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Based on the notes by Jelle Hartong, Chapter 4

1 The Newtonian Universe

1.1 Definition: Affine Spaces

An affine space for the vector space Rn is a space An on which Rn

acts freely and transitively.
That is, there is a map Rn × An → An on An such that:

(v, a) 7→ v + a, v ∈ Rn, a, v + a ∈ An

and satisfying the following properties:

1. Identity
∀a ∈ An, 0 + a = a

2. Associativity

∀v, w ∈ Rn, ∀a ∈ An v + (w + a) = (v + w) + a

3. Free Action
v + a = a ⇐⇒ v = 0

4. Transitivity

∀a, b ∈ An, ∃!v ∈ Rn : b = a+ v

• How does an affine space differ from a normal vector space?

– addition is not defined in An (our operation only includes actions of Rn on An)

– however, differences are defined, since:

b− a = v ∈ R3

where v is the unique vector satisfying transitivity:

b = a+ v

– an affine space has no origin (this is the reason for why addition is not defined: unless there is
an origin, we don’t have ways of “comparing” and manipulating elements in An)

• How can a vector space be recovered from an affine space?

– once we define a ∈ An as an origin, then any other point b ∈ An can be defined by v ∈ Rn

uniquely

– thus, we obtain Rn back, but with origin a

• How are subspaces defined in affine spaces?

– an affine subspace is a set of points a, b ∈ An such that b− a defines a subspace of Rn
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1.2 The Newtonian Universe

• What is a Newtonian Universe?

– an affine space A4 over the vector space R× R3, but with additional structure

– R corresponds to a time dimension

– R3 corresponds to a space dimension

– we require it to be an affine space, since space itself doesn’t have an “origin”

– an element a ∈ A4 is an event

• What additional structure defines a Newtonian Universe?

– Time Interval: there is a linear map:

τ : R4 → R

defining a time interval between 2 events a = (t, a), b = (t′, b) ∈ A4 via:

τ(b− a) = |t′ − t|

2 events a, b ∈ A4 are simulatenous if:

τ(b− a) = 0

– Distance: we can define the distance between 2 simultaneous events by the Euclidean norm:

ρ(b− a) = ∥b− a∥

Notice, the notion of distance for non-simultenous events isn’t defined (can’t compare between
past and present events)

– a Newtonian Universe can then be regarded as the triple:

(A4, τ, ρ)

• What is the kernel of the time interval mapping τ?

– this will be the set of all simultaneous events:

kerτ = {b− a | τ(b− a)}

– but b− a ∈ R3, so kerτ is spanned by vectors in R3, so it will be a subspace of R4, isomorphic
to R3:

kerτ ∼= R3

– it is this property that allows us to define ρ as an Euclidean distance, since it is just a standard
property of R3

• What is a worldline?

– consider a particle in the Newtonian Universe

– its wordline is the path it follows over time

– this is curve, a subset of the universe, defined by:

{(t, x(t) | t ∈ R}

– we assume that x is twice-differentiable, such that:
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∗ x is the position of the particle

∗ ẋ is the velocity of the particle

∗ ẍ is the acceleration of the particle
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2 Galilean Relativity

2.1 Definition: Affine Homomorphisms

Consider a linear transformation between vector spaces V,W :

T : V → W

A mapping f is an affine homomorphism, if for 2 affine spaces An, Bn

(defined over V,W respectively), we have that:

T (b− a) = f(b)− f(a), a ∈ An, b ∈ Bn

is a well-defined linear map.
Here notice that b− a ∈ V and f(b)− f(a) ∈ W .
Since An is affine, ∃!v ∈ V such that:

b = a+ v

so:
T (b− a) = f(b)− f(a) =⇒ f(a+ v) = f(a) + T (v)

2.2 Definition: Affine Automorphisms

An affine automorphism (or affine transformation) is an affine
homomorphism mapping points in An to itself:

f : An → An

such that the following is a well-defined map:

T (b− a) = f(b)− f(a), a, b ∈ An

Now, since f(a) ∈ An, it follows that ∃!ṽ ∈ V such that:

f(a) = a+ ṽ

Similarly, we know that b = a+ v.
Thus we have:

f(a+ v) = a+ ṽ + T (v)

But if we take a to be the origin we get that a + v = v ∈ An and a + ṽ = ṽ
and:

f(v) = ṽ + T (v)

In other words, affine automorphisms, are defined by a linear trans-
formation T and a translation ṽ.
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2.3 The Galilean Group

• What is a relativity group?

