constraint I[y] = 0

3.2 A Variant of the Isoperimetric Problem

Consider a curve:

y(x) : [0, 1] → R, ∀x ∈ [0, 1], y(x) ≥ 0

where y(0) = y(1) = 0 are the only points were y = 0.
Determine y, such that it maximises the area under the curve, provided
that he arclength of y is ℓ > 1.

This corresponds to maximising the area functional:

A[x] =

ˆ 1

0

ydx
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subject to:

S[y] =

ˆ 1

0

√
1 + y′(x)2dx = ℓ

(to adhere to the formulation we have used, we define:

I[y] = S[y]− ℓ

so that we have the constraint I[y] = 0)

1

We know that the arclength functional S has an extremum given by a straight line. Hence, S[y] = 1 in
such a case. However, we are looking for y with arclength ℓ > 1, so any y satisfying the constraint I[y] = 0
won’t be an extremum of I, and thus, we can use Lagrange Multipliers.

2

We compute the Euler-Lagrange Equation for:

M = y − λ(
√

1 + (y′(x))2 − ℓ)

Indeed:
∂M

∂y
= 1

∂M

∂y′
= − λy′√

1 + (y′)2

which gives us the Euler-Lagrange Equation:

1 +
d

dx

(
λy′√

1 + (y′)2

)
= 0

Integrating once:

x+
λy′√

1 + (y′)2
= c1

We simplify:

x+
λy′√

1 + (y′)2
= c1

=⇒ λ2(y′)2

1 + (y′)2
= (c1 − x)2

=⇒ λ2(y′)2 = (c1 − x)2(1 + (y′)2)

=⇒ (y′)2(λ2 − (c1 − x)2) = (c1 − x)2

=⇒ y′ = ±

√
(c1 − x)2

λ2 − (c1 − x)2

=⇒ y = ±
ˆ 1

0

√
(c1 − x)2

λ2 − (c1 − x)2
dx
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Now, using:

u = λ2 − (c1 − x)2 =⇒ du

dx
= −2(c1 − x)

so:

y = ±
ˆ √

(c1 − x)2

u
×− du

2(c1 − x)

=
1

2

ˆ
u− 1

2 du

=
√
u+ c2

=
√
λ2 − (c1 − x)2 + c2

=⇒ λ2 = (y − c2)
2 + (x− c1)

2

where we have taken y to be positive. Notice, y will trace out a segment of a circle of radius λ, centered at
(c1, c2).

3

Now, we require that y(0) = y(1) = 0, so:

y(0) = 1 =⇒ λ2 = c22 + c21

y(1) = 1 =⇒ λ2 = c22 + (1− c1)
2

so:

c21 = (1− c1)
2 =⇒ 1− 2c1 + c21 = c21 =⇒ c1 =

1

2

Hence:

c2 =

√
λ2 − 1

4

Thus, y traces out a segment of a circle, centered at:(
1

2
,

√
λ2 − 1

4

)

4

The final step is determining λ. For this we have to use our constraint:

I[y] = 0
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which gives the arclength/perimeter of our segment about the x-axis. Indeed:

S[y]− ℓ = 0

=⇒
ˆ 1

0

√
1 + (y′)2dx = ℓ

=⇒
ˆ 1

0

√
1 +

(0.5− x)2

λ2 − (0.5− x)2
dx = ℓ

=⇒
ˆ 1

0

√
λ2

λ2 − (0.5− x)2
dx = ℓ

=⇒ λ

ˆ 1

0

√
1

λ2 − (0.5− x)2
dx = ℓ

Now define:

0.5− x = λ sin θ =⇒ dx

dθ
= −λ cos θ

When x = 0:

θ = arcsin
1

2λ

and wehn x = 1:

θ = − arcsin
1

2λ

so that:

