Variational Calculus - Week 5 - Introduction to Noether’s Theorem

Antonio Ledén Villares

October 2022

Contents

1 Mapping Between Functionals 2
1.1 Definition: Diffeomorphisms . . . . . . . . . . . . . 2
1.2 Lemma: Extremising Actions Under Diffeomorphisms . . . . . ... .. ... ... ... ... 3
1.3 Symmetries of the Lagrangian . . . . . . . . . . . . . . . ... 6

2 Noether’s Theorem (Version 1) 7
2.1 Definition: One-Parameter Subgroup of Diffeomorphisms . . . . . ... ... ... ... ... 7
2.2 Theorem: Noether’s Theorem (I) . . . . . . . . ... . . ... 8

3 Exercises 9



Based on the notes by Jelle Hartong, Chapter 7

1 Mapping Between Functionals

1.1 Definition: Diffeomorphisms

A C? diffeomorphism is a mapping:
¢ R" - R"
satisfying:
1. pe(C?
2. o1
3. o leC?

e How does applying diffeomorphismsm affect the extremising functions for the action?
— consider the action: )
Iz] = /0 L(z,&,t)dt
for a regular C? curve:
z:[0,1] = R" z(0)=P z(1)=Q
— if x extremises I, consider the new path:
y=poz=p(t)

between points ¢(P) and ¢(Q) (since ¢ € C? so it’s continuous)

— if L had been the arclength, then z would be a straight line

— however, for most choices of ¢, y would almost certainly not be a straight line, so y will not
extremise [
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— however, diffeomorphisms become extremely useful if, after being applied, they still extremise
the functional - this is the basis of Noether’s Theorem

1.2 Lemma: Extremising Actions Under Diffeomorphisms

Let: . .
Mo = | K@aod = [ Diod
0 0
such that:
K(z,z,t) = L(y,y,1)
where:

y=ypozx

and ¢ is a C? diffeomorphism.
Then, z ertremises I if and only if y = p oz extremises J.
In other words, ¢ sets up a bijective correspondence between extremals of I

and extremals of J.
(Lemma 7.1)

Proof. We have that:

. . d
K(e2:0) = L) = £ (lz(0). folalt).
We first need to compute an expression for j in terms of z. This will be the total derivative

y(t) = %w(g(t)) = Do) &(t)

where the jth component is given by:
n
y =
k=1

a@j iz = 890j .k

o dt . L gk
k=1

(this follows by the fact that ¢’/ depends on ¢ through each of its n variables x*)
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We know that the total derivative is a linear map. In fact, in a given
coordinate system, the total derivative can be shown to be the Jacobian

Matrix:

1 T awl aLPI 8(,01

(V') 5T 9 oam

T 82 8o B

D (VSO ) . oxl  9xz2 °°°  Oxn

w(a(t)) = : : .

T dp"  dpm D"

(VQO ) Oxl Ox2 ox™

Most importantly, Dy.()) will be invertible.

Hence, we can compute the Euler-Lagrange Equation for K by using the RHS. For a given variable x:

_ dOK 0K
T dtdit Ot
doL 9L
T dtdit Ot

Now, since ¢ is a vector field, each of its components is a function ¢’ which itself can depend on z*. Moreover,
17 also depend on z*. Hence, we get that:

Loy, oL oy
oyl dxt  OyI Ozt

dLag oL 9 (o,
— Oy Oxt  OyI Oxt Pt Oxk

J
OL Oy OL (§~ 890 4
yl Oxt  Oyd Pt OxtOxk

oL
ozt

M= T1-

|
3l

j=1
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This can get messy, so an alternative is to use Einstein’s Summation
Notation, whereby if a “dummy variable” appears twice, we can infer
that there is summation over said variable. In other words, we can write:

" (oL oy oL (< 0%
> |ohoe 2L (5 Do
Oyl dxt  Oyd P oxioxk

j=1
K [0L O] N[O P,
=2 oy ] P> e

as: , :
Ao oL O,
oyl Oxt Oy Qxioxk
However, I personally find this more confusing, so I'll continue using the
full notation, alongside brackets.

