Variational Calculus - Week 5 - Introduction to Noether's Theorem

Antonio León Villares

October 2022

Contents

1	Mapping Between Functionals
	1.1 Definition: Diffeomorphisms
	1.2 Lemma: Extremising Actions Under Diffeomorphisms
	1.3 Symmetries of the Lagrangian
2	Noether's Theorem (Version 1) 2.1 Definition: One-Parameter Subgroup of Diffeomorphisms
	2.1 Definition: One-1 attaineter subgroup of Diffeomorphisms
3	Exercises

1 Mapping Between Functionals

1.1 Definition: Diffeomorphisms

A C^2 diffeomorphism is a mapping:

$$\varphi: \mathbb{R}^n \to \mathbb{R}^n$$

satisfying:

- 1. $\varphi \in C^2$
- $2. \exists \varphi^{-1}$
- 3. $\varphi^{-1} \in C^2$
- How does applying diffeomorphisms affect the extremising functions for the action?
 - consider the action:

$$I[\underline{x}] = \int_0^1 L(\underline{x}, \underline{\dot{x}}, t) dt$$

for a **regular** C^2 curve:

$$\underline{x}:[0,1]\to\mathbb{R}^n$$
 $\underline{x}(0)=\underline{P}$ $\underline{x}(1)=Q$

– if \underline{x} extremises I, consider the new path:

$$y = \varphi \circ \underline{x} = \varphi(\underline{x}(t))$$

between points $\varphi(\underline{P})$ and $\varphi(Q)$ (since $\varphi \in C^2$ so it's continuous)

- if L had been the **arclength**, then \underline{x} would be a straight line
- however, for most choices of φ , \underline{y} would almost certainly not be a straight line, so \underline{y} will **not** extremise I

however, diffeomorphisms become extremely useful if, after being applied, they still extremise
the functional - this is the basis of Noether's Theorem

1.2 Lemma: Extremising Actions Under Diffeomorphisms

Let:

$$I[\underline{x}] = \int_0^1 K(\underline{x}, \underline{\dot{x}}, t) dt$$
 $J[\underline{y}] = \int_0^1 L(\underline{y}, \underline{\dot{y}}, t) dt$

such that:

$$K(\underline{x}, \underline{\dot{x}}, t) = L(\underline{y}, \underline{\dot{y}}, t)$$

where:

$$y = \varphi \circ \underline{x}$$

and φ is a C^2 diffeomorphism.

Then, \underline{x} extremises I if and only if $\underline{y} = \varphi \circ \underline{x}$ extremises J.

In other words, φ sets up a bijective correspondence between extremals of I and extremals of J.

 $(Lemma\ 7.1)$

Proof. We have that:

$$K(\underline{x},\underline{\dot{x}},t) = L(\underline{y},\underline{\dot{y}},t) = L\left(\varphi(\underline{x}(t)),\frac{d}{dt}\varphi(\underline{x}(t)),t\right)$$

We first need to compute an expression for \dot{y} in terms of \underline{x} . This will be the **total derivative**

$$\underline{\dot{y}}(t) = \frac{d}{dt}\varphi(\underline{x}(t)) = D_{\varphi(\underline{x}(t))}\underline{\dot{x}}(t)$$

where the jth component is given by:

$$\dot{y}^{j} = \sum_{k=1}^{n} \frac{\partial \varphi^{j}}{\partial x^{i}} \frac{d}{dt} x^{i} = \sum_{k=1}^{n} \frac{\partial \varphi^{j}}{\partial x^{k}} \dot{x}^{k}$$

(this follows by the fact that φ^j depends on t through each of its n variables x^k)

We know that the **total derivative** is a **linear map**. In fact, in a given coordinate system, the **total derivative** can be shown to be the **Jacobian Matrix**:

$$D_{\varphi(\underline{x}(t))} = \begin{pmatrix} (\nabla \varphi^1)^T \\ (\nabla \varphi^2)^T \\ \vdots \\ (\nabla \varphi^n)^T \end{pmatrix} = \begin{pmatrix} \frac{\partial \varphi^1}{\partial x^1} & \frac{\partial \varphi^1}{\partial x^2} & \dots & \frac{\partial \varphi^1}{\partial x^n} \\ \frac{\partial \varphi^2}{\partial x^1} & \frac{\partial \varphi^2}{\partial x^2} & \dots & \frac{\partial \varphi^2}{\partial x^n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \varphi^n}{\partial x^1} & \frac{\partial \varphi^n}{\partial x^2} & \dots & \frac{\partial \varphi^n}{\partial x^n} \end{pmatrix}$$

