Variational Calculus - Week 7 - Canonical Transformations

Antonio León Villares

November 2022

Contents

1	Bar	gmann Algebra from the Free Particle	2
2	Car	nonical Transformations	7
	2.1	Definition: Canonical Conjugate Variables	7
	2.2	Definition: Canonical Transformation	7
	2.3	Lemma: Canonical Transformations Preserve Hamilton's Equations	8
3	Inte	egrable Systems	9
	3.1	Definition: Functions in Involution	9
	3.2	Theorem: Liouville Theorem & Integrable Systems	10
		3.2.1 Example: Integrable System via Harmonic Oscillator	10

1 Bargmann Algebra from the Free Particle

- What is the Lagrangian defining the motion of a free particle?
 - recall, a **free particle** is a particle moving via:

$$m\ddot{x} = 0$$

- the associated **Lagrangian** is:

$$L(\underline{x}, \underline{\dot{x}}, t) = \frac{1}{2} m ||\underline{\dot{x}}||^2$$

(the Euler-Lagrange equations give us that:

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{x}^i} - \frac{\partial L}{\partial x^i} = 0 \implies m \underline{\ddot{x}} = 0$$

)

- What is the Hamiltonian of the free particle?
 - defining:

$$p_i = \frac{\partial L}{\partial \dot{x}^i} = m \dot{x}^i \implies \dot{x}^i = \frac{p_i}{m}$$

- so the **Hamiltonian** will be (using Einstein summation notation):

$$H = p_i \dot{x}^i - L = \frac{p_i^2}{2m} - \frac{1}{2}m \left\| \frac{p}{m} \right\|^2 = \frac{\|\underline{p}\|^2}{2m}$$

- Is energy conserved for a free particle in phase space?
 - since we have a free particle, in particular it is not affected by external forces, so no **potential** acts on it, so $V(\underline{x}) = 0$
 - hence, the **total energy** of the particle will be:

$$E = \frac{1}{2}m\|\underline{\dot{x}}\|^2 = \frac{\|\underline{p}\|^2}{2m} = H$$

- hence, the **Hamiltonian** represents the total energy of the free particle
- it is clear that:

$$[H,H]=0$$

and since H is time independent, this implies that:

$$[H, H] = 0 \iff \frac{dH}{dt} = \frac{dE}{dt} = 0$$

so **energy** is **conserved** in phase space (of course, we already knew this)

- Are angular momentum and linear momentum conserved for a free particle in phase space?
 - the **linear momentum** is just:

$$P_i = p_i$$

and:

$$[H, P_i] = \frac{\partial H}{\partial x^i} = 0$$

- since P_i Poisson commutes with H, the momenta are also conserved in phase space
- the **angular momentum** is given (in 2 dimensions) by:

$$J = x^1 p_2 - x^2 p_1$$

and:

$$[H,J] = -\frac{\partial H}{\partial p_1} \frac{\partial J}{\partial x^1} - \frac{\partial H}{\partial p_2} \frac{\partial J}{\partial x^2} = \frac{p_1}{m} p_2 - \frac{p_2}{m} (-p_1) = 0$$

- since J Poisson commutes with H, the angular momentum is also conserved in phase space
- What is the Noether charge associated with a Galilean boost?
 - consider the Galilean boost:

$$\varphi_s(\underline{x}) = \underline{x} + \underline{v}ts \qquad \varphi_s(t) = t$$

where v is some constant vector

– this is a **symmetry** of the Lagrangian, since if we define $y(s,t) = \varphi_s(\underline{x})$ then:

$$\begin{split} L(\underline{y}, \underline{\dot{y}}, t) &= \frac{1}{2} m \|\underline{\dot{y}}\|^2 \\ &= \frac{1}{2} m \|\underline{\dot{x}} + \underline{v}s\|^2 \\ &= \frac{1}{2} m \left\langle \underline{\dot{x}} + \underline{v}s, \underline{\dot{x}} + \underline{v}s \right\rangle \\ &= \frac{1}{2} m \left(\left\langle \underline{\dot{x}}, \underline{\dot{x}} \right\rangle + 2s \left\langle \underline{\dot{x}}, \underline{v} \right\rangle + s^2 \left\langle \underline{v}, \underline{v} \right\rangle \right) \\ &= \frac{m}{2} \|\underline{\dot{x}}\|^2 + ms \left\langle \underline{v}, \underline{\dot{x}} \right\rangle + \frac{m}{2} s^2 \|\underline{v}\|^2 \end{split}$$