Moreover, L only depends on & through gy so:

OL <~ OL 0y’
ox > Ayl 9t
B z”: L 0 (=09 4
N = Oy 0t P Oxk
o Loy
= oyd Oxt
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Thus, the Euler-Lagrange Equation for K becomes:
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=

0%

(

Lo (d
8y3 dt
_|_
oy ( =1

g
P Oxkoxt

Oxioxk

oL &pﬂ

))
)%

0’
ozt

O’
ox’

027
Ozioxk

0%’

-k

g

"
g2

)

8L

oL
a9

82 7Y

srse)
)

0%’
Ozioxk

3290j ik
Ozioxk
_ 82<Pj ik
— Ozi0xk
%) Py
Ozidxk  Ozkoxt

But we saw,
n )
Y
0
oz’

Jj=1

represents a transformation of a vector by applying the Jacobian to it. This is saying that the Jacobian

times the vector with components = (gyLJ) — === gives the 0 vector. Since the Jacobian is invertible, this
implies that:
n .
0y’ oL oL d (0L oL
A —— ]| =0 <= Vje|l — == ) —-—=—==0
Z[axl ( (ayﬂ> 8yﬂ>} j el dt (83)3) y

J=1

In other words, z satisfies the Euler-Lagrange Equations for the Lagrangian K if and only if y satisfies the
Euler-Lgrange Equations for the Lagrangian L, as required.
O

1.3 Symmetries of the Lagrangian

e When is a diffeomorphism a symmetry of a Lagrangian?

— when ¢ is such that:

y=¢(z(t) = L(z,2t)= Ly, 9,t)

— we say that L is invariant under ¢

— if ¢ is a symmetry, then it maps extrema to extrema
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e Why are the Euler-Lagrange equations true in any coordinate system?

— we can think of diffeomorphisms as mapping x into another coordinate system y

— but if L is invariant under ¢, changing the coordinate system doesn’t affect the Lagrangian, or
the Euler-Lagrange Equations

— thus, the Euler-Lagrange Equations will apply in any coordinate system

It 1s important to note the logical direction of this Lemma: if the La-
grangians are equal under diffeomorphism then the extremals of the La-
grangian will agree under the transformation .

This does not mean that if ¢ maps between extrema of 2 Lagrangians,
then the ¢ will be a symmetry.

2 Noether’s Theorem (Version 1)

2.1 Definition: One-Parameter Subgroup of Diffeomorphisms

Consider a one-parameter family:
s : R" — R" Vs e R

of C? diffeomorphisms. These depend differentiably on s.

These form a subgroup of the diffeomorphism group, via function
composition, where:

1.
wo(z) =z, Vz e R"

Ps O Pt = Psit, Vs,teR

The properties of the diffeomorphism immediately give us the group structure, where the identity if:

P0oOPs = Ps = Ps O Ps

the inverse is in the subgroup:
(st)il = ¢—s

and the elements are associative (since function composition is associative).
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2.2 Theorem: Noether’s Theorem (I)

Let: .
I[z] = / L(z, &, t)dt
0

be an action for regular curves:
z:[0,1] - R"

and let L be invariant under a one-parameter group of diffeomor-
phisms {¢,} (the family is known as a continuous symmetry).
Then, the Noether charge:

: OL 0 (z
Nz &,t)= ) 5= %2 )

i=1

s=0
1s conserved, that is, along extrema of I:

dN
o

(Theorem 7.2)

