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Based on the notes by Jelle Hartong, Section 7.3 & Sections 8.1-8.4

1 Generalising Noether’s Theorem

1.1 From Noether Theorem I to General Noether’s Theorem

• What additional generalisations can be made to Noether’s Theorem?

– Noether’s Theorem deals with continuous symmetries of the Lagrangian, given changes in x

– this allows 2 further generalisations:

1. Time Change: we can enforce that a diffeomorphism warps both space x and time t

2. Lagrangian Uniqueness: recall, Lagrangians are unique up to a total time derivative; that
is, given 2 Lagrangians

L(x, ẋ, t) L′(x, ẋ, t)

related by

L′(x, ẋ, t) = L(x, ẋ, t) +
d

dt
F (x, t)

They generate the same Euler-Lagrange Equations:

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
=

∂L′

∂xi
− d

dt

(
∂L′

∂ẋi

)
= 0

This means that for a diffeomorphism to be a symmetry, we just require that iy leaves
the Lagrangian invariant up to a total time derivative

• How are symmetries defined in terms of the action?

– we previously defined a symmetry as a diffeomorphism family which left the Lagrangian
invariant

– this is too restrictive

– a more general statement is that a symmetry leads to invariance in the action

– if this is the case, then making the Lagrangian invariant is just a special case
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1.2 Theorem: General Noether’s Theorem

Let:

I[x] =

ˆ 1

0

L(x, ẋ, t)dt

be an action for regular curves:

x : [0, 1] → Rn

and let L be invariant under a one-parameter family of diffeomor-
phisms:

Rn × R 7→ Rn × R
(x, t) 7→ (x̄(x, t, s), t̄(x, t, s))

Moreover, define:

ζj =
∂x̄j

∂s

∣∣∣∣
s=0

τ =
∂t̄

∂s

∣∣∣∣
s=0

Ks =
d

ds
Fs

for some function Fs.
Then, the Noether charge:

N(x, ẋ, t) =

(
L−

∑
k

∂L

∂ẋk
ẋk

)
τ +

∑
k

∂L

∂ẋk
ζk −K0

is conserved along extremals of I; that is, along curves obeying the
Euler-Lagrange equations:

dN

dt
= 0

Proof. Consider the diffeomorphism family:

(x, t) 7→ (x̄(x, t, s), t̄(x, t, s))

This family will be a symmetry if it leaves the action invariant. That is, if t ∈ [0, 1], t̄ ∈ [a, b], we want:

I =

ˆ b

a

L(x̄, ˙̄x, t̄)dt̄ =

ˆ 1

0

L(x, ẋ, t)dt

where we abuse notation and define:

˙̄x ≡ dx̄

dt̄

Notice, we can think of x̄, ˙x̄, t̄as functions of x, ẋ, t, s. Thus, we can apply a change of varaibles, and write
the barred action as:

I =

ˆ 1

0

L(x̄, ˙̄x, t̄)
dt̄

dt
dt
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(notice, this makes sense: since we are changing t, we expect there to be a normalisation factor accounting
for this warp within the action integral)

But then we have that: ˆ 1

0

L(x̄, ˙̄x, t̄)
dt̄

dt
dt =

ˆ 1

0

L(x, ẋ, t)dt

so by the FTC:

L(x̄, ˙̄x, t̄)
dt̄

dt
= L(x, ẋ, t)

Moreover, since Lagrangians are identical up to a total time derivative, we will have:

L(x̄, ˙̄x, t̄)
dt̄

dt
= L(x, ẋ, t) +

d

dt
Fs(x, t)

for some function Fs. This is our new requirement for (x, t) 7→ (x̄, t̄) to be a symmetry.

Now, from Lie Group Theory (diffeomorphisms are an example of a Lie group, since they are a continuous
symmetry), to “understand” the symmetry requirement it will be sufficient to differentiate with respect to
s, and evaluate the result at s = 0.

Before doing this we note again that from Lie algebras we have that the diffeomorphisms are analytic;
that is, their Taylor series are well-defined. Expanding at s = 0, and recalling that

ζj =
∂x̄j

∂s

∣∣∣∣
s=0

τ =
∂t̄

∂s

∣∣∣∣
s=0

we obtain:
x̄j = x̄j(s = 0) + ζj(t, x)s+O(s2) = xj + ζj(t, x)s+O(s2)

t̄ = t̄(s = 0) + τ(t, x)s+O(s2) = t+ τ(t, x)s+O(s2)

where we have used the fact that a diffeomorphism family produces the identity at s = 0.