We can indeed see that $\dot{y} = D_{\varphi(\underline{x}(t))}\underline{\dot{x}}$, since:

$$\dot{y}^j = \sum_{k=1}^n \frac{\partial \varphi^j}{\partial x^k} \dot{x}^k$$

Most importantly, $D_{\phi(\underline{x}(t))}$ will be **invertible**.

Hence, we can compute the Euler-Lagrange Equation for K by using the RHS. For a given variable x^i :

$$0 = \frac{d}{dt} \frac{\partial K}{\partial \dot{x}^i} - \frac{\partial K}{\partial x^i}$$
$$= \frac{d}{dt} \frac{\partial L}{\partial \dot{x}^i} - \frac{\partial L}{\partial x^i}$$

Now, since φ is a vector field, each of its components is a function φ^j which itself can depend on x^i . Moreover, \dot{y}^j also depend on x^i . Hence, we get that:

$$\begin{split} \frac{\partial L}{\partial x^i} &= \sum_{j=1}^n \left(\frac{\partial L}{\partial y^j} \frac{\partial y^j}{\partial x^i} + \frac{\partial L}{\partial \dot{y}^j} \frac{\partial \dot{y}^j}{\partial x^i} \right) \\ &= \sum_{j=1}^n \left[\frac{\partial L}{\partial y^j} \frac{\partial \varphi^j}{\partial x^i} + \frac{\partial L}{\partial \dot{y}^j} \frac{\partial}{\partial x^i} \left(\sum_{k=1}^n \frac{\partial \varphi^j}{\partial x^k} \dot{x}^k \right) \right] \\ &= \sum_{j=1}^n \left[\frac{\partial L}{\partial y^j} \frac{\partial \varphi^j}{\partial x^i} + \frac{\partial L}{\partial \dot{y}^j} \left(\sum_{k=1}^n \frac{\partial^2 \varphi^j}{\partial x^i \partial x^k} \dot{x}^k \right) \right] \end{split}$$

This can get messy, so an alternative is to use **Einstein's Summation Notation**, whereby if a "dummy variable" appears twice, we can infer that there is summation over said variable. In other words, we can write:

$$\sum_{j=1}^{n} \left[\frac{\partial L}{\partial y^{j}} \frac{\partial \varphi^{j}}{\partial x^{i}} + \frac{\partial L}{\partial \dot{y}^{j}} \left(\sum_{k=1}^{n} \frac{\partial^{2} \varphi^{j}}{\partial x^{i} \partial x^{k}} \dot{x}^{k} \right) \right]$$
$$= \sum_{j=1}^{n} \left[\frac{\partial L}{\partial y^{j}} \frac{\partial \varphi^{j}}{\partial x^{i}} \right] + \sum_{j,k=1}^{n} \left[\frac{\partial L}{\partial \dot{y}^{j}} \frac{\partial^{2} \varphi^{j}}{\partial x^{i} \partial x^{k}} \dot{x}^{k} \right]$$

as:

$$\frac{\partial L}{\partial y^j} \frac{\partial \varphi^j}{\partial x^i} + \frac{\partial L}{\partial \dot{y}^j} \frac{\partial^2 \varphi^j}{\partial x^i \partial x^k} \dot{x}^k$$

However, I personally find this more confusing, so I'll continue using the full notation, alongside brackets.

Moreover, L only depends on \dot{x}^i through \dot{y} so:

$$\begin{split} \frac{\partial L}{\partial \dot{x}^i} &= \sum_{j=1}^n \frac{\partial L}{\partial \dot{y}^j} \frac{\partial \dot{y}^j}{\partial \dot{x}^i} \\ &= \sum_{j=1}^n \frac{\partial L}{\partial \dot{y}^j} \frac{\partial}{\partial \dot{x}^i} \left(\sum_{k=1}^n \frac{\partial \varphi^j}{\partial x^k} \dot{x}^k \right) \\ &= \sum_{j=1}^n \frac{\partial L}{\partial \dot{y}^j} \frac{\partial \varphi^j}{\partial x^i} \end{split}$$

