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Based on the notes by Jelle Hartong, Chapter 7

1 Mapping Between Functionals

1.1 Definition: Diffeomorphisms

A C2 diffeomorphism is a mapping:

φ : Rn → Rn

satisfying:

1. φ ∈ C2

2. ∃φ−1

3. φ−1 ∈ C2

• How does applying diffeomorphismsm affect the extremising functions for the action?

– consider the action:

I[x] =

ˆ 1

0

L(x, ẋ, t)dt

for a regular C2 curve:

x : [0, 1] → Rn x(0) = P x(1) = Q

– if x extremises I, consider the new path:

y = φ ◦ x = φ(x(t))

between points φ(P ) and φ(Q) (since φ ∈ C2 so it’s continuous)

– if L had been the arclength, then x would be a straight line

– however, for most choices of φ, y would almost certainly not be a straight line, so y will not
extremise I

P

Q

x

φ(P )

φ(Q)

y = φ ◦ x
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– however, diffeomorphisms become extremely useful if, after being applied, they still extremise
the functional - this is the basis of Noether’s Theorem

1.2 Lemma: Extremising Actions Under Diffeomorphisms

Let:

I[x] =

ˆ 1

0

K(x, ẋ, t)dt J [y] =

ˆ 1

0

L(y, ẏ, t)dt

such that:
K(x, ẋ, t) = L(y, ẏ, t)

where:
y = φ ◦ x

and φ is a C2 diffeomorphism.
Then, x extremises I if and only if y = φ ◦ x extremises J .
In other words, φ sets up a bijective correspondence between extremals of I
and extremals of J .
(Lemma 7.1)

Proof. We have that:

K(x, ẋ, t) = L(y, ẏ, t) = L

(
φ(x(t)),

d

dt
φ(x(t)), t

)
We first need to compute an expression for ẏ in terms of x. This will be the total derivative

ẏ(t) =
d

dt
φ(x(t)) = Dφ(x(t))ẋ(t)

where the jth component is given by:

ẏj =

n∑
k=1

∂φj

∂xi

d

dt
xi =

n∑
k=1

∂φj

∂xk
ẋk

(this follows by the fact that φj depends on t through each of its n variables xk)
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We know that the total derivative is a linear map. In fact, in a given
coordinate system, the total derivative can be shown to be the Jacobian
Matrix:

Dφ(x(t)) =


(∇φ1)

T

(∇φ2)
T

...

(∇φn)T

 =


∂φ1

∂x1
∂φ1

∂x2 . . . ∂φ1

∂xn

∂φ2

∂x1
∂φ2

∂x2 . . . ∂φ2

∂xn

...
...

. . .
...

∂φn

∂x1
∂φn

∂x2 . . . ∂φn

∂xn


We can indeed see that ẏ = Dφ(x(t))ẋ, since:

ẏj =
n∑

k=1

∂φj

∂xk
ẋk

Most importantly, Dϕ(x(t)) will be invertible.

Hence, we can compute the Euler-Lagrange Equation for K by using the RHS. For a given variable xi:

0 =
d

dt

∂K

∂ẋi
− ∂K

∂xi

=
d

dt

∂L

∂ẋi
− ∂L

∂xi

Now, since φ is a vector field, each of its components is a function φj which itself can depend on xi. Moreover,
ẏj also depend on xi. Hence, we get that:

∂L

∂xi
=

n∑
j=1

(
∂L

∂yj
∂yj

∂xi
+

∂L

∂ẏj
∂ẏj

∂xi

)

=

n∑
j=1

[
∂L

∂yj
∂φj

∂xi
+

∂L

∂ẏj
∂

∂xi

(
n∑

k=1

∂φj

∂xk
ẋk

)]

=

n∑
j=1

[
∂L

∂yj
∂φj

∂xi
+

∂L

∂ẏj

(
n∑

k=1

∂2φj

∂xi∂xk
ẋk

)]
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This can get messy, so an alternative is to use Einstein’s Summation
Notation, whereby if a “dummy variable” appears twice, we can infer
that there is summation over said variable. In other words, we can write:

n∑
j=1

[
∂L

∂yj
∂φj

∂xi
+

∂L

∂ẏj

(
n∑

k=1

∂2φj

∂xi∂xk
ẋk

)]