– a group of transformation on the universe

– they preserve the structure endowed to the universe

• What is a Galilean group?

– it is the relativity group of the Newtonian Universe

– it is the subgroup of affined transformations of R × R3 which preserves the structure of the
Newtonian Universe. In other words, if f is an affine transformation, then:

∗ time intervals between events are invariant:

τ(b− a) = τ(f(b)− f(a))

∗ distances between simulateneous events are invariant:

ρ(b− a) = ρ(f(b)− f(a))

• What elements are part of the Galilean group?

– let p, ṽ ∈ R4 and T ∈ R4×4:

p =

t

x

 , t ∈ R, x ∈ R3

ṽ =

s

a

 , s ∈ R, a ∈ R3

T =

α wT

v L

 , α ∈ R, w, v ∈ R3

then our affine transformation:
f(v) = ṽ + T (v)

can be interpreted as:
v 7→ v̂

where:

v̂ =

α wT

v L

t

x

+

s

a

 =

αt+ wTx+ s

vt+ Lx+ a


– now consider the affine transformation of a second point q ∈ R4:t′

x′

 7→

 t̂′

x̂′

 =

αt′ + wTx′ + s

vt′ + Lx′ + a


– if we want to preserve time intervals, let |t′ − t| = γ, and consider:

|t̂′ − t̂| = |(αt′ + wTx′ + s)− (αt+ wTx+ s)|
= |α(t′ − t) + wT (x′ − x)|

=⇒ |t̂′ − t̂| = γ ⇐⇒ α = ±1, w = 0
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– if we want to preserve distance, let p, q be simultaneous events, so that |t′ − t| =, and let
∥x′ − x∥ = η. Consider:

∥x̂′ − x̂∥2 = (x̂′ − x̂)T (x̂′ − x̂)

= ((vt′ + Lx′ + a)− (vt+ Lx+ a))T ((vt′ + Lx′ + a)− (vt+ Lx+ a))

= (v(t′ − t) + L(x′ − x))T (v(t′ − t) + L(x′ − x))

= (L(x′ − x))T (L(x′ − x))

= (x′ − x)LTL(x′ − x)

=⇒ ∥x̂′ − x̂∥2 = η2 ⇐⇒ LTL = I

In other words, for distance invariance, we require that L be an orthogonal matrix, and det(L) =
det(L)det(LT ) = det(L)2 = 1 =⇒ det(L) = ±1.

• How does the sign of α and det(L) change the transformations in the Galilean group?

– whilst we showed that the Galilean group is composed of transformations with:

α = ±1 det(L) = ±1

in practice we only use:
α = 1 det(L) = 1

– if α = −1, we allow for the transformation to reverse the direction of time

– if det(L) = −1, then L becomes a reflection about the origin

– if det(L) = 1, then L becomes a rotation

∗ L will have a real eigenvalue 1, whose eigenvector will be the axis of ratoation, and 2 imaginary
eigenvalues ±λ, which determine the angle of rotation

∗ we can thus write L = R

∗ R ∈ SO(3), the group of 3× 3 orthogonal matrices with unit determinant

• What are the elementary Galilean transformations?

– the Galilean Group is a Lie Group defining transformations of the form:t

x

 7→

 t̂

x̂

 =

1 0T

v R

t

x

+

s

a

 =

 t+ s

vt+Rx+ a


– every such Galilean transformation can be written uniquely as the composition of 3 Elementary

Galilean Transformations:

1. Translation in Space and Time t

x

 =

 t+ s

x+ a


2. Rotation in Space t

x

 =

 t

Rx


3. Galilean Boost t

x

 =

 t

x+ tv


• Why is time absolute in a Newtonian universe?