Thus, the Euler-Lagrange Equation for K becomes:

$$\begin{split} 0 &= \frac{d}{dt} \frac{\partial K}{\partial \dot{x}^i} - \frac{\partial K}{\partial x^i} \\ &= \frac{d}{dt} \frac{\partial L}{\partial \dot{x}^i} - \frac{\partial L}{\partial x^i} \\ &= \frac{d}{dt} \left(\sum_{j=1}^n \frac{\partial L}{\partial \dot{y}^j} \frac{\partial \varphi^j}{\partial x^i} \right) - \sum_{j=1}^n \left[\frac{\partial L}{\partial y^j} \frac{\partial \varphi^j}{\partial x^i} + \frac{\partial L}{\partial \dot{y}^j} \left(\sum_{k=1}^n \frac{\partial^2 \varphi^j}{\partial x^i \partial x^k} \dot{x}^k \right) \right] \\ &= \sum_{j=1}^n \left[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^j} \frac{\partial \varphi^j}{\partial x^i} \right) - \frac{\partial L}{\partial y^j} \frac{\partial \varphi^j}{\partial x^i} - \frac{\partial L}{\partial \dot{y}^j} \left(\sum_{k=1}^n \frac{\partial^2 \varphi^j}{\partial x^i \partial x^k} \dot{x}^k \right) \right] \\ &= \sum_{j=1}^n \left[\left(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^j} \right) \frac{\partial \varphi^j}{\partial x^i} + \frac{\partial L}{\partial \dot{y}^j} \frac{d}{dt} \left(\frac{\partial \varphi^j}{\partial x^i} \right) \right) - \frac{\partial L}{\partial y^j} \frac{\partial \varphi^j}{\partial x^i} - \frac{\partial L}{\partial \dot{y}^j} \left(\sum_{k=1}^n \frac{\partial^2 \varphi^j}{\partial x^i \partial x^k} \dot{x}^k \right) \right] \\ &= \sum_{j=1}^n \left[\frac{\partial \varphi^j}{\partial x^i} \left(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^j} \right) - \frac{\partial L}{\partial y^j} \right) + \left(\frac{\partial L}{\partial \dot{y}^j} \frac{d}{dt} \left(\frac{\partial \varphi^j}{\partial x^i} \right) \right) - \frac{\partial L}{\partial \dot{y}^j} \left(\sum_{k=1}^n \frac{\partial^2 \varphi^j}{\partial x^i \partial x^k} \dot{x}^k \right) \right] \\ &= \sum_{j=1}^n \left[\frac{\partial \varphi^j}{\partial x^i} \left(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^j} \right) - \frac{\partial L}{\partial y^j} \right) + \frac{\partial L}{\partial \dot{y}^j} \left(\frac{d}{dt} \left(\frac{\partial \varphi^j}{\partial x^i} \right) - \sum_{k=1}^n \frac{\partial^2 \varphi^j}{\partial x^i \partial x^k} \dot{x}^k \right) \right] \\ &= \sum_{j=1}^n \left[\frac{\partial \varphi^j}{\partial x^i} \left(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^j} \right) - \frac{\partial L}{\partial y^j} \right) + \frac{\partial L}{\partial \dot{y}^j} \left(\sum_{k=1}^n \frac{\partial^2 \varphi^j}{\partial x^k \partial x^i} \dot{x}^k - \sum_{k=1}^n \frac{\partial^2 \varphi^j}{\partial x^i \partial x^k} \dot{x}^k \right) \right] \\ &= \sum_{j=1}^n \left[\frac{\partial \varphi^j}{\partial x^i} \left(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^j} \right) - \frac{\partial L}{\partial y^j} \right) \right], \qquad since \ \varphi \in C^2, \ so \ by \ continuity \ \frac{\partial^2 \varphi^j}{\partial x^i \partial x^k} = \frac{\partial^2 \varphi^j}{\partial x^k \partial x^i} \right] \\ &= \sum_{j=1}^n \left[\frac{\partial \varphi^j}{\partial x^i} \left(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^j} \right) - \frac{\partial L}{\partial y^j} \right) \right], \qquad since \ \varphi \in C^2, \ so \ by \ continuity \ \frac{\partial^2 \varphi^j}{\partial x^i \partial x^k} = \frac{\partial^2 \varphi^j}{\partial x^k \partial x^i} \right] \\ &= \sum_{j=1}^n \left[\frac{\partial \varphi^j}{\partial x^i} \left(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^j} \right) - \frac{\partial L}{\partial y^j} \right) \right], \qquad since \ \varphi \in C^2, \ so \ by \ continuity \ \frac{\partial^2 \varphi^j}{\partial x^i \partial x^k} = \frac{\partial^2 \varphi^j}{\partial x^k \partial x^i} \right]$$