=
n∑

j=1

[
∂L

∂yj
∂φj

∂xi

]
+

n∑
j,k=1

[
∂L

∂ẏj
∂2φj

∂xi∂xk
ẋk

]
as:

∂L

∂yj
∂φj

∂xi
+

∂L

∂ẏj
∂2φj

∂xi∂xk
ẋk

However, I personally find this more confusing, so I’ll continue using the
full notation, alongside brackets.

Moreover, L only depends on ẋi through ẏ so:

∂L

∂ẋi
=

n∑
j=1

∂L

∂ẏj
∂ẏj

∂ẋi

=

n∑
j=1

∂L

∂ẏj
∂

∂ẋi

(
n∑

k=1

∂φj

∂xk
ẋk

)

=

n∑
j=1

∂L

∂ẏj
∂φj

∂xi
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Thus, the Euler-Lagrange Equation for K becomes:

0 =
d

dt

∂K

∂ẋi
− ∂K

∂xi

=
d

dt

∂L

∂ẋi
− ∂L

∂xi

=
d

dt

 n∑
j=1

∂L

∂ẏj
∂φj

∂xi

−
n∑

j=1

[
∂L

∂yj
∂φj

∂xi
+

∂L

∂ẏj

(
n∑

k=1

∂2φj

∂xi∂xk
ẋk

)]

=

n∑
j=1

[
d

dt

(
∂L

∂ẏj
∂φj

∂xi

)
− ∂L

∂yj
∂φj

∂xi
− ∂L

∂ẏj

(
n∑

k=1

∂2φj

∂xi∂xk
ẋk

)]

=

n∑
j=1

[(
d

dt

(
∂L

∂ẏj

)
∂φj

∂xi
+

∂L

∂ẏj
d

dt

(
∂φj

∂xi

))
− ∂L

∂yj
∂φj

∂xi
− ∂L

∂ẏj

(
n∑

k=1

∂2φj

∂xi∂xk
ẋk

)]

=

n∑
j=1

[
∂φj

∂xi

(
d

dt

(
∂L

∂ẏj

)
− ∂L

∂yj

)
+

(
∂L

∂ẏj
d

dt

(
∂φj

∂xi

))
− ∂L

∂ẏj

(
n∑

k=1

∂2φj

∂xi∂xk
ẋk

)]

=

n∑
j=1

[
∂φj

∂xi

(
d

dt

(
∂L

∂ẏj

)
− ∂L

∂yj

)
+

∂L

∂ẏj

(
d

dt

(
∂φj

∂xi

)
−

n∑
k=1

∂2φj

∂xi∂xk
ẋk

)]

=

n∑
j=1

[
∂φj

∂xi

(
d

dt

(
∂L

∂ẏj

)
− ∂L

∂yj

)
+

∂L

∂ẏj

(
n∑

k=1

∂2φj

∂xk∂xi
ẋk −

n∑
k=1

∂2φj

∂xi∂xk
ẋk

)]

=

n∑
j=1

[
∂φj

∂xi

(
d

dt

(
∂L

∂ẏj

)
− ∂L

∂yj

)]
, since φ ∈ C2, so by continuity

∂2φj

∂xi∂xk
=

∂2φj

∂xk∂xi

But we saw,
n∑

j=1

∂φj

∂xi
□

represents a transformation of a vector by applying the Jacobian to it. This is saying that the Jacobian

times the vector with components d
dt

(
∂L
∂ẏj

)
− ∂L

∂yj gives the 0 vector. Since the Jacobian is invertible, this

implies that:

n∑
j=1

[
∂φj

∂xi

(
d

dt

(
∂L

∂ẏj

)
− ∂L

∂yj

)]
= 0 ⇐⇒ ∀j ∈ [1, n],

d

dt

(
∂L

∂ẏj

)
− ∂L

∂yj
= 0

In other words, x satisfies the Euler-Lagrange Equations for the Lagrangian K if and only if y satisfies the
Euler-Lgrange Equations for the Lagrangian L, as required.

