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Based on the notes by Jelle Hartong, Section 8.5-8.7

1 Bargmann Algebra from the Free Particle
e What is the Lagrangian defining the motion of a free particle?
— recall, a free particle is a particle moving via:
mz =0

— the associated Lagrangian is:

. 1 .
L(z,&,t) = §m||§\|2

(the Euler-Lagrange equations give us that:

4oL _ oL =0 = mi=0
dt 0it Ozt =

)

e What is the Hamiltonian of the free particle?

— defining:
oL , o
pi:(%i =mzs' = JbL:%

— so the Hamiltonian will be (using Einstein summation notation):

2
P Il

2m

p
2m

, 1 2
H=pzi"'—L= megH =
2 m

e Is energy conserved for a free particle in phase space?
— since we have a free particle, in particular it is not affected by external forces, so no potential

acts on it, so V(z) =0

— hence, the total energy of the particle will be:

1 Ip[1*
E = — =112 = — =
Sl = 2

— hence, the Hamiltonian represents the total energy of the free particle

— it is clear that:

[H,H) =0
and since H is time independent, this implies that:
dH dE
H,H| =0 —_— = —=
A, H] dt dt

so energy is conserved in phase space (of course, we already knew this)

e Are angular momentum and linear momentum conserved for a free particle in phase
space?

— the linear momentum is just:

Py =p;
and: SH
H P = - =
[H, P ort 0



— since P; Poisson commutes with H, the momenta are also conserved in phase space

— the angular momentum is given (in 2 dimensions) by:
J=a'py —a’p

and: OH 0] OH 0J
. uaoes oo p o P2y
[H, J] = Op1 Ox1  Op, Oz m?? m( ) =0

— since J Poisson commutes with H, the angular momentum is also conserved in phase space
e What is the Noether charge associated with a Galilean boost?
— consider the Galilean boost:
ps(z) =z +uvts  ps(t) =t
where v is some constant vector

— this is a symmetry of the Lagrangian, since if we define y(s,t) = ¢,(x) then:

. .
L(y ) = 5l

I
\
El
=
+
<
&
o

3m (& + vs, & + vs)
1

=5m (&, &) + 25 (2, v) + s* (v, v))
m . . . m

= 5||§H2 +ms (v, &) + 582”2”2

In particular, since Lagangians are “the same” up to a total time derivative, we have a symmetry

if:
d ) dps(t) d d dF
—L t = —K(z,t) = —
a5 P W) x =g = gt = 5
(this is what we used to derive the generalised Noether Theorem)
Since d%f(t) =1, we compute:
d . . 2
2o LW 3 0) = m(u, &) + mslly]
s
Now, notice that:
d
m% <Ua .I‘> =m <’U, .13)
mi (v, vts) = ms (v, v)
dt =) = - = =,
Hence: p p
gL(% .t) = m (v, &) +msllv)|* = i (m (v, z + vst))
and so:

Ks(z) = m (v, z +vst)

Thus, L is invariant under Galilean boosts (up to a total time derivative)

Recall, the general Noether Charge is given by:

. oL . OL
N(z,i,t) = (L—wak> T+Zka—Ko
k K
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s is the identity transformation when changing time, so:

5]
T = 905(75) =0
85 s=0
and: o
k v’ k
= — = t
¢ 0s |._o v
So:

N=Zm$kvkt—m<y,g> =m (v, &t — )
k

— we can indeed check that this is conserved, since trajectories of the particle obey mZ = 0 and:

dN

E=m<27@f+i—i>=0

e How can we express the Noether charge in terms of phase space variables?

— notice m (v, it — z) will be conserved for any element v in v

— as such, what must be conserved will be:
G; = mi't — ma!
— using phase space coordinates: _
G; = tp; — ma’

— we can then express the Noether charge as:
k

— moreover, since G; depends explicitly on time and is conserved:

J9G;
Az i7H =
5 +[Gi,H| =0

Notice, if we find the integral curves for the Hamiltonian Vector Field
in R? for the Noether charge ®:

dx’ , oD :
— = e (b = — = t e

dS [I ? ] 8p1/ v
ds lpi; ] = o Y

If we integrate, we find:
7' (s) = 2(0) + st 7' (s) = 7'(0) + st
which is precisely the Galilean boost which generated ® in the first place.

e What symmetries correspond to the conserved charges described above?
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— we have found 4 conserved charges corresponding to the free particle:

1. H: the energy, corresponding to invariance under time shifts

2 Q
¢ =H= % is time-independent. Let’s assume that p;, x' are func-
tions dependent on s,t. Then, finding integral curves to the Hamiltonian

vector field gives us, by using Hamilton’s Equations:

ox’ r _8(13_8:6"

s~ =0 =5n =5
ds lpi, @] = ort Ot

Now, consider a change of variables:

u=s8—t v=s5+1

so that: ‘ '
x'(s,t) = x'(u(s,t),v(s, 1))

Then: ,

ox' Oz Ou  Ordv dxr Ox

s  0uds  Ovds ou  ov

dr'  Oxdu Oxdv  Or  Ox

ot _oudt " ovot  ou v
But then:

Ozt _ Oz’ . dx s
ds ot ou
In other words, x* only depends (explicitly) onv = s +t. The same can be
applied to p;, and so:

T'(s,t) =2 (t+5)  pi(s,t) =pi(t+s)

so x is symmetric with respect to time shifts.