Proof. Let x(t) be a solution to the Euler-Lagrange Equation for L. Then, by the above Lemma, y(s,t) =

s o z(t) also satisfies the Euler-Lagrange Equations:

oL  d oL
dyt  dt Oyt

Moreover, by assumption, L is invariant under ¢, for all s € R, so it doesn’t depend on s. Thus:
dL OL 0yt OL 0y°
0= E < 9y + — J )
ds — oyt ds ~ 0y* Os
Using the Euler-Lagrange Equation thus implies that:

z”: ay N L oy
— dt 8y oyt Os

=1

d (OLOy'\ _d (OL\ oy OLd
dt \ oyt 9s ) dt \Oy') 0s = Oyidt
/ 0

But now notice that:

_d (9L dy'  OL ;
Uu(ayz‘) ds 8@7’83( )
_d (0L 9y* OL 9y’
Tt (ayi) ds | 9y Os
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where we have used the fact that y is twice continuously differentiable, so we can exchange the order of
differentiation.

Hence we have that:

o (L)

Now, if we evaluate the above expression at s = 0, we get that y = @o(z(t)) = z(t), so:
oL 0y*
0= —
dt (Z oyt Os >

B oL &pé
o dt ~ ozt

_ N
dt

| =

as required

3 Exercises

1. Show that the family {y;} defines a group of transformation isomorphic to (R, +).

2. Consider the Lagrangian:
I
L= omlz]* - V(z)
for plane curves:
z:[0,1] — R?

Assume that the potential V only depends on ||z|. Show that L is invariant under the
one-parameter symmetry group:
ps : R? = R?
defined by:
x! cos(s) — 22 sin(s)
ps(z) =

xlsin(z) + 22 cos(s)

Find the expression for the Noether charge associtated to this symmetry.

We begin by showing that L is invariant under ;. We have that:

i 9% .1, O P2
X2 t — S
§(s,1) 8x1x T o”
so:
9t (s,t) = @' cos(s) — 2 sin(s)
(s, t) = ' sin(s) + @2 cos(s)
Hence:

9]1? = (&' cos(s) — &% sin(s))? + (&' sin(s) + 22 cos(s))?

= (212 cos?(s) — 2sin(s) cos(s)ita? + (42)%sin’(s) + (22)2 cos?(s) + 2sin(s) cos(s)itd? + (1) sin?(s)

= (')% + (%)

= |12
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Moreover:

2 4 (2! sin(z) + 22 cos(s))?

) )
= (2" cos(s) — x?sin(s))? + (2! sin(s) 4+ 2% cos(s))?
= (212 cos?(s) — 2sin(s) cos(s)zlz? + (22)%sin’(s) + (22)2 cos?(s) + 2sin(s) cos(s)ztz? + (z1)? sin?(s)
— (1'1)2 =+ (1'2)2

= ||z|I?

lyl* = (a cos(s) — 2 sin(s)

In other words:

. 1 .
L(y,y,t) = §m||g|\2 = V(llyll)
1 .
= §m||£||2 = V(|lz]l)
= L(z,&,1)

Hence, L is invariant under ¢ . In particular, ¢, represent a series of rotations, which means that L is
invariant under rotations; that is, paths extremising I will be rotationally symmetric.

We now seek to find Noether’s charge. We have:

@l = 2t cos(s) — x?sin(s)

©? = ' sin(s) + 22 cos(s)
so: 9!
(,;05 = —2!'sin(z) — 2% cos(s)
s
o2
(;05 = 2! cos(z) — 2% sin(s)
s

Moreover, if we take the partial derivative of L with respect to &%, we don’t need to consider V, since it
only depends on ||z||. Hence:

oL .,
o
Thus, by Noether’s Theorem:
_ OL 0y,  OL 0y
ot 0s  0i? Os |,_,

= ma'(—x!sin(z) — 22 cos(s)) + mi?(z! cos(x) — 2% sin(s))

= m(z'i? — i'z?)

|s:0
The angular momentum of an object with mass m, position z and velocity v is defined by:

L=m(z xv)

where x denotes the vector cross product. If we compute the angular momentum for this particle:

L=m]z?| x| 32
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In other words, Noether’s Theorem tells us:

rotational symmetry <= conservation of angular momentum
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