But we saw,

$$\sum_{j=1}^{n} \frac{\partial \varphi^{j}}{\partial x^{i}} \square$$

represents a transformation of a vector by applying the Jacobian to it. This is saying that the Jacobian times the vector with components $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^j} \right) - \frac{\partial L}{\partial y^j}$ gives the 0 vector. Since the Jacobian is invertible, this implies that:

$$\sum_{i=1}^{n} \left[\frac{\partial \varphi^{j}}{\partial x^{i}} \left(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^{j}} \right) - \frac{\partial L}{\partial y^{j}} \right) \right] = 0 \iff \forall j \in [1, n], \quad \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^{j}} \right) - \frac{\partial L}{\partial y^{j}} = 0$$

In other words, \underline{x} satisfies the Euler-Lagrange Equations for the Lagrangian K if and only if \underline{y} satisfies the Euler-Lagrange Equations for the Lagrangian L, as required.

1.3 Symmetries of the Lagrangian

- When is a diffeomorphism a symmetry of a Lagrangian?
 - when φ is such that:

$$y = \varphi(x(t)) \implies L(x, \dot{x}, t) = L(y, \dot{y}, t)$$

- we say that L is **invariant under** φ
- if φ is a **symmetry**, then it maps extrema to extrema

• Why are the Euler-Lagrange equations true in any coordinate system?

- we can think of **diffeomorphisms** as mapping \underline{x} into another coordinate system y
- but if L is invariant under φ , changing the coordinate system doesn't affect the Lagrangian, or the Euler-Lagrange Equations
- thus, the Euler-Lagrange Equations will apply in any coordinate system

It is important to note the logical direction of this Lemma: **if** the Lagrangians are equal under diffeomorphism **then** the extremals of the Lagrangian will agree under the transformation φ .

This does **not** mean that if φ maps between extrema of 2 Lagrangians, then the φ will be a symmetry.

2 Noether's Theorem (Version 1)

2.1 Definition: One-Parameter Subgroup of Diffeomorphisms

Consider a one-parameter family:

$$\varphi_s: \mathbb{R}^n \to \mathbb{R}^n, \quad \forall s \in \mathbb{R}$$

of C^2 diffeomorphisms. These depend differentiably on s. These form a subgroup of the diffeomorphism group, via function composition, where:

1.

$$\varphi_0(\underline{x}) = \underline{x}, \qquad \forall \underline{x} \in \mathbb{R}^n$$

2.

$$\varphi_s \circ \varphi_t = \varphi_{s+t}, \quad \forall s, t \in \mathbb{R}$$

The properties of the diffeomorphism immediately give us the group structure, where the identity if:

$$\varphi_0 \circ \varphi_s = \varphi_s = \varphi_s \circ \varphi_s$$

the inverse is in the subgroup:

$$(\phi_s)^{-1} = \phi_{-s}$$

and the elements are associative (since function composition is associative).

2.2 Theorem: Noether's Theorem (I)

Let:

$$I[\underline{x}] = \int_0^1 L(\underline{x}, \underline{\dot{x}}, t) dt$$

be an action for regular curves:

$$\underline{x}:[0,1]\to\mathbb{R}^n$$

and let L be **invariant** under a **one-parameter** group of **diffeomorphisms** $\{\varphi_s\}$ (the family is known as a **continuous symmetry**). Then, the **Noether charge**:

$$N(\underline{x}, \underline{\dot{x}}, t) = \sum_{i=1}^{n} \frac{\partial L}{\partial \dot{x}^{i}} \frac{\partial \varphi_{s}^{i}(\underline{x})}{\partial s} \bigg|_{s=0}$$

is **conserved**; that is, along **extrema** of I:

$$\frac{dN}{dt} = 0$$

(Theorem 7.2)