In particular, since Lagangians are "the same" up to a total time derivative, we have a symmetry if:

$$\frac{d}{ds}L(\underline{y},\underline{\dot{y}},t) \times \frac{d\varphi_s(t)}{dt} = \frac{d}{dt}K_s(\underline{x},t) = \frac{d}{dt}\frac{dF_s}{ds}$$

(this is what we used to derive the generalised Noether Theorem) Since $\frac{d\varphi_s(t)}{dt}=1$, we compute:

$$\frac{d}{ds}L(\underline{y},\underline{\dot{y}},t) = m\langle\underline{v},\underline{\dot{x}}\rangle + ms\|\underline{v}\|^2$$

Now, notice that:

$$m\frac{d}{dt} \langle \underline{v}, \underline{x} \rangle = m \langle \underline{v}, \underline{\dot{x}} \rangle$$
$$m\frac{d}{dt} \langle \underline{v}, \underline{v}ts \rangle = ms \langle \underline{v}, \underline{v} \rangle$$

Hence:

$$\frac{d}{ds}L(\underline{y},\underline{\dot{y}},t) = m\left\langle\underline{v},\underline{\dot{x}}\right\rangle + ms\|\underline{v}\|^2 = \frac{d}{dt}\left(m\left\langle\underline{v},\underline{x} + \underline{v}st\right\rangle\right)$$

and so:

$$K_s(\underline{x}) = m \langle \underline{v}, \underline{x} + \underline{v}st \rangle$$

Thus, L is **invariant under Galilean boosts** (up to a total time derivative)

Recall, the general Noether Charge is given by:

$$N(\underline{x}, \underline{\dot{x}}, t) = \left(L - \sum_{k} \frac{\partial L}{\partial \dot{x}^{k}} \dot{x}^{k}\right) \tau + \sum_{k} \frac{\partial L}{\partial \dot{x}^{k}} \zeta^{k} - K_{0}$$

 φ_s is the identity transformation when changing time, so:

$$\tau = \left. \frac{\partial \varphi_s(t)}{\partial s} \right|_{s=0} = 0$$

and:

$$\zeta^k = \left. \frac{\partial y^j}{\partial s} \right|_{s=0} = v^k t$$

so:

$$N = \sum_{k} m\dot{x}^{k} v^{k} t - m \langle \underline{v}, \underline{x} \rangle = m \langle \underline{v}, \underline{\dot{x}} t - \underline{x} \rangle$$

- we can indeed check that this is conserved, since trajectories of the particle obey $m\ddot{x}=0$ and:

$$\frac{dN}{dt} = m \langle \underline{v}, \underline{\ddot{x}}t + \underline{\dot{x}} - \underline{\dot{x}} \rangle = 0$$

- How can we express the Noether charge in terms of phase space variables?
 - notice $m\langle \underline{v}, \underline{\dot{x}}t \underline{x}\rangle$ will be conserved for any element v^i in \underline{v}
 - as such, what must be conserved will be:

$$G_i = m\dot{x}^i t - mx^i$$

– using phase space coordinates:

$$G_i = tp_i - mx^i$$

- we can then express the **Noether charge** as:

$$\Phi = \sum_{k} v^{i} G_{i}$$

- moreover, since G_i depends explicitly on time and is conserved:

$$\frac{\partial G_i}{\partial t} + [G_i, H] = 0$$

Notice, if we find the **integral curves** for the Hamiltonian Vector Field in \mathbb{R}^2 for the Noether charge Φ :

$$\frac{dx^i}{ds} = [x^i, \Phi] = \frac{\partial \Phi}{\partial p_i} = tv^i$$

$$\frac{dp_i}{ds} = [p_i, \Phi] = -\frac{\partial \Phi}{\partial x^i} = mv^i$$

If we integrate, we find:

$$x^{i}(s) = x^{i}(0) + stv^{i}$$
 $x^{i}(s) = x^{i}(0) + stv^{i}$

which is precisely the Galilean boost which generated Φ in the first place.