– because the time difference between events is invariant under a Galilean transformation
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3 Frames of Reference

• What is a free particle?

– a particle which moves without the influence of external forces

This is a bad definition, since we don’t define these “external forces”, but
delving into it requires differential geometry and is beyond the scope of the
course.
More accurately, a free particle is a particle which follows a geodesic
with respect to an appropriate “connection” on a Newtonian universe,
where a “connection” is a concept from differential geometry.

• What is a frame of reference?

– a coordinate system defined for an observer

– the observer can then make measurements (or observations) of its environment relative to its
frame of reference

• What is an inertial frame of reference?

– a frame of reference in which Newton’s Second Law holds true: if no external force is
applied on a body, it will not accelerate (so either it remains at rest or continues in uniform
motion)

• How does a free particle behave in an inertial frame of reference?

– a free particle has no external force applied; in an inertial frame of reference this means
that its equation of motion satisfies Newton’s Second Law, so:

ẍ = 0

– if we integrate twice, and let v denote the velocity of the free particle, then:

x(t) = x0 + tv x0 = x(0)

– hence, in an inertial frame of reference, a free particle moves along a straight line with
constant velocity

• How can we map between inertial frames of reference?

– if we apply a Galilean Transformation to an inertial frame of reference, then we will obtain
another inertial frame of reference

• When is a frame of reference non-inertial?

– when its observer undergoes acceleration

– for example, if the observer is in a rotating frame of reference, or if it is undergoing constant
acceleration
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Consider an inertial frame of reference defined by the standard
Cartesian coordinates:

(x, y, z, t)

Moreover, consider a rotating frame of reference defined by:

(x′, y′, z′, t)

These 2 coordinate systems are related via:

t′ = t

x′ = x cosωt+ y sinωt

y′ = −x sinωt+ y cosωt

z′ = z

The rotating coordinate system rotates about the common z-axis, with
constant angular velocity ω.
After some manipulation (see Exercises), we find that whilst a free parti-
cle in the inertial frame of reference is defined by:

ẍ = 0

in the rotating frame of reference we have:

ẍ′ = −w × (w × x′)− 2w × ẋ′

where w = (0, 0, ω).
Since ẍ′ ̸= 0, the free particle doesn’t follow a straight line from the point
of view of the rotating FOR: it will look as if there are fictitious forces
acting on the particle.
In fact, these are the centrifugal and coriolis forces:

F cen = −mw × (w × x′)

F cor = −2mw × ẋ′

where m will be the mass of the particle.

4 Newton’s Equation

4.1 Configuration Space

• What is a configuration space?

– consider a set of n particles, such that the Ith particle has a path defined by:

xI : R → R3

– the configuration space of this system is the n-fold Cartesian product:

R3 × . . .× R3

n
= R3n
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– the worldlines of each particle are represented as a single curve in the configuration space

– the configuration space is a manifold: a surface which locally ressembles Euclidean space

• What are generalised coordinates?

– the set of coordinates which define our configuration space

– the dimension of the configuration space is thus given by the number of generalised coordi-
nates (that is, the degrees of freedom)

• What is the configuration space for particles constrained to move on the surface of a
sphere, S3?

– we can parametrise such trajectories via spherical coordinates:

t 7→ (θ(t), φ(t))

– thus, the configuration space is a 2 dimensional manifold, where the generalised coordinates are
θ, φ

4.2 Defining Newtonian Mechanics: Newton’s Equation

• What is the determinacy assumption of Newtonian mechanics?

– the initial state of a mechanical system uniquely determines how the system evolves

– thus, the dynamics of the system are solely determined by knowing:

∗ all the generalised positions q

∗ all the generalised velocities q̇

at a given instance in time.

• What is Newton’s Equation?

The second order ODE:

q̈(t) = Φ(q(t), q̇(t), t)

is Newton’s Equation, where:

Φ : U → RN , U ⊂ RN × RN × R

The objective of Newtonian mechanics is determining Φ, as this allows
us to understand the dynamics of the system. However, we’ll have to solve
a system of N , second-order ODEs.