Using this, we can compute the derivative with respect to s. Noting that L(x, ẋ, t) doesn’t depend on s
thus gives us:

d

ds

(
L(x̄, ˙̄x, t̄)

dt̄

dt

)
=

d

ds

(
L(x, ẋ, t) +

d

dt
Fs(x, t)

)
=⇒

([∑
k

∂L

∂x̄k

∂x̄k

∂s

]
+

[∑
k

∂L

∂ ˙̄xk

∂ ˙̄xk

∂s

]
+

∂L

∂t̄

∂t̄

∂s

)
dt̄

dt
+ L

∂d

∂s

dt̄

dt
=

dKs

dt
, Ks =

dFs

ds

We now evaluate at s = 0 noting that the diffeomorphisms will become the identity mappings:([∑
k

∂L

∂xk
ζk

]
+

[∑
k

∂L

∂ẋk

∂ ˙̄xk

∂s

]∣∣∣∣∣
s=0

+
∂L

∂t
τ

)
dt̄

dt

∣∣∣∣
s=0

+ L
∂d

∂s

dt̄

dt

∣∣∣∣
s=0

=
dK0

dt

We thus need to compute the following quantities:

∂ ˙̄xk

∂s

∣∣∣∣
s=0

dt̄

dt

∣∣∣∣
s=0

∂d

∂s

dt̄

dt

∣∣∣∣
s=0
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1 ∂ ˙̄xk

∂s

∣∣∣
s=0

We start by determining:
dx̄k

dt̄
=

dx̄k

dt

dt

dt̄

This is valid, in the sense that x̄k will ultimately be a function of t, and whilst t̄ is defined explicitly as a
function of t, the fact that we have a diffeomorphism means that in particular we have a bijection. Thus,
we can also think of t as a function of t̄. In particular, due to the bijection, we have the following relation:

dt̄

dt
=

1
dt
dt̄

We have that t̄ = t+ τs+O(s2) so:

dt̄

dt
= 1 + s

dτ

dt
+O(s2) =⇒ dt

dt̄
=

1

1 + sdτ
dt +O(s2)

Using the expansion 1
1−x =

∑∞
i=0 x

i we can rewrite this as:

dt̄

dt
=

∞∑
i=0

(
−s

dτ

dt
−O(s2)

)i

= 1− s
dτ

dt
+O(s2)

Moreover, since x̄k = xk + ζks+O(s2):

dx̄k

dt
=

dxk

dt
+ s

dζk

dt
+O(s2)

Hence:

dx̄k

dt̄
=

(
dxk

dt
+ s

dζk

dt
+O(s2)

)(
1− s

dτ

dt
+O(s2)

)
=

dxk

dt
− s

dτ

dt

dxk

dt
+ s

dζk

dt
+O(s2)

Now, we get:
∂ ˙̄xk

∂s
=

∂

∂s

dx̄k

dt̄
= −dτ

dt

dxk

dt
+

dζk

dt
+O(s)

and evaluating at s = 0:
∂ ˙̄xk

∂s

∣∣∣∣
s=0

= −dτ

dt

dxk

dt
+

dζk

dt

2 dt̄
dt

∣∣∣
s=0

We already computed that:
dt̄

dt
= 1 + s

dτ

dt
+O(s2)

so:
dt̄

dt

∣∣∣∣
s=0

= 1

3 ∂d
∂s

dt̄
dt

∣∣∣
s=0
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We already computed that:
dt̄

dt
= 1 + s

dτ

dt
+O(s2)