What symmetries correspond to the conserved charges described above?

- we have found 4 conserved charges corresponding to the free particle:
 - 1. H: the energy, corresponding to invariance under time shifts

 $\Phi = H = \frac{\|\underline{p}\|^2}{2m}$ is **time-independent**. Let's assume that p_i, x^i are functions dependent on s, t. Then, finding integral curves to the Hamiltonian vector field gives us, by using Hamilton's Equations:

$$\frac{\partial x^i}{\partial s} = [x^i, \Phi] = \frac{\partial \Phi}{\partial p_i} = \frac{\partial x^i}{\partial t}$$

$$\frac{dp_i}{ds} = [p_i, \Phi] = -\frac{\partial \Phi}{\partial x^i} = \frac{\partial p_i}{\partial t}$$

Now, consider a change of variables:

$$u = s - t$$
 $v = s + t$

so that:

$$x^{i}(s,t) = x^{i}(u(s,t), v(s,t))$$

Then:

$$\begin{split} \frac{\partial x^i}{\partial s} &= \frac{\partial x}{\partial u} \frac{\partial u}{\partial s} + \frac{\partial x}{\partial v} \frac{\partial v}{\partial s} = \frac{\partial x}{\partial u} + \frac{\partial x}{\partial v} \\ \frac{\partial x^i}{\partial t} &= \frac{\partial x}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial x}{\partial v} \frac{\partial v}{\partial t} = -\frac{\partial x}{\partial u} + \frac{\partial x}{\partial v} \end{split}$$

But then:

$$\frac{\partial x^i}{\partial s} = \frac{\partial x^i}{\partial t} \implies \frac{\partial x}{\partial u} = 0$$

In other words, x^i only depends (explicitly) on v = s + t. The same can be applied to p_i , and so:

$$x^{i}(s,t) = x^{i}(t+s) \qquad p_{i}(s,t) = p_{i}(t+s)$$

so x is symmetric with respect to time shifts.

2. P_i : the momentum (conjugate to x^i), corresponding to invariance under spatial shifts

$$\Phi = \sum a^i P_i$$
 gives us:

$$\frac{dx^i}{ds} = [x^i, \Phi] = \frac{\partial \Phi}{\partial p_i} = a^i$$

$$\frac{dp_i}{ds} = [P_i, \Phi] = -\frac{\partial \Phi}{\partial x^i} = 0$$

So if we integrate:

$$x^{i}(s) = x^{i}(0) + sa^{i}$$
 $p_{i}(s) = p_{i}(0)$

which corresponds to shifts in position.

- 3. J: the angular momentum $(J = x^1p_2 x^2p_1)$, corresponding to invariance under rotation (we already showed this last week)
- 4. G_i : the Galilean boost charge, corresponding to invariance under Galilean Boosts

• What is the Bargmann algebra?

- the algebra derived by taking the Poisson brackets of the conserved charges H, G_i, P_i, J corresponding to the free particle
- we have the **trivial** brackets corresponding to **conservation**:

$$[H,H] = 0$$

*

$$[H, J] = 0$$

*

$$[H, P_i] = 0$$

*

$$[H, G_i] = \frac{\partial G_i}{\partial t} = \frac{d}{dt}(tp_i - mx^i) = p_i$$

- and the "cross brackets":

*

$$[P_i, G_j] = -\frac{\partial G_j}{\partial x^i} = m\delta_{ij}$$

*

$$[P_i, J] = -\sum_{j=1}^{2} \frac{\partial J}{\partial x^i} = -\sum_{j=1}^{2} \varepsilon_{ij} P_j$$

where $\varepsilon_{ij}=-\varepsilon_{ji}$ is the 2 dimensional Levi-Civita symbol, and $\varepsilon_{12}=1$

*

$$[G_i, J] = \sum_{i=1}^{2} \frac{\partial G_i}{\partial x^j} \frac{\partial J}{\partial p_j} - \frac{\partial G_i}{\partial p_j} \frac{\partial J}{\partial x^j} = \left(m\delta_{i1}x^2 - t\delta_{i1}p_2\right) + \left(-m\delta_{i2}x^1 + t\delta_{i2}p_1\right) = \delta_{i2}G_1 - \delta_{i1}G_2$$