2. P;: the momentum (conjugate to z¢), corresponding to invariance under spatial shifts
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® =" a'P; gives us:

dz’ . o .
_— = L @ = — =
dS [3;' ? ] 8]91 a
ds [ ] oxt

So if we integrate:
z'(s) = 2°(0) + sa®  pi(s) = ps(0)

which corresponds to shifts in position.

3. J: the angular momentum (J = x'ps — 22p;), corresponding to invariance under rota-
tion (we already showed this last week)
4. G;: the Galilean boost charge, corresponding to invariance under Galilean Boosts

e What is the Bargmann algebra?
— the algebra derived by taking the Poisson brackets of the conserved charges H,G;, P;,J
corresponding to the free particle
— we have the trivial brackets corresponding to conservation:

*

[H,H) =0
*
[H,J]=0
*
[H,P]=0
) oG, d
H,Gj) = 2% = —(tp; — ma') = p;
[H,Gi] = St = L (tpi = ma') = p
— and the “cross brackets”:
) e
[Fi Gyl = =55 = méy;
*
2 2
aJ
[P J1==2_ 5 =-Y ciyP;
j=1 j=1
where €;; = —¢; is the 2 dimensional Levi-Civita symbol, and 12 =1

2
0G; 0J  0G; 0J
G;,J] = L P2 = mo; xz—téip + (—md; l‘1+t5ip = 0;2G1 — 0;1G
| | ;893-7 dp;  Opj OxJ (mdia 1p2) + 2 2p1) 2t 162
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2 Canonical Transformations

2.1 Definition: Canonical Conjugate Variables

Sayz,p € R"
z,p are canonical conjugate variables (or Darboux coordinates) if:

1. The x* Poisson commute

[z, 27] = 0
2. The p; Poisson commute:

[pi,ps] =0

3. The z*,p; Poisson commute when i # j:

[z, p;] = &

2.2 Definition: Canonical Transformation

Consider a change of variables:
(@', pi) = (X' (, p), Py(, p))

This is a canonical transformation or symplectomorphism if
(X, P) are canonical conjugate variables.
That 1s:

[XivXj] =0 [PZ?F)J] =0 [lepj] :5ij

Moreover, we can also write (z, p) in terms of (X, P).

¢ What canonical transformation have we already seen?

— recall, when we showed that Hamiltonians differing by a partial time derivative lead to the same

set of Hamilton’s equations, we used a change of variables:
, - OF (2t
XZ = xl Pi = Di + y
ox*

where ‘fl—f was a total time derivative between 2 Lagrangians
— we also saw that this transformation was invertible:

OF (X' t)

f= X i =P — :
! P oX'

— this is indeed a canonical transformation:

(X% X7] = [2°,27] =
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[P, P/] = [pﬂr L xj ‘) }

F(z!
aw
=

o _ OF (z%,t) OF(a27,t)
- [pz,pj :| |: 7 J:| + |: axi ) axj
B 0 OF(xt ,t) 0 OF(x*,t)
ozrt Ozt Oz’ 8:51
=0
where we have used the fact that:

0 OF (z',t)\ Opi _ Op; _ 0
Opy oxt N ozk — Oxk

2.3 Lemma: Canonical Transformations Preserve Hamilton’s Equations

Let (X, P) be canonically transformed variables of (x,p), and let
K(X, P) be a Hamiltonian for (X, P):

H(z,p) = K(X(z,p), P(z,p))
Then, (X, P) preserve Hamilton’s equations:

0K - : 0K

X' =[X'H =5 =[X'K] P=[PH=-7=

(recall, if ® is defined on phase space, then % = [®, H| if @ doesn’t depend
explicitly on time).