λ

ˆ 1

0

√
1

λ2 − (0.5− x)2
dx = ℓ

=⇒ − λ2

ˆ − arcsin 1
2λ

arcsin 1
2λ

√
1

λ2 − λ2 sin2 θ
cos θdθ = ℓ

=⇒ − λ

ˆ − arcsin 1
2λ

arcsin 1
2λ

dθ = ℓ

=⇒ 2λ arcsin
1

2λ
= ℓ

=⇒ 2λ sin
ℓ

2λ
= 1

This is a transcendental equation, but it does have real solutions. For example, if ℓ = 2, we get that
λ ≈ ±0.52757. We can plot this:
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0.5 1

−0.5

0.5

1

Figure 1: In red, y(x) =
√
λ2 − (c1 − x)2+c2 using λ = 0.52757. In blue the corresponding negative solution.

3.3 Solving the Isoperimetric Problem

The isoperimatric problem corresponds to extremising the functional:

P [x] =

ˆ 1

0

[
1

2
(x1ẋ2 − x2ẋ1)− λ

√
(ẋ1)2 + (ẋ2)2

]
dt
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3.4 The Catenary

Consider a uniform chain of length ℓ, hanging udner it sown weight from
2 poles a height h from the ground, and a distance 2ℓ0 < ℓ apart.
Let H(s) denote the height of the chaing, as a function of arclength s. The
chain will try to minimise its gravitational potential energy, which is
given by: ˆ ℓ

0

H(s)dx

If we parametrise the height of the chain by:

y(x) = H(s(x))

where x ∈ [−ℓ0, ℓ0], we have that the potential energy will be:

ˆ ℓ0

−ℓ0

y(x)
√

1 + y′(x)2dx

subject to the boundary conditions:

y(−ℓ0) = y(ℓ0) = h

and the isoperimetric constraint:

ˆ ℓ0

−ℓ0

√
1 + y′(x)2dx = ℓ

1

Since we once have an arclength constraint, the curve which extremises it is a striaght line, whose length
will be 2ℓ0. Since ℓ > 2ℓ0, any y satisfying the constraint won’t be a straight line, so Lagrange Multipliers
apply.

2

If we define:
L(y, y′, x) = y

√
1 + (y′)2 − λ

√
1 + (y′)2 = (y − λ)

√
1 + (y′)2
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then, and since the L doesn’t depend explicitly on x, by Beltrami’s Identity we get the the EL become:

y′
∂L

∂y′
− L = c

=⇒ y′
y′(y − λ)√
1 + (y′)2

− (y − λ)
√
1 + (y′)2 = c

=⇒ y − λ√
1 + (y′)2

= c

=⇒
(
y − λ

c

)2

= 1 + (y′)2

=⇒ y′ =
1

c

√
(y − λ)2 − c2

=⇒ x = c

ˆ
1√

(y − λ)2 − c2
dy

Now recall:
cosh2(x)− sinh2(x) = 1

d

dx
cosh(x) = sinh(x)

d

dx
sinh(x) = cosh(x)

Thus, let:

y − λ = c cosh(θ) =⇒ dy

dθ
= c sinh(θ)

Our integral becomes:

x = c

ˆ
1√

(y − λ)2 − c2
dy

=⇒ x = c2
ˆ

1√
c2 cosh2(θ)− c2

sinh(θ)dθ

=⇒ x = c

ˆ
dθ

=⇒ x = cθ + d

=⇒ y − λ = c cosh
x− d

c

3

Now, we apply the boundary conditions:

y(−ℓ0) = h =⇒ h− λ = c cosh
−ℓ0 − d

c
= c cosh

ℓ0 + d

c

(since cosh is even)

y(ℓ0) = 0 =⇒ h− λ = c cosh
ℓ0 − d

c

Notice, this implies that:

cosh
ℓ0 + d

c
= cosh

ℓ0 − d

c
=⇒ d = 0
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by using the fact that cosh is a monotone function.

Hence:
y = c cosh

x

c
+ λ

4

The work above already gives us λ:

h− λ = c cosh
ℓ0
c

=⇒ λ = h− c cosh
ℓ0
c

so that:

y = c cosh
x

c
+ h− c cosh

ℓ0
c
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