2 Canonical Transformations

2.1 Definition: Canonical Conjugate Variables

 $Say \underline{x}, p \in \mathbb{R}^n$

 \underline{x} , p are canonical conjugate variables (or Darboux coordinates) if:

1. The xⁱ Poisson commute

$$[x^i, x^j] = 0$$

2. The p_i **Poisson commute**:

$$[p_i, p_j] = 0$$

3. The x^i, p_i **Poisson commute** when $i \neq j$:

$$[x^i, p_j] = \delta_{ij}$$

2.2 Definition: Canonical Transformation

Consider a change of variables:

$$(x^i, p_i) \mapsto (X^i(\underline{x}, \underline{p}), P_j(\underline{x}, \underline{p}))$$

This is a canonical transformation or symplectomorphism if $(\underline{X}, \underline{P})$ are canonical conjugate variables. That is:

 $[\mathbf{v}i \ \mathbf{v}i]$ o $[\mathbf{D} \ \mathbf{D}]$

$$[X^{i}, X^{j}] = 0$$
 $[P_{i}, P_{j}] = 0$ $[X^{i}, P_{j}] = \delta_{ij}$

Moreover, we can also write (\underline{x}, p) in terms of $(\underline{X}, \underline{P})$.

• What canonical transformation have we already seen?

- recall, when we showed that Hamiltonians differing by a partial time derivative lead to the same set of Hamilton's equations, we used a change of variables:

$$X^{i} = x^{i}$$
 $P_{i} = p_{i} + \frac{\partial F(x^{i}, t)}{\partial x^{i}}$

where $\frac{dF}{dt}$ was a total time derivative between 2 Lagrangians

- we also saw that this transformation was invertible:

$$x^{i} = X^{i}$$
 $p_{i} = P_{i} - \frac{\partial F(X^{i}, t)}{\partial X^{i}}$

- this is indeed a **canonical transformation**:

$$[X^i, X^j] = [x^i, x^j] =$$

$$\begin{split} [P^i,P^j] &= \left[p_i + \frac{\partial F(x^i,t)}{\partial x^i}, p_j + \frac{\partial F(x^j,t)}{\partial x^j} \right] \\ &= [p_i,p_j] + \left[p_i, \frac{\partial F(x^j,t)}{\partial x^j} \right] + \left[\frac{\partial F(x^i,t)}{\partial x^i}, p_j \right] + \left[\frac{\partial F(x^i,t)}{\partial x^i}, \frac{\partial F(x^j,t)}{\partial x^j} \right] \\ &= -\frac{\partial}{\partial x^i} \frac{\partial F(x^i,t)}{\partial x^i} + \frac{\partial}{\partial x^i} \frac{\partial F(x^i,t)}{\partial x^i} \\ &= 0 \end{split}$$

where we have used the fact that:

$$\frac{\partial}{\partial p_k} \left(\frac{\partial F(x^i, t)}{\partial x^i} \right) = 0 \qquad \frac{\partial p_i}{\partial x^k} = \frac{\partial p_j}{\partial x^k} = 0$$

2.3 Lemma: Canonical Transformations Preserve Hamilton's Equations

Let $(\underline{X}, \underline{P})$ be **canonically transformed** variables of $(\underline{x}, \underline{p})$, and let $K(\underline{X}, \underline{P})$ be a **Hamiltonian** for $(\underline{X}, \underline{P})$:

$$H(\underline{x}, p) = K(\underline{X}(\underline{x}, p), \underline{P}(\underline{x}, p))$$

Then, (X, P) preserve Hamilton's equations:

$$\dot{X}^i = [X^i, H] = \frac{\partial K}{\partial P_i} = [X^i, K] \qquad \dot{P}_i = [P_i, H] = -\frac{\partial K}{\partial X^i} = [P_i, K]$$

(recall, if Φ is defined on phase space, then $\frac{d\Phi}{dt} = [\Phi, H]$ if Φ doesn't depend explicitly on time).