Proof. Let $\underline{x}(t)$ be a solution to the Euler-Lagrange Equation for L. Then, by the above Lemma, $\underline{y}(s,t) = \varphi_s \circ \underline{x}(t)$ also satisfies the Euler-Lagrange Equations:

$$\frac{\partial L}{\partial y^i} = \frac{d}{dt} \frac{\partial L}{\partial \dot{y}^i}$$

Moreover, by assumption, L is invariant under φ_s for all $s \in \mathbb{R}$, so it doesn't depend on s. Thus:

$$0 = \frac{dL}{ds} = \sum_{i=1}^{n} \left(\frac{\partial L}{\partial y^{i}} \frac{\partial y^{i}}{\partial s} + \frac{\partial L}{\partial \dot{y}^{i}} \frac{\partial \dot{y}^{i}}{\partial s} \right)$$

Using the Euler-Lagrange Equation thus implies that:

$$0 = \sum_{i=1}^{n} \left(\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^{i}} \right) \frac{\partial y^{i}}{\partial s} + \frac{\partial L}{\partial \dot{y}^{i}} \frac{\partial \dot{y}^{i}}{\partial s} \right)$$

But now notice that:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^{i}} \frac{\partial y^{i}}{\partial s} \right) = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^{i}} \right) \frac{\partial y^{i}}{\partial s} + \frac{\partial L}{\partial \dot{y}^{i}} \frac{d}{dt} \left(\frac{\partial y^{i}}{\partial s} \right)
= \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^{i}} \right) \frac{\partial y^{i}}{\partial s} + \frac{\partial L}{\partial \dot{y}^{i}} \frac{\partial}{\partial s} \left(\dot{y}^{i} \right)
= \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{y}^{i}} \right) \frac{\partial y^{i}}{\partial s} + \frac{\partial L}{\partial \dot{y}^{i}} \frac{\partial \dot{y}^{i}}{\partial s}$$

where we have used the fact that \underline{y} is twice continuously differentiable, so we can exchange the order of differentiation.

Hence we have that:

$$0 = \frac{d}{dt} \left(\sum_{i=1}^{n} \frac{\partial L}{\partial \dot{y}^{i}} \frac{\partial y^{i}}{\partial s} \right)$$

Now, if we evaluate the above expression at s=0, we get that $y=\varphi_0(\underline{x}(t))=\underline{x}(t)$, so:

$$\begin{split} 0 &= \left. \frac{d}{dt} \left(\sum_{i=1}^n \frac{\partial L}{\partial \dot{y}^i} \frac{\partial y^i}{\partial s} \right) \right|_{s=0} \\ &= \left. \frac{d}{dt} \left(\sum_{i=1}^n \frac{\partial L}{\partial \dot{x}^i} \frac{\partial \varphi^i_s(\underline{x})}{\partial s} \right) \right|_{s=0} \\ &= \frac{dN}{dt} \end{split}$$

as required

3 Exercises

1. Show that the family $\{\varphi_s\}$ defines a group of transformation isomorphic to $(\mathbb{R},+)$.

2. Consider the Lagrangian:

$$L = \frac{1}{2}m\|\underline{\dot{x}}\|^2 - V(\underline{x})$$

for plane curves:

$$\underline{x}:[0,1]\to\mathbb{R}^2$$

Assume that the potential V only depends on $\|\underline{x}\|$. Show that L is invariant under the one-parameter symmetry group:

$$\varphi_s: \mathbb{R}^2 \to \mathbb{R}^2$$

defined by:

$$\varphi_s(\underline{x}) = \begin{pmatrix} x^1 \cos(s) - x^2 \sin(s) \\ x^1 \sin(x) + x^2 \cos(s) \end{pmatrix}$$

Find the expression for the Noether charge associtated to this symmetry.