so:
∂d

∂s

dt̄

dt

∣∣∣∣
s=0

=
dτ

dt

Hence, using:
∂ ˙̄xk

∂s

∣∣∣∣
s=0

= −dτ

dt

dxk

dt
+

dζk

dt

dt̄

dt

∣∣∣∣
s=0

= 1
∂d

∂s

dt̄

dt

∣∣∣∣
s=0

=
dτ

dt

we get that: ([∑
k

∂L

∂xk
ζk

]
+

[∑
k

∂L

∂ẋk

∂ ˙̄xk

∂s

]∣∣∣∣∣
s=0

+
∂L

∂t
τ

)
dt̄

dt

∣∣∣∣
s=0

+ L
∂d

∂s

dt̄

dt

∣∣∣∣
s=0

=
dK0

dt

=⇒

([∑
k

∂L

∂xk
ζk

]
+

[∑
k

∂L

∂ẋk

(
dζk

dt
− dτ

dt

dxk

dt

)]
+

∂L

∂t
τ

)
+ L

dτ

dt
=

dK0

dt

=⇒

[∑
k

∂L

∂xk
ζk

]
+

[∑
k

∂L

∂ẋk

(
dζk

dt
− ẋk dτ

dt

)]
+

∂L

∂t
τ + L

dτ

dt
=

dK0

dt

Now, if we can write the above expression as some total time derivative, then the expression being
differentiated will be our conserved Noether charge.

It is useful to split the terms in the RHS based on whether there is a τ or a ζk:[∑
k

∂L

∂xk
ζk

]
+

[∑
k

∂L

∂ẋk

(
dζk

dt
− ẋk dτ

dt

)]
+

∂L

∂t
τ + L

dτ

dt

=

[∑
k

∂L

∂xk
ζk +

∂L

∂ẋk

dζk

dt

]
+

[
∂L

∂t
τ + L

dτ

dt
−
∑
k

∂L

∂ẋk
ẋk dτ

dt

]

=

[∑
k

∂L

∂xk
ζk +

∂L

∂ẋk

dζk

dt

]
+

[
∂L

∂t
τ +

dτ

dt

(
L−

∑
k

∂L

∂ẋk
ẋk

)]

1 ζk

Now, notice that:
d

dt

(
∂L

∂ẋk
ζk
)

=
d

dt

(
∂L

∂ẋk

)
ζk +

∂L

∂ẋk

dζk

dt

Hence:

∂L

∂xk
ζk +

∂L

∂ẋk

dζk

dt
=

∂L

∂xk
ζk +

d

dt

(
∂L

∂ẋk
ζk
)
− d

dt

(
∂L

∂ẋk

)
ζk

=
d

dt

(
∂L

∂ẋk
ζk
)
+ ζk

(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))
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2 τ

Notice that:

d

dt

((
L−

∑
k

∂L

∂ẋk
ẋk

)
τ

)

=

(
dL

dt
+

[∑
k

∂L

∂xk
ẋk +

�
�
��∂L

∂ẋk
ẍk

]
−

[∑
k

d

dt

(
∂L

∂ẋk

)
ẋk +

�
�

��∂L

∂ẋk
ẍk

])
τ +

(
L−

∑
k

∂L

∂ẋk
ẋk

)
dτ

dt

=
dL

dt
τ + τ

[∑
k

ẋk

(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))]
+

(
L−

∑
k

∂L

∂ẋk
ẋk

)
dτ

dt

Hence:

∂L

∂t
τ +

dτ

dt

(
L−

∑
k

∂L

∂ẋk
ẋk

)

=
d

dt

((
L−

∑
k

∂L

∂ẋk
ẋk

)
τ

)
− τ

[∑
k

ẋk

(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))]

=
d

dt

(
Lτ − τ

∑
k

∂L

∂ẋk
ẋk

)
− τ

[∑
k

ẋk

(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))]

Thus, we finally write:[∑
k

∂L

∂xk
ζk +

∂L

∂ẋk

dζk

dt

]
+

[
∂L

∂t
τ +

dτ

dt

(
L−

∑
k

∂L

∂ẋk
ẋk

)]
=

dK0

dt

=

[∑
k

d

dt

(
∂L

∂ẋk
ζk
)
+ ζk

(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))]

+

[
d

dt

(
Lτ − τ

∑
k

∂L

∂ẋk
ẋk

)
− τ

[∑
k

ẋk

(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))]]
=

dK0

dt

=
d

dt

(
Lτ − τ

∑
k

∂L

∂ẋk
ẋk

)
+

[∑
k

d

dt

(
∂L

∂ẋk
ζk
)]

+

[∑
k

(ζk − ẋkτ)