Here, the **Poisson brackets** with H are computed with respect to $(\underline{x}, \underline{p})$, whilst the **Poisson brackets** with K are computed with respect to $(\underline{X}, \underline{P})$

Proof. We compute directly in the case n = 1, using the fact that:

$$H(x, p) = K(X(x, p), P(x, p))$$

Indeed:

$$\begin{split} \dot{X} &= [X, H] \\ &= \frac{\partial X}{\partial x} \frac{\partial H}{\partial p} - \frac{\partial X}{\partial p} \frac{\partial H}{\partial x} \\ &= \frac{\partial X}{\partial x} \left(\frac{\partial K}{\partial X} \frac{\partial X}{\partial p} + \frac{\partial K}{\partial P} \frac{\partial P}{\partial p} \right) - \frac{\partial X}{\partial p} \left(\frac{\partial K}{\partial X} \frac{\partial X}{\partial x} + \frac{\partial K}{\partial P} \frac{\partial P}{\partial x} \right) \\ &= \frac{\partial X}{\partial x} \frac{\partial K}{\partial P} \frac{\partial P}{\partial p} - \frac{\partial X}{\partial p} \frac{\partial K}{\partial P} \frac{\partial P}{\partial x} \\ &= \frac{\partial K}{\partial P} [X, P] \\ &= \frac{\partial K}{\partial P} \end{split}$$

since X, P are canonical conjugates, so [X, P] = 1.

Similarly:

$$\begin{split} \dot{P} &= [P, H] \\ &= \frac{\partial P}{\partial x} \frac{\partial H}{\partial p} - \frac{\partial P}{\partial p} \frac{\partial H}{\partial x} \\ &= \frac{\partial P}{\partial x} \left(\frac{\partial K}{\partial X} \frac{\partial X}{\partial p} + \frac{\partial K}{\partial P} \frac{\partial P}{\partial p} \right) - \frac{\partial P}{\partial p} \left(\frac{\partial K}{\partial X} \frac{\partial X}{\partial x} + \frac{\partial K}{\partial P} \frac{\partial P}{\partial x} \right) \\ &= \frac{\partial P}{\partial x} \frac{\partial K}{\partial X} \frac{\partial X}{\partial p} - \frac{\partial P}{\partial p} \frac{\partial K}{\partial X} \frac{\partial X}{\partial x} \\ &= \frac{\partial K}{\partial X} [P, X] \\ &= -\frac{\partial K}{\partial X} [X, P] \\ &= -\frac{\partial K}{\partial X} \end{split}$$

as required.

as required.

3 Integrable Systems

• What can we consider an "easy-to-solve" Hamiltonian system?

- we have seen that applying a canonical transformation won't affect the derived Hamilton's Equations
- it is natural to thus find a set of **canonical variables**, such that $K(\underline{X},\underline{P})$ leads to an "easy-to-solve" system
- the **easiest** class of **Hamiltonian systems** arise from:

$$H = f(\|\underline{P}\|)$$

where:

$$f(\|\underline{P}\|) = \frac{\|\underline{P}\|^2}{2m} \quad or \quad f(\|\underline{P}\|) = v\|\underline{P}\|, \qquad m, v \in \mathbb{R}$$

- with these Hamiltonians, we get that Hamilton's Equations reduce to:

$$\dot{X}^i = \frac{\partial H}{\partial P^i} = \frac{P^i}{m} \qquad \dot{P}^i = -\frac{\partial H}{\partial X^i} = 0$$

But if $\dot{P}^i = 0$, P^i is a constant, and so, \dot{X}^i is a constant, implying that:

$$\underline{X}(t) = \underline{X}(0) + t\dot{X}(0)$$

3.1 Definition: Functions in Involution

A set of functions are said to be in involution if they Poisson-commute amongst themselves.

- Why was the Hamiltonian $H = f(\|\underline{P}\|)$ easy to solve?
 - notice the set of momenta P_i Poisson commutes with themselves:

$$[P_i, P_j] = 0$$

- since H is a function of \underline{P} alone, understandably:

$$[H, P_i] = -\frac{\partial H}{\partial X^i} = 0$$

- in particular, if the **Hamiltonian** has a lot of conserved quantities (such as the P_i), then they will be **in involution**, which in turn heavily reduces the system (since most of our computations will reduce to 0s)

3.2 Theorem: Liouville Theorem & Integrable Systems

Liouville's Theorem (formally) states that:

"The density of states in an ensemble of many identical states with different initial conditions is constant along every trajectory in phase space."

