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Based on the notes by Jelle Hartong, Section 8.5-8.7

1 Bargmann Algebra from the Free Particle

• What is the Lagrangian defining the motion of a free particle?

– recall, a free particle is a particle moving via:

mẍ = 0

– the associated Lagrangian is:

L(x, ẋ, t) =
1

2
m∥ẋ∥2

(the Euler-Lagrange equations give us that:

d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0 =⇒ mẍ = 0

)

• What is the Hamiltonian of the free particle?

– defining:

pi =
∂L

∂ẋi
= mẋi =⇒ ẋi =

pi
m

– so the Hamiltonian will be (using Einstein summation notation):

H = piẋ
i − L =

p2i
2m

− 1

2
m
∥∥∥ p

m

∥∥∥2 =
∥p∥2

2m

• Is energy conserved for a free particle in phase space?

– since we have a free particle, in particular it is not affected by external forces, so no potential
acts on it, so V (x) = 0

– hence, the total energy of the particle will be:

E =
1

2
m∥ẋ∥2 =

∥p∥2

2m
= H

– hence, the Hamiltonian represents the total energy of the free particle

– it is clear that:
[H,H] = 0

and since H is time independent, this implies that:

[H,H] = 0 ⇐⇒ dH

dt
=

dE

dt
= 0

so energy is conserved in phase space (of course, we already knew this)

• Are angular momentum and linear momentum conserved for a free particle in phase
space?

– the linear momentum is just:
Pi = pi

and:

[H,Pi] =
∂H

∂xi
= 0
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– since Pi Poisson commutes with H, the momenta are also conserved in phase space

– the angular momentum is given (in 2 dimensions) by:

J = x1p2 − x2p1

and:

[H,J ] = −∂H

∂p1

∂J

∂x1
− ∂H

∂p2

∂J

∂x2
=

p1
m

p2 −
p2
m

(−p1) = 0

– since J Poisson commutes with H, the angular momentum is also conserved in phase space

• What is the Noether charge associated with a Galilean boost?

– consider the Galilean boost:

φs(x) = x+ vts φs(t) = t

where v is some constant vector

– this is a symmetry of the Lagrangian, since if we define y(s, t) = φs(x) then:

L(y, ẏ, t) =
1

2
m∥ẏ∥2

=
1

2
m∥ẋ+ vs∥2

=
1

2
m ⟨ẋ+ vs, ẋ+ vs⟩

=
1

2
m
(
⟨ẋ, ẋ⟩+ 2s ⟨ẋ, v⟩+ s2 ⟨v, v⟩

)
=

m

2
∥ẋ∥2 +ms ⟨v, ẋ⟩+ m

2
s2∥v∥2

In particular, since Lagangians are “the same” up to a total time derivative, we have a symmetry
if:

d

ds
L(y, ẏ, t)× dφs(t)

dt
=

d

dt
Ks(x, t) =

d

dt

dFs

ds

(this is what we used to derive the generalised Noether Theorem)

Since dφs(t)
dt = 1, we compute:

d

ds
L(y, ẏ, t) = m ⟨v, ẋ⟩+ms∥v∥2

Now, notice that:

m
d

dt
⟨v, x⟩ = m ⟨v, ẋ⟩

m
d

dt
⟨v, vts⟩ = ms ⟨v, v⟩

Hence:
d

ds
L(y, ẏ, t) = m ⟨v, ẋ⟩+ms∥v∥2 =

d

dt
(m ⟨v, x+ vst⟩)

and so:
Ks(x) = m ⟨v, x+ vst⟩

Thus, L is invariant under Galilean boosts (up to a total time derivative)

Recall, the general Noether Charge is given by:

N(x, ẋ, t) =

(
L−

∑
k

∂L

∂ẋk
ẋk

)
τ +

∑
k

∂L

∂ẋk
ζk −K0
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φs is the identity transformation when changing time, so:

τ =
∂φs(t)

∂s

∣∣∣∣
s=0

= 0

and:

ζk =
∂yj

∂s

∣∣∣∣
s=0

= vkt

so:
N =

∑
k

mẋkvkt−m ⟨v, x⟩ = m ⟨v, ẋt− x⟩

– we can indeed check that this is conserved, since trajectories of the particle obey mẍ = 0 and:

dN

dt
= m ⟨v, ẍt+ ẋ− ẋ⟩ = 0

• How can we express the Noether charge in terms of phase space variables?