(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))]
=

dK0

dt

Now, if we assume our curve obeys the Euler-Lagrange Equations, this reduces to:

d

dt

(
Lτ − τ

∑
k

∂L

∂ẋk
ẋk

)
+

[∑
k

d

dt

(
∂L

∂ẋk
ζk
)]

+

∑
k

(ζk − ẋkτ)

(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))
︸ ︷︷ ︸

=0

 =
dK0

dt

d

dt

(
τ

[
L−

∑
k

∂L

∂ẋk
ẋk

]
+

[∑
k

∂L

∂ẋk
ζk

]
−K0

)
= 0

So the Noether Charge which gets conserved aong extremals satisfying the EL equations is:

N = τ

[
L−

∑
k

∂L

∂ẋk
ẋk

]
+

[∑
k

∂L

∂ẋk
ζk

]
−K0
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as required.

Here, the term proportional to τ is the contribution due to change in time;
∑

k
∂L
∂ẋk ζ

k is our standard
Noether charge when we only shift by x; K0 is the contribution given by the invariance of the Lagrangian.

2 1-forms

I recommend reading this article by Terence Tao, which builds up great intuition for understanding 1-forms.

2.1 Definition: The Tangent Space

Let U ⊂ Rn be open, and consider a point a ∈ U .
The tangent space to U at a is a n-dimensional real vector space TaU ,
spanned by: {

∂

∂xi

∣∣∣∣
a

}

(Theorem E.1)

The notation ∂
∂xi is meant to represent a unit vector, which will be tangent to our point a in the direction

of ei ∈ U .
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2.2 Definition: 1-Forms

Let U ⊂ Rn. A 1-form at a ∈ U is a linear map:

α : TaU → R

mapping elements in the tangent space to some real value via:

α(x+ cy) = α(x) + cα(y), x, y ∈ TaU, c ∈ R

2.3 Definition: Dual Vector Space

The dual vector space is the vector space of all 1-forms at a ∈ U .
We denote the dual vector space as:

T ∗
aU

The dual vector space is a vector space of linear mappings, which assign
a real value to a tangent vector in tangent space TaU .

A basis for the dual vector space T ∗
aU is given by the set of 1-forms which we denote as:

{dxi
∣∣
a
}

which are defined such that (rememebr dxi are functions which take tangent vectors as inputs!):

dxj
∣∣
a

(
∂

∂xi

∣∣∣∣
a

)
= δij

Such that if y ∈ TaU :

y =

n∑
i=1

yi
∂

∂xi

∣∣∣∣
a

Then:

dxi
∣∣
a
(y) =

n∑
j=1

dxi
∣∣
a

(
yj

∂

∂xj

∣∣∣∣
a

)
=

n∑
j=1

yj dxi
∣∣
a

(
∂

∂xj

∣∣∣∣
a

)
= yi
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2.4 Definition: Differential 1-Forms

A differential 1-form on U is a map α which assigns to each a ∈ U a
1-form in T ∗

aU .
In particular, if αi : U → R:

α =
n∑

i=1

αidx
i

2.5 Definition: Differential/Exterior Derivative

The differential/exterior derivative of a scalar field f is the dual
vector:

df =
n∑

i=1

∂f

∂xi
dxi

In particular, a 1-form α is exact if ∃f :

α = df

If we now pick a ∈ U and y ∈ TaU , then:

df(a)(y) =

n∑
i=1

∂f

∂xi
(a) dxi

∣∣
a
(y) =

n∑
i=1

∂f

∂xi
(a)yi =

〈
∇f, y

〉
= Df(a)(y)

Hence, the total derivative is nothing but a particular element of the dual vector space T ∗
aU .

3 Hamilton’s Canonical Formalism

3.1 The Hamiltonian in 1 Dimension

• How can we express the Euler-Lagrange Equations as first order ODEs?

– consider a 1-dimensional Lagrangian:
L(x, ẋ, t)

which gives rise to the Euler-lagrange equation:

∂L

∂x
=

d

dt

∂L

∂ẋ

– we can convert this into an equivalent system of first order ODEs via:

dx

dt
= v

d

dt

∂L

∂v
=

∂L

∂x
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• What is Hamilton’s canonical formalism?