For example, in an inertial frame of reference, if we have a force
field (i.e gravity, electromagnetism) which doesn’t depend explicitly on
time, if we have a particle of inertial mass m, its motion is defined by:

mẍ = F (x, ẋ)
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• How can Newton’s Equation be reformulated in terms of first order ODEs?

– introduce a new function:
v : R → RN

via:
q̇ = v

– then Newton’s equation becomes a system of 2N first order ODEs:{
q̇ = v

v̇ = Φ(q, v, t)

• Why is it useful to convert Newton’s equation into a system of 2N ODEs?

– it implies that if Φ is sufficiently differentiable, there is a unique solution, given initial conditions
q(0), v(0), in some time interval

• What is a physical trajectory?

– the curve in state space of (q(t), v(t)) (assuming that q, v satisfy Newton’s equation)

4.3 Galilean Gravity

4.3.1 Definition: Galilean Gravity

Galilean gravity is a uniform gravitational force field, defined by:

F (q, q̇, t) =


0

0

−mg


(uniform since it is the same everywhere)
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If z(t) denotes the height of a body at time t, Newton’s equation tells us
that:

mz̈ = −mg

(the m in the LHS is the inertial mass, whilst the m in the RHS is the
gravitational mass. These are shown to be equivalent by the equiva-
lence principle).
Integrating twice:

v(t) = v0 − gt

z(t) = z0 + v0t−
1

2
gt2

Thus, the state space will be:

{(z, v) | z ≥ 0} ⊆ R2

(since we can’t pierce through the floor)
The physical trajectories of this system will be parabolae in state
space:

(z(t), v(t)) =

(
z0 + v0t−

1

2
gt2, v0 − gt

)
Explicitly:

v(t) = v0 − gt =⇒ t =
v − v0

g
so:

z = z0 + v0
v − v0

g
− 1

2
g
(v − v0)

2

g2
≥ 0

(z is a parabola in terms of v)
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• How does Galilean gravity differ from newton’s gravity?

– it only applies locally

– Newton’s universal law of gravitation showed that gravitational force as distance from Earth
increases

– under Galilean gravity, no matter the initial condition, an object always ends on the floor

– however, this isn’t what we observe empirically (i.e rockets are capable of breaking away from the
gravitational pull)

4.3.2 Einstein’s Thought Experiment

Einstein reasoned that a sufficiently locally, a gravitational field can’t be distinguished from a fictitious force.

To this regard, we have that Galilean gravity can’t actually be distinguished from a uniformly accelerating
frame of reference.

Consider an inertial frame of reference with coordinates (txty, z) and a non-inertial frame of reference
which accelerates uniformly (t, x′, y′, z′). These are related by:

t′ = t

x′ = x

y′ = y

z′ = z − 1

2
gt2

Now, a free particle in the inertial frame of reference has motion:

mz̈ = 0

However, in the accelerating frame of reference:

mz̈′ = −mg

which precisely defines the motion of the particle under Galilean gravity in the inertial frame of reference.

5 Exercises

1. Show that every Galilean transformation can be written as the composition of translations
in space and time, rotations and Galilean boosts.

2. Show that the force-free Newtonian equation ẍ = 0 is invariant under the group of Galilean
transformations. Furthermore, show that the Galilean transformations transform solutions
of ẍ = 0 into one another.

3. Show that in the rotating frame of reference defined by:

t′ = t

x′ = x cosωt+ y sinωt

y′ = −x sinωt+ y cosωt

z′ = z
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The motion of a free particle is defined by:

ẍ′ = −w × (w × x′)− 2w × ẋ′

where w = (0, 0, ω)

4. Assume that the force field F is independnet of the velocity of the praticle. Show taht
in this case, Newton’s equation is invariant under time reversel; that is, show that if x(t)
solves the equation, then so does:

x̄(t) = x(−t)

5. A particle of mass m is observed, from the point of view of an inertial frame, to be moving
in a circular trajectory:

x(t) = (R cosωt,R sinωt, 0)

where R,ω are positive constants. What is the force acting on the particle? You should
find that the force is equal in magnitude, and opposite in direction to the centrifugal force
discussed above. The force calculated here is called the centripetal force, and it points
inwards.
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