– notice m ⟨v, ẋt− x⟩ will be conserved for any element vi in v

– as such, what must be conserved will be:

Gi = mẋit−mxi

– using phase space coordinates:
Gi = tpi −mxi

– we can then express the Noether charge as:

Φ =
∑
k

viGi

– moreover, since Gi depends explicitly on time and is conserved:

∂Gi

∂t
+ [Gi, H] = 0

Notice, if we find the integral curves for the Hamiltonian Vector Field
in R2 for the Noether charge Φ:

dxi

ds
= [xi,Φ] =

∂Φ

∂pi
= tvi

dpi
ds

= [pi,Φ] = − ∂Φ

∂xi
= mvi

If we integrate, we find:

xi(s) = xi(0) + stvi xi(s) = xi(0) + stvi

which is precisely the Galilean boost which generated Φ in the first place.

• What symmetries correspond to the conserved charges described above?
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– we have found 4 conserved charges corresponding to the free particle:

1. H: the energy, corresponding to invariance under time shifts

Φ = H =
∥p∥2

2m
is time-independent. Let’s assume that pi, x

i are func-
tions dependent on s, t. Then, finding integral curves to the Hamiltonian
vector field gives us, by using Hamilton’s Equations:

∂xi

∂s
= [xi,Φ] =

∂Φ

∂pi
=

∂xi

∂t

dpi
ds

= [pi,Φ] = − ∂Φ

∂xi
=

∂pi
∂t

Now, consider a change of variables:

u = s− t v = s+ t

so that:
xi(s, t) = xi(u(s, t), v(s, t))

Then:
∂xi

∂s
=

∂x

∂u

∂u

∂s
+

∂x

∂v

∂v

∂s
=

∂x

∂u
+

∂x

∂v

∂xi

∂t
=

∂x

∂u

∂u

∂t
+

∂x

∂v

∂v

∂t
= −∂x

∂u
+

∂x

∂v

But then:
∂xi

∂s
=

∂xi

∂t
=⇒ ∂x

∂u
= 0

In other words, xi only depends (explicitly) on v = s + t. The same can be
applied to pi, and so:

xi(s, t) = xi(t+ s) pi(s, t) = pi(t+ s)

so x is symmetric with respect to time shifts.

2. Pi: the momentum (conjugate to xi), corresponding to invariance under spatial shifts
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Φ =
∑

aiPi gives us:

dxi

ds
= [xi,Φ] =

∂Φ

∂pi
= ai

dpi
ds

= [Pi,Φ] = − ∂Φ

∂xi
= 0

So if we integrate:

xi(s) = xi(0) + sai pi(s) = pi(0)

which corresponds to shifts in position.

3. J : the angular momentum (J = x1p2 − x2p1), corresponding to invariance under rota-
tion (we already showed this last week)

4. Gi: the Galilean boost charge, corresponding to invariance under Galilean Boosts

• What is the Bargmann algebra?

– the algebra derived by taking the Poisson brackets of the conserved charges H,Gi, Pi, J
corresponding to the free particle

– we have the trivial brackets corresponding to conservation:

∗
[H,H] = 0

∗
[H,J ] = 0

∗
[H,Pi] = 0

∗
[H,Gi] =

∂Gi

∂t
=

d

dt
(tpi −mxi) = pi

– and the “cross brackets”:

∗
[Pi, Gj ] = −∂Gj

∂xi
= mδij

∗

[Pi, J ] = −
2∑

j=1

∂J

∂xi
= −

2∑
j=1

εijPj

where εij = −εji is the 2 dimensional Levi-Civita symbol, and ε12 = 1

∗

[Gi, J ] =

2∑
j=1

∂Gi

∂xj

∂J

∂pj
− ∂Gi

∂pj

∂J

∂xj
=
(
mδi1x

2 − tδi1p2
)
+
(
−mδi2x

1 + tδi2p1
)
= δi2G1 − δi1G2
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2 Canonical Transformations

2.1 Definition: Canonical Conjugate Variables

Say x, p ∈ Rn

x, p are canonical conjugate variables (or Darboux coordinates) if:

1. The xi Poisson commute

[xi, xj] = 0

2. The pi Poisson commute:

[pi, pj] = 0

3. The xi, pj Poisson commute when i ̸= j:

[xi, pj] = δij

2.2 Definition: Canonical Transformation

Consider a change of variables:

(xi, pi) 7→ (X i(x, p), Pj(x, p))

This is a canonical transformation or symplectomorphism if
(X,P ) are canonical conjugate variables.
That is:

[X i, Xj] = 0 [Pi, Pj] = 0 [X i, Pj] = δij

Moreover, we can also write (x, p) in terms of (X,P ).

