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Based on the notes by Jelle Hartong, Chapter 3

1 The Euler-Lagrange Equations (with endpoint-fixed variations)

1.1 The Action Functional
e What is the Lagrangian?

— a function of the form.
L:R*™!1 3R

such that:
(x7 ’U7 t) '_> L(x’ ,U7 t)

where:
z,v e R" teR

— in practice, we can think of x as a position, v = Z(t) as the velocity of x, and ¢ as a time parameter,
which parametrises z, &; in this way, the Lagrangian is a composition of functions:

t— L(z(t),z(t),t)
— the Lagrangian generalises to higher order derivatives:
L(z,&,&,...,1)
e What is the action?
— let P,Q € R", and let Cp ¢ be the space of C' (continuously differentiable) curves:
z:[0,1] - R"

such that:

— the action is a functional:

involving the Lagrangian:

1.2 The Euler-Lagrange Equation

The Euler-Lagrange equation allows us to derive an ODE which optimises the action.

The path x = (x',2%,...,2™) € Cp g optimising the action functional:

18 the solution to the set of differential equations:

o _doL
ort  dt Oit’

Vi € [1,n]
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Proof. Recall, a path x will be a critical point of I[z] if for all endpoint-fixed variations e:

d
% I[.’IJ—FSEHS:O =0

Assuming the Lagrangian is well-behaved, we can differentiate under the integral:

1
%I[m—i—ss]:/o %(L(x—i—ss,x'—«—sé,t))dt

Now, keep in mind that = 4 se, & + s¢ actually represent a set of 2n variables. Let ¢ = = + se. Thus, if we
apply the chain rule:

LT 5]—/1d(L( 1)dt
ds F T o ds ©

_/1 ai@+ +37qui+87[/@+ +87L@ dt
) 8q1 ds 7 Oqrds  O¢tds T O¢nds

/ <6Li aL )dt
S (e )

d iy
O:d—I[a?+5560 Z/ (6361 >dt

We would like to get rid of the £'. As we did last week we apply integration by parts for the dot product.

In particular, notice that:
d (0L ;\ _d (0L i+8L,i
at\oi- ) " dt \oii ) T oii-

O‘ZA (e + e ) o

-5 e i () - () )
—Z[axv il /01 (8337 i c(zi(amz) )
‘Z/ (o~ () ) <

where we have used the fact that:

But then:

SO:

so we have that:

e'(0)=¢(1) =0, Viel,n]
But now, by the Fundamental Lemma of Variational Calculus, it must be the case that:

oL d (0L .
aﬂ‘m(aﬂ)’ Vi€ lln]
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If we let the action be the arclength functional, then:
L(z,2,t) = ||Z|

so by Fuler-Lagrange:

oL _d (oL\ _ ,_4d i?
ort  dt \ i AN

as before.

2 The Euler-Lagrange Equations (with variations of free endpoints)

2.1 One Endpoint-Fixed Variation: Geodesic From Point to Curve
e What is a geodesic from a point to a curve?

— we consider the problem of finding the shortest path between a point P € R? and a curve C
defined in R?

— C can be described implicitly by:
g:R> >R

g(z) =0

— the geodesic will be a regular curve of the form:

z:[0,1] - R
satisfying:
z(0)=P z(l) e C <= g(x(1))=0
1
Xsh e C
.
Frxo®

|

¢ What condition must variations satisfy at the endpoint 17
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— recall, we had a family of curves:
x(s,t) x(s,0) =P z(s,1) € C = g(x(s,1)) =0

— we define the variation as:

which satisfies:
x(s,t) = x(t) + se(t) + sE(s,t)

— to know how the variation behaves at the endpoint, we can look at the derivative of g(z(s,1)) at
s =0 (since when s = 0, the family of curves collapses onto the “ideal” curve)

— thus, since g(z(s,1)) = 0 for any s, we must have:

=0
s=0

d

— 1

g(a(s,1))
— but recall the definition of the total derivative at a point g in the direction y:

Dy(a)(y) = J-gla+sy)
S0:

0= Ly(a(s,1)

2 = Dy(a(D)(E(W)],—o = (Vo (D). (1)

— in other words either:
*x e(1)=0
% £(1) is perpendicular to Vg at z(1), so (1) will be tangent to C' at z(1)

How does optimising the arclength change by including a variable endpoint?