1.3 Symmetries of the Lagrangian

• When is a diffeomorphism a symmetry of a Lagrangian?

– when φ is such that:
y = φ(x(t)) =⇒ L(x, ẋ, t) = L(y, ẏ, t)

– we say that L is invariant under φ

– if φ is a symmetry, then it maps extrema to extrema

Page 6



• Why are the Euler-Lagrange equations true in any coordinate system?

– we can think of diffeomorphisms as mapping x into another coordinate system y

– but if L is invariant under φ, changing the coordinate system doesn’t affect the Lagrangian, or
the Euler-Lagrange Equations

– thus, the Euler-Lagrange Equations will apply in any coordinate system

It is important to note the logical direction of this Lemma: if the La-
grangians are equal under diffeomorphism then the extremals of the La-
grangian will agree under the transformation φ.
This does not mean that if φ maps between extrema of 2 Lagrangians,
then the φ will be a symmetry.

2 Noether’s Theorem (Version 1)

2.1 Definition: One-Parameter Subgroup of Diffeomorphisms

Consider a one-parameter family:

φs : Rn → Rn, ∀s ∈ R

of C2 diffeomorphisms. These depend differentiably on s.
These form a subgroup of the diffeomorphism group, via function
composition, where:

1.
φ0(x) = x, ∀x ∈ Rn

2.
φs ◦ φt = φs+t, ∀s, t ∈ R

The properties of the diffeomorphism immediately give us the group structure, where the identity if:

φ0 ◦ φs = φs = φs ◦ φs

the inverse is in the subgroup:
(ϕs)

−1 = ϕ−s

and the elements are associative (since function composition is associative).
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2.2 Theorem: Noether’s Theorem (I)

Let:

I[x] =

ˆ 1

0

L(x, ẋ, t)dt

be an action for regular curves:

x : [0, 1] → Rn

and let L be invariant under a one-parameter group of diffeomor-
phisms {φs} (the family is known as a continuous symmetry).
Then, the Noether charge:

N(x, ẋ, t) =
n∑

i=1

∂L

∂ẋi

∂φi
s(x)

∂s

∣∣∣∣∣
s=0

is conserved; that is, along extrema of I:

dN

dt
= 0

(Theorem 7.2)

Proof. Let x(t) be a solution to the Euler-Lagrange Equation for L. Then, by the above Lemma, y(s, t) =
φs ◦ x(t) also satisfies the Euler-Lagrange Equations:

∂L

∂yi
=

d

dt

∂L

∂ẏi

Moreover, by assumption, L is invariant under φs for all s ∈ R, so it doesn’t depend on s. Thus:

0 =
dL

ds
=

n∑
i=1

(
∂L

∂yi
∂yi

∂s
+

∂L

∂ẏi
∂ẏi

∂s

)
Using the Euler-Lagrange Equation thus implies that:

0 =

n∑
i=1

(
d

dt

(
∂L

∂ẏi

)
∂yi

∂s
+

∂L

∂ẏi
∂ẏi

∂s

)
But now notice that:

d

dt

(
∂L

∂ẏi
∂yi

∂s

)
=

d

dt

(
∂L

∂ẏi

)
∂yi

∂s
+

∂L

∂ẏi
d

dt

(
∂yi

∂s

)
=

d

dt

(
∂L

∂ẏi

)
∂yi

∂s
+

∂L

∂ẏi
∂

∂s

(
ẏi
)

=
d

dt

(
∂L

∂ẏi

)
∂yi

∂s
+

∂L

∂ẏi
∂ẏi

∂s
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where we have used the fact that y is twice continuously differentiable, so we can exchange the order of
differentiation.