– the system
dx

dt
= v

d

dt

∂L

∂v
=

∂L

∂x

doesn’t look symmetric

– Hamilton’s formalism seeks to use canonical variables to restore symmetry

3.1.1 Definition: One-Dimensional Hamiltonian

Let L be a Lagrangian, with Euler-Lagrange equations written as the
system:.

dx

dt
= v

d

dt

∂L

∂v
=

∂L

∂x

Let p be the momentum conjugate to x:

p =
∂L

∂v

Then the Hamiltonian is:

H(x, p) = pv − L(x, v)

where we think of v as a function of p.
The Euler-Lagrange Equations then become Hamilton’s Equa-
tions:

dx

dt
=

∂H

∂p

dp

dt
= −∂H

∂x

as expected.

Notice, by introducing the Hamiltonian, we can express the EL equations in a much more symmetric
form. The set of coordinate (x, p) define what is known as phase space.

3.1.2 Example: Hamiltonian

Consider the Lagrangian:

L(x, v) =
1

2
mv2 − V (x)

where V is some potential. The momentum conjugate to x is:

p =
∂L

∂v
= mv

So we can write v = p
m . Hence, the Hamiltonian will be:

H(x, p) = p
p

m
− 1

2
m

p2

m2
− V (x) =

p2

2m
+ V (x)
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We now verify Hamilton’s Equations:
∂H

∂p
=

p

m
= v =

dx

dt

∂H

∂x
=

dV

dx
= −∂L

∂x

3.1.3 The Legendre Transform: Hamiltonian and Lagrangian

Lagrangians and Hamiltonians seem to be very symmetrical:

L(x, v, t) ⇐⇒ H(x, p, t)

p =
∂L

∂v
⇐⇒ v =

∂H

∂p

H = pv − L ⇐⇒ L = vp−H

In particular, we say that H is the Legendre Transform of L

3.2 Definition: The General Hamiltonian

Consider a general Lagrangian:

L(x, v, t), x, v ∈ Rn

Define the conjugate momentum to x as p, such that:

pi =
∂L

∂vi

The Hamiltonian is then given by:

H(x, p, t) =
〈
v, p
〉
− L(x, v, t) =

n∑
i=1

vipi − L(x, v, t)

where vi = vi(x, p, t).

3.2.1 Regular Lagrangian

Notice, here we are assuming that the velocity is defined implicitly in terms of momentum. For this, we
require the implicit function theorem, which tells us that the solution to:

pi =
∂L

∂vi

is a graph:
vi = vi(x, p, t)

at points where the Jacobian:
∂L

∂vi∂vj

is inveritble. If L satisfies this invertibility requirement for all (x, v, t) ,then L is regular; otherwise, L
is a singular Lagrangian. Hence, if L is regular, this guarantees that we can locally write v as a function
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of x, p, t, and so, our definition for the Hamiltonian will be valid. However, this doesn’t mean that if L
is singular, it doesn’t have a Hamiltonian description. Indeed, L = ∥v∥, which gives rise to the arclength
functional, is a singular Lagrangian, which has a perfectly well defined Hamiltonian - we just need to make
sure we pick a different, but equivalent, Lagrangian, whose Hamiltonian will be well-defined.

3.3 Theorem: General Hamilton’s Equations

Hamilton’s Equations are:

dxi

dt
=

∂H

∂pi

dpi
dt

= −∂H

∂xi

These are canonical/Hamiltonian form of the first-order version of
the Euler-Lagrange Equations:

dxi

dt
= vi

d

dt

∂L

∂vi
=

∂L

∂xi

(Equation 8.3)

Proof. We shall use differentials. By linearity:

dH = d

([
n∑

i=1

vipi

]
− L(x, v, t)

)
=

[
n∑

i=1

d(vipi)

]
− d(L(x, v, t))

Then we can write:

dH =

n∑
i=1

(dpiv
i + pidv

i)−

(
∂L

∂t
dt+

[
n∑

i=1

∂L

∂xi
dxi

]
+

[
n∑

i=1

∂L

∂vi
dvi

])

=

[
n∑

i=1

dpiv
i

]
+

�
���

���[
n∑

i=1

∂L

∂vi
dvi

]
−

(
∂L

∂t
dt+

[
n∑

i=1

∂L

∂xi
dxi

]
+

�
���

���[
n∑

i=1

∂L

∂vi
dvi

])

=

[
n∑

i=1

dpiv
i

]
− ∂L

∂t
dt−

[
n∑

i=1

∂L

∂xi
dxi

]

The 1-forms form a basis, so the components with differnt differentials will be independent. This then allows
us to see that:

∂H

∂t
= −∂L

∂t

∂H

∂pi
= vi

∂H

∂xi
= − ∂L

∂xi
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which converts:
dxi

dt
= vi

d

dt

∂L

∂vi
=

∂L

∂xi

into:
dxi

dt
=

∂H

∂pi

dpi
dt

= −∂H

∂xi

as required.