• What canonical transformation have we already seen?

– recall, when we showed that Hamiltonians differing by a partial time derivative lead to the same
set of Hamilton’s equations, we used a change of variables:

Xi = xi Pi = pi +
∂F (xi, t)

∂xi

where dF
dt was a total time derivative between 2 Lagrangians

– we also saw that this transformation was invertible:

xi = Xi pi = Pi −
∂F (Xi, t)

∂Xi

– this is indeed a canonical transformation:

[Xi, Xj ] = [xi, xj ] =
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[P i, P j ] =

[
pi +

∂F (xi, t)

∂xi
, pj +

∂F (xj , t)

∂xj

]
= [pi, pj ] +

[
pi,

∂F (xj , t)

∂xj

]
+

[
∂F (xi, t)

∂xi
, pj

]
+

[
∂F (xi, t)

∂xi
,
∂F (xj , t)

∂xj

]
= − ∂

∂xi

∂F (xi, t)

∂xi
+

∂

∂xi

∂F (xi, t)

∂xi

= 0

where we have used the fact that:

∂

∂pk

(
∂F (xi, t)

∂xi

)
= 0

∂pi
∂xk

=
∂pj
∂xk

= 0

2.3 Lemma: Canonical Transformations Preserve Hamilton’s Equations

Let (X,P ) be canonically transformed variables of (x, p), and let
K(X,P ) be a Hamiltonian for (X,P ):

H(x, p) = K(X(x, p), P (x, p))

Then, (X,P ) preserve Hamilton’s equations:

Ẋ i = [X i, H] =
∂K

∂Pi

= [X i, K] Ṗi = [Pi, H] = − ∂K

∂X i
= [Pi, K]

(recall, if Φ is defined on phase space, then dΦ
dt

= [Φ, H] if Φ doesn’t depend
explicitly on time).
Here, the Poisson brackets with H are computed with respect to (x, p),
whilst the Poisson brackets with K are computed with respect to (X,P )

Proof. We compute directly in the case n = 1, using the fact that:

H(x, p) = K(X(x, p), P (x, p))

Indeed:

Ẋ = [X,H]

=
∂X

∂x

∂H

∂p
− ∂X

∂p

∂H

∂x

=
∂X

∂x

(
∂K

∂X

∂X

∂p
+

∂K

∂P

∂P

∂p

)
− ∂X

∂p

(
∂K

∂X

∂X

∂x
+

∂K

∂P

∂P

∂x

)
=

∂X

∂x

∂K

∂P

∂P

∂p
− ∂X

∂p

∂K

∂P

∂P

∂x

=
∂K

∂P
[X,P ]

=
∂K

∂P

since X,P are canonical conjugates, so [X,P ] = 1.
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Similarly:

Ṗ = [P,H]

=
∂P

∂x

∂H

∂p
− ∂P

∂p

∂H

∂x

=
∂P

∂x

(
∂K

∂X

∂X

∂p
+

∂K

∂P

∂P

∂p

)
− ∂P

∂p

(
∂K

∂X

∂X

∂x
+

∂K

∂P

∂P

∂x

)
=

∂P

∂x

∂K

∂X

∂X

∂p
− ∂P

∂p

∂K

∂X

∂X

∂x

=
∂K

∂X
[P,X]

= −∂K

∂X
[X,P ]

= −∂K

∂X

as required.

3 Integrable Systems

• What can we consider an “easy-to-solve” Hamiltonian system?