Hence we have that:

0 =
d

dt

(
n∑

i=1

∂L

∂ẏi
∂yi

∂s

)
Now, if we evaluate the above expression at s = 0, we get that y = φ0(x(t)) = x(t), so:

0 =
d

dt

(
n∑

i=1

∂L

∂ẏi
∂yi

∂s

)∣∣∣∣∣
s=0

=
d

dt

(
n∑

i=1

∂L

∂ẋi

∂φi
s(x)

∂s

)∣∣∣∣∣
s=0

=
dN

dt

as required

3 Exercises

1. Show that the family {φs} defines a group of transformation isomorphic to (R,+).

2. Consider the Lagrangian:

L =
1

2
m∥ẋ∥2 − V (x)

for plane curves:
x : [0, 1] → R2

Assume that the potential V only depends on ∥x∥. Show that L is invariant under the
one-parameter symmetry group:

φs : R2 → R2

defined by:

φs(x) =

x1 cos(s)− x2 sin(s)

x1 sin(x) + x2 cos(s)


Find the expression for the Noether charge associtated to this symmetry.

We begin by showing that L is invariant under φs. We have that:

ẏi(s, t) =
∂φi

s

∂x1
ẋ1 +

∂φi
s

∂x2
ẋ2

so:
ẏ1(s, t) = ẋ1 cos(s)− ẋ2 sin(s)

ẏ2(s, t) = ẋ1 sin(s) + ẋ2 cos(s)

Hence:

∥ẏ∥2 = (ẋ1 cos(s)− ẋ2 sin(s))2 + (ẋ1 sin(s) + ẋ2 cos(s))2

= (ẋ1)2 cos2(s)− 2 sin(s) cos(s)ẋ1ẋ2 + (ẋ2)2 sin2(s) + (ẋ2)2 cos2(s) + 2 sin(s) cos(s)ẋ1ẋ2 + (ẋ1)2 sin2(s)

= (ẋ1)2 + (ẋ2)2

= ∥ẋ∥2

Page 9



Moreover:

∥y∥2 = (x1 cos(s)− x2 sin(s))2 + (x1 sin(x) + x2 cos(s))2

= (x1 cos(s)− x2 sin(s))2 + (x1 sin(s) + x2 cos(s))2

= (x1)2 cos2(s)− 2 sin(s) cos(s)x1x2 + (x2)2 sin2(s) + (x2)2 cos2(s) + 2 sin(s) cos(s)x1x2 + (x1)2 sin2(s)

= (x1)2 + (x2)2

= ∥x∥2

In other words:

L(y, ẏ, t) =
1

2
m∥ẏ∥2 − V (∥y∥)

=
1

2
m∥ẋ∥2 − V (∥x∥)

= L(x, ẋ, t)

Hence, L is invariant under φs. In particular, φs represent a series of rotations, which means that L is
invariant under rotations; that is, paths extremising I will be rotationally symmetric.

We now seek to find Noether’s charge. We have:

φ1
s = x1 cos(s)− x2 sin(s)

φ2
s = x1 sin(s) + x2 cos(s)

so:
∂φ1

s

∂s
= −x1 sin(x)− x2 cos(s)

∂φ2
s

∂s
= x1 cos(x)− x2 sin(s)

Moreover, if we take the partial derivative of L with respect to ẋi, we don’t need to consider V , since it
only depends on ∥x∥. Hence:

∂L

∂ẋi
= mẋi

Thus, by Noether’s Theorem:

N =
∂L

∂ẋ1

∂φ1
s

∂s
+

∂L

∂ẋ2

∂φ2
s

∂s

∣∣∣∣
s=0

= mẋ1(−x1 sin(x)− x2 cos(s)) +mẋ2(x1 cos(x)− x2 sin(s))
∣∣
s=0

= m(x1ẋ2 − ẋ1x2)

The angular momentum of an object with mass m, position x and velocity v is defined by:

L = m(x× v)

where × denotes the vector cross product. If we compute the angular momentum for this particle:

L = m


x1

x2

0

×


ẋ1

ẋ2

0



=


0

0

x1ẋ2 − x2ẋ1


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In other words, Noether’s Theorem tells us:

rotational symmetry ⇐⇒ conservation of angular momentum
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