Here, the Poisson brackets with H are computed with respect to (z,p),
whilst the Poisson brackets with K are computed with respect to (X P)

Proof. We compute directly in the case n = 1, using the fact that:

H(z,p) = K(X(z,p), P(z,p))
Indeed:

X = [X,H|
_0XO0H 0XO0H
~ Bz op  Op 0%
_ 0X (0K 0X 0K 0P 0X (0K 90X OKOP
_&«Mmﬁme%ﬁMm+wm>
0X OK 9P 0X 0K 0P
9z 0P 9p  Op OP Oz
0K

- 0P
0K

" opP

=5 X, P

since X, P are canonical conjugates, so [X, P] = 1.
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Similarly:

P =[P, H]
_OPOH 0POH
Oz Op dp Ox

oP (0K OX | OKOP\ 0P (0K0X 0K oP
Oox \0X Op OP Op Op \0X 0x OP Oz
OP 0K 0X O0OPOK J0X

oxr X dp  Op 0X Ox
0K
= 67[P7X]
oK
787)([
0K
X

X, P]

as required.

3 Integrable Systems

e What can we consider an “easy-to-solve” Hamiltonian system?

we have seen that applying a canonical transformation won’t affect the derived Hamilton’s
Equations

it is natural to thus find a set of canonical variables, such that K (X, P) leads to an “easy-to-

solve” system

the easiest class of Hamiltonian systems arise from:
H = f(|l2]))

where: )
_ 2l

FUR == o FUPI) =0lB).  moeR

with these Hamiltonians, we get that Hamilton’s Equations reduce to:

_9H P .. OH _

Xt=2" = -2
oP? m oX?

0

But if P* = 0, P’ is a constant, and so, X’ is a constant, implying that:

X(t) = X(0) + X (0)

3.1 Definition: Functions in Involution

A set of functions are said to be in tnvolution if they Poisson-
commute amongst themselves.
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e Why was the Hamiltonian H = f(||P||) easy to solve?
— notice the set of momenta P; Poisson commutes with themselves:
[Pi, Pl =0
— since H is a function of P alone, understandably:

0H

H P = =55 =

0

— in particular, if the Hamiltonian has a lot of conserved quantities (such as the P;), then they
will be in involution, which in turn heavily reduces the system (since most of our computations
will reduce to 0s)

3.2 Theorem: Liouville Theorem & Integrable Systems

Liouville’s Theorem (formally) states that:

“The density of states in an ensemble of many identical states
with different initial conditions is constant along every trajec-
tory in phase space.”

What this means is that, if a Hamiltonian:
H(z,p) € R?"

admits n independent, conserved quantities in involution, then there
is a canonical transformation to so-called action/angle variables:

(X, P)
such that Hamilton’s Equations say that:

e P is constant

o thus:
X(t) = X(0) +tX(0)

Such a system is said to be integrable.

3.2.1 Example: Integrable System via Harmonic Oscillator

We saw that the harmonic oscillator (in 1 dimension) has Lagrangian:

1 1
L(z,2,t) = gmx'Q - ika
where $ka? is the elastic potential.

The momentum is:
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so the Hamiltonian will be:
? p2 |
Hlp,w) = "0 =L =50 + 5w

i

(which is indeed the total energy of the system)

This is not “easy-to-solve”. However, if we define w? = % we can rewrite the Hamiltonian as:
L o 2 2 2
H=— (p + mw x )

2m
With this new formulation, if we can find f(P) such that:
f(P)

p(X, P) = f(P)cos(X) z(X,P) = o

sin(X)

is a canonical transformation, then the Hamiltonian, in terms of X, P becomes:

K(X,P)= —— (F2(P) cos®(X) + f2(P)sin®(X)) = 22
’ 2m 2m
which is “easy-to-solve”; and since we used a canonical transformation, this will have the same set of

Hamilton’s equations as H(z,p).
To find f(P), we can enforce the fact that we have a canonical transformation, and so require:

[z,2] = [p,p] =0  [z,p] =1

(where the Poisson brackets are with respect to X, P)
The first 2 are immediate:
[z, 2] = Oz 9z 0z 0z _
BT 9xor T oPox
_Op dp  Op Op _

prl=5xar ~apox ~ "

The last Poisson bracket gives:

dr dp Oz Op

=Pl = 5% 3P ~ apox

= TP o) 7Py cos() + L0 in(x) (P sin(x)
_ [((P)f'(P)

mw

Hence, we require:
fP)f(P) = mw
Notice: J
2 /
—f(P)=2f(P)f'(P
S PP) = 24(P)(P)
so we convert the ODE into: J
- 2 —
7P f2(P) =2mw
which we integrate with respect to P to obtain:

f2(P) = 2mwP +C

Since we just need a particular solution, we pick:



So our canonical transformation will be given by:

p(X,P):\/mCOS(X) z(X,P) = ~—si

which leads to the Hamiltonian:

K(X,P)=wP
By Liouville’s Theorem, P is conserved, and:
. 0K
such that if o = X(0) we get:
X(t)=a+tw

and thus coming back to z,p we get:

p(X, P) = vV2mK cos(a + tw)

5 sm o+ tw
mw
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