– we have seen that applying a canonical transformation won’t affect the derived Hamilton’s
Equations

– it is natural to thus find a set of canonical variables, such that K(X,P ) leads to an “easy-to-
solve” system

– the easiest class of Hamiltonian systems arise from:

H = f(∥P∥)

where:

f(∥P∥) = ∥P∥2

2m
or f(∥P∥) = v∥P∥, m, v ∈ R

– with these Hamiltonians, we get that Hamilton’s Equations reduce to:

Ẋi =
∂H

∂P i
=

P i

m
Ṗ i = − ∂H

∂Xi
= 0

But if Ṗ i = 0, P i is a constant, and so, Ẋi is a constant, implying that:

X(t) = X(0) + tẊ(0)

3.1 Definition: Functions in Involution

A set of functions are said to be in involution if they Poisson-
commute amongst themselves.
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• Why was the Hamiltonian H = f(∥P∥) easy to solve?

– notice the set of momenta Pi Poisson commutes with themselves:

[Pi, Pj ] = 0

– since H is a function of P alone, understandably:

[H,Pi] = − ∂H

∂Xi
= 0

– in particular, if the Hamiltonian has a lot of conserved quantities (such as the Pi), then they
will be in involution, which in turn heavily reduces the system (since most of our computations
will reduce to 0s)

3.2 Theorem: Liouville Theorem & Integrable Systems

Liouville’s Theorem (formally) states that:
“The density of states in an ensemble of many identical states
with different initial conditions is constant along every trajec-
tory in phase space.”

What this means is that, if a Hamiltonian:

H(x, p) ∈ R2n

admits n independent, conserved quantities in involution, then there
is a canonical transformation to so-called action/angle variables:

(X,P )

such that Hamilton’s Equations say that:

• P is constant

• thus:
X(t) = X(0) + tẊ(0)

Such a system is said to be integrable.

3.2.1 Example: Integrable System via Harmonic Oscillator

We saw that the harmonic oscillator (in 1 dimension) has Lagrangian:

L(x, ẋ, t) =
1

2
mẋ2 − 1

2
kx2

where 1
2kx

2 is the elastic potential.

The momentum is:
∂L

∂ẋ
= mẋ
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so the Hamiltonian will be:

H(p, x) =
p2

m
− L =

p2

2m
+

1

2
kx2

(which is indeed the total energy of the system)

This is not “easy-to-solve”. However, if we define ω2 = k
m we can rewrite the Hamiltonian as:

H =
1

2m

(
p2 +m2ω2x2

)
With this new formulation, if we can find f(P ) such that:

p(X,P ) = f(P ) cos(X) x(X,P ) =
f(P )

mω
sin(X)

is a canonical transformation, then the Hamiltonian, in terms of X,P becomes:

K(X,P ) =
1

2m

(
f2(P ) cos2(X) + f2(P ) sin2(X)

)
=

f2(P )

2m

which is “easy-to-solve”; and since we used a canonical transformation, this will have the same set of
Hamilton’s equations as H(x, p).

To find f(P ), we can enforce the fact that we have a canonical transformation, and so require:

[x, x] = [p, p] = 0 [x, p] = 1

(where the Poisson brackets are with respect to X,P )
The first 2 are immediate:

[x, x] =
∂x

∂X

∂x

∂P
− ∂x

∂P

∂x

∂X
= 0

[p, p] =
∂p

∂X

∂p

∂P
− ∂p

∂P

∂p

∂X
= 0

The last Poisson bracket gives:

[x, p] =
∂x

∂X

∂p

∂P
− ∂x

∂P

∂p

∂X

=
f(P )

mω
cos(X)f ′(P ) cos(X) +

f ′(P )

mω
sin(X)f(P ) sin(X)

=
f(P )f ′(P )

mω

Hence, we require:
f(P )f ′(P ) = mω

Notice:
d

dP
f2(P ) = 2f(P )f ′(P )

so we convert the ODE into:
d

dP
f2(P ) = 2mω

which we integrate with respect to P to obtain:

f2(P ) = 2mωP + C

Since we just need a particular solution, we pick:

f(P ) =
√
2mωP
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So our canonical transformation will be given by:

p(X,P ) =
√
2mωP cos(X) x(X,P ) =

√
2mωP

mω
sin(X)

which leads to the Hamiltonian:
K(X,P ) = ωP

By Liouville’s Theorem, P is conserved, and:

Ẋ = [X,K] =
∂K

∂P
= ω

such that if α = X(0) we get:
X(t) = α+ tω

and thus coming back to x, p we get:

p(X,P ) =
√
2mK cos(α+ tω)

x(X,P ) =

√
2K

mω2
sin(α+ tω)
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