3.4 Theorem: Non-Uniqueness of the Hamiltonian

2 Hamiltonians differing by a partial time derivative give rise to the
same set of Hamilton’s Equations:

H ′(Q,P, t) = H(q, p, t)− ∂

∂t
F (q, t)

where:

qi = Qi pi = Pi −
∂F (Q, t)

∂Qi

In fact, if:

L′(q, q̇, t) = L(q, q̇, t) +
d

dt
F (q, t)

then L′ Legendre transforms into H ′, and L Legendre transforms
into H.
(Equation 8.8)

Proof.

3.5 Poisson Brackets

3.5.1 Definition: The Poisson Bracket

The Poisson bracket is a binary operation on functions defined by:

[f, g] =
n∑

i=1

(
∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi

)
(Equation 8.9)
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3.5.2 Lemma: Properties of the Poisson Bracket

1. Bilinearity:
[αf, βg] = αβ[f, g]

2. Antisymmetry:
[f, g] = −[g, f ]

3. “Distributivity”:

[f, gh] = [f, g]h+ g[f, h]

4. Jacobi Identity:

[f, [g, h]] = [[f, g], h] + [g, [f, h]]

These properties mean that any smooth (infinitely differentiable) functions on phase space (x, p) form a
Lie algebra under the Poisson bracket; in fact, alongside commutative multiplication of functions, these
functions form a Poisson algebra, which appear in the context of deformations of algebraic structures
(of which quantum mechanics are one instance).

3.5.3 Theorem: Conserved Quantity from Poisson Bracket with Hamiltonian

Let Φ(x, p) be a function defined on phase space, where x, p obey
Hamilton’s Equations:

dxi

dt
=

∂H

∂pi

dpi
dt

= −∂H

∂xi

Then:
dΦ

dt
=

∂Φ

∂t
+ [Φ, H]

In particular, Φ is conserved if:

∂Φ

∂t
= −[Φ, H] = [H,Φ]

If Φ doesn’t depend explicitly on time, then:

dΦ

dt
= 0 ⇐⇒ [Φ, H] = 0

and we say that Φ Poisson-commutes with H.
(Equation 8.10)
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Proof. We compute directly:

dΦ

dt
=

∂Φ

∂t
+

[
n∑

i=1

∂Φ

∂xi

dxi

dt

]
+

[
n∑

i=1

∂Φ

∂pi
dpi

dt

]

=
∂Φ

∂t
+

[
n∑

i=1

∂Φ

∂xi

∂H

∂pi
− ∂Φ

∂pi
∂H

∂xi

]

=
∂Φ

∂t
+ [Φ, H]

where we have used Hamilton’s Equations to get from the first line to the second line.

3.5.4 Corollary: Generating New Conserved Quantities from Old

Let Φ1,Φ2 be conserved functions in phase space. Then:

[Φ1,Φ2]

is also conserved.

The beauty of this result is that from 2 conserved quantities, we can get another one for free by using the
Poisson brackets!

Proof. Since Φ1,Φ2 are conserved in phase space, then:

[Φ1, H] = [Φ2, H] = 0

But then, by the Jacobi identity:

[[Φ1,Φ2], H] = −[[H,Φ1],Φ2]− [Φ1, [H,Φ2]] = 0

by bilinearity of the Poisson bracket. Hence, [ϕ1,Φ2] is also conserved.
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3.6 Theorem: A Partial Converse to Noether’s Theorem

Let Φ(x, p, t) be a conserved quantity:

∂Φ

∂t
= [−Φ, H] = [H,Φ]

Then, the continuous transformations defined by:

dxi

ds
= [xi,Φ] =

∂Φ

∂pi

dpi
ds

= [pi,Φ] = − ∂Φ

∂xi

leave the Hamiltonian invariant, up to a partial time-derivative:

dH

ds
=

∂Φ

∂t

That is, the continuous transformations are continuous symmetries of
Hamilton’s Equations, taking solutions to solutions.
(Equations 8.11 & 8.12)