— recall, when deriving the critical point for the arclength, we reached:

e £ G () e

— with fixed endpoints €(0) = ¢(1) = 0, the term:
. 1
i)
12117/ 1o

— now, all admissible variations are either 0 at the endpoints, or tangent to C' at x(1)

d

(Sl -+ s2)

disappeared

— if ¢(1) = 0, then we recover that the solution is:

7 (1)
- | 7T =0
dt \ [ ]|

that is, we expect the critical point to be a straight line

i (1) ¢
()

— since (1) = 0, we thus have:

so our expression gets reduced to:

d
= (Sle+s2))
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— however, the admissible ¢ must also satisfy £(1) being tangent to C so:

K”ie>L -0 = <ﬁ8§”75<1>> 0

We thus require that the line at (1) have a velocity which is orthogonal to £(1); in other words,
at t = 1, the geodesic x is perpendicular to C'

— thus, the geodesic joining a point to a curve will be the orthogonal line between the point and
the curve

2.2 Variable Endpoint Variations: Geodesic From Curve to Curve
e Can the variation at the endpoints also vary?
— we can consider the shortest path between 2 non-intersecting curves Cy, Cy
e What are the admissible variations when the endpoints can vary?

— following similar work as before, we get that:
% £(0) =0 or £(0) is tangent to Cy
* (1) =0 or £(1) is tangent to Cy

e How does the critical point for the arclength functional change with variable endpoints?

— we still get that £ must be a straight line
— however, we also have the boundary conditions:

x x(0) € Cy and z(0) is orthogonal to Cy
% x(1) € Cp and z(1) is orthogonal to C;

¢ What happens if the variable endpoints are defined by a hypersurface?

— consider 2 hypersurfaces in R™ (up to now the analysis had just been curves in R?)

— the same variational follows, and tells us that the shortest path in R™ between 2 hypersufaces are
straight lines which are normal to the hypersurface at their intersection

2.3 The Action Functional for Variable Endpoint Variations
e How do variable endpoints affect the critical point of the action functional?

— consider 2 regular hypersurfaces Cj, C; defined by:
go:R" =R go(z) =0
g :R" =R g1(z) =0
— recall, during our analysis for fixed endpoints we obtained:

Zn: aLEil—i—/l aLgi—i oL e )dt=0
oit” |, Jo \oxt~  dt \ 9! -

i=1

— with variations which vanish at the endpoints, we get that:

YroL , d (0L
/0 (8xi5 _dt<8d3i>€>dt_0

so the curve must satisfy the Euler-Lagrange equations
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— for the remaining admissible variations (with £(0) tangent to Cy and £(1) tangent to Cy) we
thus need to satisfy:

" 1oL ;)" " oL oL

— but if £(0) = 0, we must have:

so the vector:

AL
dan (1)

must be orthogonal to (1), and thus, must be orthogonal to C; at t =1

— similarly, if (1) = 0, we must have:

~ 9L
, ‘(0)=0
i 0)° V)
=1
then the vector:
AL
021(0)
oL
927 (0)
must be orthogonal to Cy at t =0
— if we use a different Lagrangian like L(x,%,...,t), then we will have the same Euler-Lagrange

Equation, but we will have to cancel the boundary terms, which will depend on the boundary
conditions of the problem itself
e Will the critical point curve pass through the hypersurfaces orthogonally?
— notice the above analysis requires that the vectors with terms g 7’;‘ must be orthogonal to the
hypersurfaces at the endpoints t =0, 1

oL
oz’

— hence, the critical point might not incide normally on the hypersurface

will be collinear with 4*

— however, it is not necessarily the case that

— for instance, if:
1. .
L=l ~ z,4)
then:
oL  (i,#)
Oz |||

— (&, &) — (x, &)

SO % isn’t collinear to ; hence, if g—é is orthogonal to the surface at the endpoints, the critical

point, which has derivative & won’t necessarily be orthogonal to the surface
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3 Lemma: Lagrangian Invariant Given a Time Derivative

Let:
F:RxR* =R

be a twice continuously differentiable function oft € R,z € R".
Further, assume we are given 2 Lagrangians:

L(z,&,t)  L'(z,,t)
related by:

D(a,,0) = Do, &,) + -5 F(a, 1)

Then, the Euler-Lagrange equations for the 2 Lagrangians will be the
same:

8L_i oL _8L’_i oL _0

ort  dt \oit) Oxt dt \9ii)

Proof. There are 2 ways of showing this. The first one will be more direct, but the second one will reveal
the true effect of adding the extra term to the Lagrangian.