What this means is that, if a **Hamiltonian**:

$$H(\underline{x},p) \in \mathbb{R}^{2n}$$

admits n independent, conserved quantities in involution, then there is a canonical transformation to so-called action/angle variables:

$$(\underline{X},\underline{P})$$

such that **Hamilton's Equations** say that:

- P is constant
- thus:

$$\underline{X}(t) = \underline{X}(0) + t\underline{\dot{X}}(0)$$

Such a system is said to be **integrable**.

3.2.1 Example: Integrable System via Harmonic Oscillator

We saw that the **harmonic oscillator** (in 1 dimension) has Lagrangian:

$$L(x, \dot{x}, t) = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}kx^2$$

where $\frac{1}{2}kx^2$ is the **elastic potential**.

The momentum is:

$$\frac{\partial L}{\partial \dot{x}} = m\dot{x}$$

so the Hamiltonian will be:

$$H(p,x) = \frac{p^2}{m} - L = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

(which is indeed the total energy of the system)

This is not "easy-to-solve". However, if we define $\omega^2 = \frac{k}{m}$ we can rewrite the Hamiltonian as:

$$H = \frac{1}{2m} \left(p^2 + m^2 \omega^2 x^2 \right)$$

With this new formulation, if we can find f(P) such that:

$$p(X, P) = f(P)\cos(X)$$
 $x(X, P) = \frac{f(P)}{m\omega}\sin(X)$

is a canonical transformation, then the Hamiltonian, in terms of X, P becomes:

$$K(X,P) = \frac{1}{2m} \left(f^2(P) \cos^2(X) + f^2(P) \sin^2(X) \right) = \frac{f^2(P)}{2m}$$

which is "easy-to-solve"; and since we used a canonical transformation, this will have the same set of Hamilton's equations as H(x, p).

To find f(P), we can enforce the fact that we have a canonical transformation, and so require:

$$[x, x] = [p, p] = 0$$
 $[x, p] = 1$

(where the Poisson brackets are with respect to X, P)

The first 2 are immediate:

$$[x, x] = \frac{\partial x}{\partial X} \frac{\partial x}{\partial P} - \frac{\partial x}{\partial P} \frac{\partial x}{\partial X} = 0$$
$$[p, p] = \frac{\partial p}{\partial X} \frac{\partial p}{\partial P} - \frac{\partial p}{\partial P} \frac{\partial p}{\partial X} = 0$$

The last Poisson bracket gives:

$$\begin{split} [x,p] &= \frac{\partial x}{\partial X} \frac{\partial p}{\partial P} - \frac{\partial x}{\partial P} \frac{\partial p}{\partial X} \\ &= \frac{f(P)}{m\omega} \cos(X) f'(P) \cos(X) + \frac{f'(P)}{m\omega} \sin(X) f(P) \sin(X) \\ &= \frac{f(P)f'(P)}{m\omega} \end{split}$$

Hence, we require:

$$f(P)f'(P) = m\omega$$

Notice:

$$\frac{d}{dP}f^2(P) = 2f(P)f'(P)$$

so we convert the ODE into:

$$\frac{d}{dP}f^2(P) = 2m\omega$$

which we integrate with respect to P to obtain:

$$f^2(P) = 2m\omega P + C$$

Since we just need a particular solution, we pick:

$$f(P) = \sqrt{2m\omega P}$$

So our canonical transformation will be given by:

$$p(X, P) = \sqrt{2m\omega P}\cos(X)$$
 $x(X, P) = \frac{\sqrt{2m\omega P}}{m\omega}\sin(X)$

which leads to the Hamiltonian:

$$K(X, P) = \omega P$$

By Liouville's Theorem, P is **conserved**, and:

$$\dot{X} = [X,K] = \frac{\partial K}{\partial P} = \omega$$

such that if $\alpha = X(0)$ we get:

$$X(t) = \alpha + t\omega$$

and thus coming back to x, p we get:

$$p(X, P) = \sqrt{2mK}\cos(\alpha + t\omega)$$

$$x(X, P) = \sqrt{\frac{2K}{m\omega^2}}\sin(\alpha + t\omega)$$