Proof. It is easy to see that:

[xi,Φ] =

n∑
j=1

(
∂xi

∂xj

∂Φ

∂pj
− ∂xi

∂pj

∂Φ

∂xj

)
=

∂Φ

∂pi

[pi,Φ] =

n∑
j=1

(
∂pi
∂xj

∂Φ

∂pj
− ∂pi

∂pj

∂Φ

∂xj

)
= − ∂Φ

∂xi

The Hamiltonian vector field is the vector field on the phase space R2n defined by:

XΦ = [Φ,−] =
∂Φ

∂xi

∂

∂pi
− ∂Φ

∂pi

∂

∂xi

a 7→

 ∂Φ
∂p (a)

−∂Φ
∂x (a)

 ,
∂Φ

∂p
(a),−∂Φ

∂p
(a) ∈ Rn

Now, define a curve in phase space (x(s), p(s)) as a solution to the system:

dxi

ds
= [xi,Φ] =

∂Φ

∂pi

dpi

ds
= [pi,Φ] = − ∂Φ

∂xi

This has a solution, by the existence and uniqueness theorem (given some initial condition (x(0), p(0)).
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Furthermore, along these solutions:

dH

ds
=

[
n∑

i=1

∂H

∂xi

dxi

ds

]
+

[
n∑

i=1

∂H

∂pi

dpi
ds

]

=

[
n∑

i=1

∂H

∂xi

∂Φ

∂pi

]
−

[
n∑

i=1

∂H

∂pi

∂Φ

∂xi

]

=

[
n∑

i=1

∂H

∂xi

∂Φ

∂pi
− ∂H

∂pi

∂Φ

∂xi

]
= [H,Φ]

=
∂Φ

∂t

That is, the Hamiltonian changes by a partial time-derivative. But we saw that Hamiltonians which differ by
a partial time-derivative produce the same set of equations of motion. Hence, we can think of these continuous
transformation as leaving the Hamiltonian invariant, and thus, are symmetries of the Hamiltonian on phase
space.

3.6.1 Worked Example: Angular Momentum Conservation

The theorem above can be thought of as a converse to Noether’s Theorem: from a conserved quantity in
phase space, we are capable of deriving the continuous symmetry whcih generates it.

Last week we considered the following problem:

Consider the Lagrangian:

L =
1

2
m∥ẋ∥2 − V (x)

for plane curves:
x : [0, 1] → R2

Assume that the potential V only depends on ∥x∥. Show that L is invari-
ant under the one-parameter symmetry group:

φs : R2 → R2

defined by:

φs(x) =

x1 cos(s)− x2 sin(s)

x1 sin(x) + x2 cos(s)


We now work in reverse.

The conjugate momentum is:

pi =
∂L

∂v
= mvi =⇒ vi =

pi
m
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Thus, we write the Hamiltonian as:

H(x, p) =
∥p∥2

2m
+ V (∥x∥)

We have that:
Φ = J = x1p2 − x2p1

is the angular momentum, which is conserved

We can now compute the Poisson brackets with the canonical variables:

[x1, J ] =
∂J

∂p1
= −x2

[x2, J ] =
∂J

∂p2
= x1

[p1, J ] = − ∂J

∂x1
= −p2

[p2, J ] = − ∂J

∂x2
= p1

which gives the system of ODEs:

dx1

ds
= −x2 dx2

ds
= x1 dp1

ds
= −p2

dp2
ds

= p1

We could solve the ODEs by writing it as a system, but it is easier to notice that:

dx1

ds
= −x2 =⇒ d2x1

ds2
= −dx2

ds
= −x1

This is a standard second-order ODE with characteristic polynomial r2 = −1, so:

x1(s) = A cos(s) +B sin(s)

Doing this for all the remaining ODEs and using initial conditions we get:

x1(s) = x1(0) cos(s)− x2(0) sin(s)

x2(s) = x2(0) cos(s) + x1(0) sin(s)

p1(s) = p1(0) cos(s)− p2(0) sin(s)

p2(s) = p2(0) cos(s) + p1(0) sin(s)

which are indeed the initial transformations that we had.
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