@

We first note that by the chain rule:

d
— ]
il Z 81:3

Thus:

or' 0 , d
Bl =~ Do (L(x,x,t) + th(x,t))

0 OF  ~ ., 0F
= % _— .Ji
pp (L(:mx,t)—&— 5 —|—j_1m )

=95 owior T 920

0L L4 OF
T Ot dt ozt

OL  PF ., O°F
>
Jj=1

Moreover:

oL _ oL, o Z OF
0l 9l | Oil j=1a: dai
_ 9L, OF
ot o
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Thus:

d (oL’ _ d (OL +i OF
dt \ 9z* )  dt \ 9i? dt \ 0z

Now, the Euler-Lagrange Equations for L state that:

OL d (OLY _ 0
ozt dt \oxi)
But by the above, this implies that:

L' d (OF\\ (d (9L'\ d (OF 0 — oL d (or 0
drt  dt \ 9it dt \ dit dt \dit ) ) ort  dt \oxt )

as required.

©)

An alternative is to see how the different Lagrangians affect the action functionals used to derive the
Euler-Lagrange equations:

I[x]z/lL(x,:b,t)dt I’[x]:/lL’(:c,i:,t)dt

0 0
Notice that:

1
I'lz] = /0 L(x,i,t) + %F(x,t)dt = I[z] + [F(z,1)];

We consider the path which satisfies each Lagrangian, by applying variations:

d
—I
o [z + se]

s=0

" OF

d d
—1I'[z + se] = %I[thse]

ds

s=0 s=0 i=1

But now, recall that the variations for I lead to the equation:

z": 8Li1+/1 oL ; d (9L .\ .\ _,
o~ |, Jo \owi® T \oa)° -

i=1

Thus, for I’, we must have that:

Z”: L  OF i1+/1 OL ; d (OL\ )\ .\ _,
oir " ox )" |, )y \owit T at\oi ) -

i=1

and this must be true for all admissible variations.
For the variations vanishing at the endpoints, we get that:

oL d (OL\ _ 0

oxt  dt \oit)
so the Euler-Lagrange equations are the same for I and I’, as expected.
But then, notice that for the remaining variations, we must also have that:

2“‘: L  OF gil—o
, ozt Ot N

=1 0

In other words, adding the F' term to the Lagrangin will not alter the “shape” of the solution, but it can
influence how the solution behaves at the endpoints, since it alters the boundary conditions. If the endpoints

are fixed, then F' won’t affect the boundary conditions.
O
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4 Previewing Noether’s Theorem: Symmetries and Conservation

4.1 Physics Terminology
4.1.1 The Momentum

Thinking of x as position and & as velocity of a particle, then:
oL
o’
is the momentum of the particle, conjugate to the variable z*. We of-
ten denote:
0L
Pi= g
4.1.2 The Force
Recall, the tmpulse is:
I =FAt
but also:
I =Ap=mAv

where p is the momentum of a particle. In other words, if over a period
of time the momentum changes, it must be due to there being a non-
zero force being applied on the particle. In other words, since the Fuler-

Lagrange equations say:
oL B i oL\ _ 0
oxrt  dt \oi')

d (0L dp
%(85&)_%7&0

and if we have:

then: oL
- #£0
ox’ 7
so we can think of:
oL
ox?

as the force being applied on a particle in the Euler-Lagrange equations.
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4.1.3 The Energy (Beltrami’s Identity)

b= Z( W)—

Beltramai’s Identity gives us an expression for the energy of a system:

4.2 Linear Momentum is Conserved Under Translation

Let L be a Lagrangian independent of x:

oL
%:O

In other words, L is invariant under translation:
L(z,&,t) = L(x + a, %,t)

Then, the momentum:
oL

ot

momentum.

1s conserved along curves which solve the Euler-Lagrange Equa-
tions; in other words, moving along the solution path won’t change the

Proof. This is direct from the Euler-Lagrange equations:

OL d (L 0 — oL 0
Ozt dt \9ii ) dt oxt ]

so momentum is constant as time changes.

4.3 Energy Conservation

4.3.1 Energy is Conserved Under Time Variations

If the Lagrangian is not explicitly dependent on time:

oL
o1t

b= Z( W)-

1s conserved along curves solving the Euler- Lagrange equations.

then the energy:
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Proof. We differentiate Beltrami’s Identity:
dE. ~d (.;0L dL
dt_Z:dt(x 8a’:i>_dt
"~ ;0L ., d (0L OL ~0L ., OL ..
= r* P =— — [ = ) 8D
<,_ Tow T @ (w)) m*jz:; ot ow”

72”:?& +:'cii oL\ 8Lii+ 8Lii
4 9 dt \ O ' Ot

_ ch d (9L 0L
B dt \oi') Oz

=1

where the last step follows by the Euler-Lagrange Equations.

4.3.2 Energy Conservation for Simplifying ODEs

Energy conservation is a very useful concept, for reducing complicated ODEs to more manageable ODEs.