We begin by showing that L is invariant under φ_s . We have that:

$$\dot{y}^{i}(s,t) = \frac{\partial \varphi_{s}^{i}}{\partial x^{1}} \dot{x}^{1} + \frac{\partial \varphi_{s}^{i}}{\partial x^{2}} \dot{x}^{2}$$

so:

$$\dot{y}^1(s,t) = \dot{x}^1 \cos(s) - \dot{x}^2 \sin(s)$$

$$\dot{y}^2(s,t) = \dot{x}^1 \sin(s) + \dot{x}^2 \cos(s)$$

Hence:

$$\begin{aligned} \|\dot{y}\|^2 &= (\dot{x}^1 \cos(s) - \dot{x}^2 \sin(s))^2 + (\dot{x}^1 \sin(s) + \dot{x}^2 \cos(s))^2 \\ &= (\dot{x}^1)^2 \cos^2(s) - 2\sin(s)\cos(s)\dot{x}^1\dot{x}^2 + (\dot{x}^2)^2 \sin^2(s) + (\dot{x}^2)^2 \cos^2(s) + 2\sin(s)\cos(s)\dot{x}^1\dot{x}^2 + (\dot{x}^1)^2 \sin^2(s) \\ &= (\dot{x}^1)^2 + (\dot{x}^2)^2 \\ &= \|\dot{x}\|^2 \end{aligned}$$

Moreover:

$$\begin{aligned} \|\underline{y}\|^2 &= (x^1 \cos(s) - x^2 \sin(s))^2 + (x^1 \sin(x) + x^2 \cos(s))^2 \\ &= (x^1 \cos(s) - x^2 \sin(s))^2 + (x^1 \sin(s) + x^2 \cos(s))^2 \\ &= (x^1)^2 \cos^2(s) - 2 \sin(s) \cos(s) x^1 x^2 + (x^2)^2 \sin^2(s) + (x^2)^2 \cos^2(s) + 2 \sin(s) \cos(s) x^1 x^2 + (x^1)^2 \sin^2(s) \\ &= (x^1)^2 + (x^2)^2 \\ &= \|x\|^2 \end{aligned}$$

In other words:

$$L(\underline{y}, \underline{\dot{y}}, t) = \frac{1}{2} m \|\underline{\dot{y}}\|^2 - V(\|\underline{y}\|)$$
$$= \frac{1}{2} m \|\underline{\dot{x}}\|^2 - V(\|\underline{x}\|)$$
$$= L(\underline{x}, \underline{\dot{x}}, t)$$

Hence, L is invariant under φ_s . In particular, φ_s represent a series of rotations, which means that L is invariant under rotations; that is, paths extremising I will be **rotationally symmetric**.

We now seek to find Noether's charge. We have:

$$\varphi_s^1 = x^1 \cos(s) - x^2 \sin(s)$$
$$\varphi_s^2 = x^1 \sin(s) + x^2 \cos(s)$$

so:

$$\frac{\partial \varphi_s^1}{\partial s} = -x^1 \sin(x) - x^2 \cos(s)$$
$$\frac{\partial \varphi_s^2}{\partial s} = x^1 \cos(x) - x^2 \sin(s)$$

Moreover, if we take the partial derivative of L with respect to \dot{x}^i , we don't need to consider V, since it only depends on ||x||. Hence:

$$\frac{\partial L}{\partial \dot{x}^i} = m\dot{x}^i$$

Thus, by Noether's Theorem:

$$\begin{split} N &= \left. \frac{\partial L}{\partial \dot{x}^1} \frac{\partial \varphi_s^1}{\partial s} + \frac{\partial L}{\partial \dot{x}^2} \frac{\partial \varphi_s^2}{\partial s} \right|_{s=0} \\ &= \left. m \dot{x}^1 (-x^1 \sin(x) - x^2 \cos(s)) + m \dot{x}^2 (x^1 \cos(x) - x^2 \sin(s)) \right|_{s=0} \\ &= m (x^1 \dot{x}^2 - \dot{x}^1 x^2) \end{split}$$

The angular momentum of an object with mass m, position \underline{x} and velocity \underline{v} is defined by:

$$L = m(\underline{x} \times \underline{v})$$

where \times denotes the vector cross product. If we compute the angular momentum for this particle:

$$L = m \begin{pmatrix} x^1 \\ x^2 \\ 0 \end{pmatrix} \times \begin{pmatrix} \dot{x}^1 \\ \dot{x}^2 \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \\ x^1 \dot{x}^2 - x^2 \dot{x}^1 \end{pmatrix}$$

In other words, Noether's Theorem tells us:

 $rotational\ symmetry\ \iff\ conservation\ of\ angular\ momentum$