For example, consider the Lagrangian:

L),y (). 2) = 12(“2
Then:
oL 1+ (y)?
oy y?

So the Euler-Lagrange equations become:

i y/ o 1 + (y/)2
dz \ y\/1+ (y')? y?

which is a very non-linear, second-order ODE.

However, notice that:

oL
— =0
Ox
so it follows that energy is conserved, so:
dE d ! 1 )2
— =0 = — (v Y _ + (') -0
dx dx y/1+ (v')? Yy
We simplify:
yo Y VIR WP+ w))
yv1+(y)? y yv1+(y')?
1
/I W)
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Then:

d ! 1 )2 1

Ly Y _ +(y) -0 — _ —k

dz \" y/1+ (y)? y yV1+ ()
where k € R. Notice, this is now a first order ODE, with some pretty neat cancellations. Energy conservation
has somehow “integrated” the original ODE to give us the above.

If we square both sides and rearrange:

1 N2 /
k2y2 -1=U) = y=+ K22
By separation of variables (using the positive square root):
dy=x+ A

/ 1
yEm—

The integral on the LHS can be rewritten:

1 1 Y
/7dy:/7dy:k/7dy
k22 /1 — 29,2
\/ k21y2 -1 \/ 1k§y§/ 1-k Y
Now, let:
du _

u=1-— k%> — = —2k%y
dy

SO:
Y g [ e
H =t
1 1
:_%/ﬁd“
Ju

k

Vi Fp

k

—VT— k22 =kx + kA

Thus, it follows that:

Further simplifying:

— 91—k =k + kA
— 1- k%) = k%2% — 2Akx + (kA)?
o o 1+2Akx — k*A?
— " +y = 2

1 2Ax
2 2 2
> —_ _A
- +y 2 + A
o 24z o, 1

So the critical points to the action functional are circles!
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5 Exercises

1. Let 2 : [0,1] — R be a C? function. Let the Lagrangian L also depend on i. Derive the
Euler-Lagrange equation arising from extremising the action:

1
I[x] :/ L(z,z,2,t)dt
0
Generalise this further to Lagrangians depending on the first k£ derivatives of z : [0,1] — R",
which should now be a C**! function.

2. Find the shortest path in the plane starting at the origin and ending on the parabola:
y=(z—3)

3. What is the shortest distance between 2 non-overlapping circles on the plane?

4. Let C1,C3 be 2 closed, simple plane curves, with C; in the upper half-plane and C; in the
lower half-plane. Show that there exists a straight line in the plane which intersects both
C: and C5 normally. The line might intersect each curve at more than one point, but the
intersection is normal in at least one of the points.

5. Find the shortest path in the plane starting at P = (2,1) and ending on the hyperbola
zy = 1.

6 Workshop

1. Consider 2 points P, (. Via translation and rotation, assume that:
P =(0,0) Q= (£,0)

We approximate the geodesic between P and () by a piecewise linear path, made our of
the straight line segments:
P—(z,y) > Q

The arclength of this piecewise lienar path is:
S(@.y) = VaT T+ VT DT

(a) Find the critical points of S as a function of (z,y).

We differentiate:

05 ! X 2z + ! X 2(0—z)x -1
_——_=——_—— X _—_— — X —
Ox  2,/22 42 2\/(0 —2)% + y?

x {—x

VR oy

similarly:
a8 Yy Yy
a— +
y P ty? -2ty

If (x,y) is a critical point, then:

oS oS
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Notice, g—g = 0 if and only if y = 0. Hence, we require that:

x_ﬂ—x _0:>i_€—x
Va2 Sl —x)? lz|  [¢—z]

This is always true, so long as sgn(z) = sgn(¢ — x). If x < 0, the £ —x > 0, so we must have = > 0.
Since x < ¢, the critical points of .S are:

{(z,0) |0<z <t}

(b) Calculate the Hessian at the critical points, and explain your answer.
We compute explicitly:

es_of wx  l-w
Ort Ou \\al+y? =2+

21,2 _ a* 2 a2 (L)
VY - T VOt e

2 +y? (6 —x)2+y>?
Y v

@2+ g2 (=) 4 )

@s oy .y

Oxdy Oz \ /22 +y2 /(- 1)2 + 42
yr___ o yll-a)

@2 g7 (= a4 2

2
o (VU - Zme VO e
Oy a? + y? ’ (£ —2)? +y?

Hence, setting y =0 and 0 < x < ¢:

o5 _ S|
Ox? y=0 020y|,_,
and:
LR I
0y? y:O_ r -z z(l—2x)
Thus, the Hessian is:
0 0
H(z,0) =
0 ¢
z({—x)

This has non-negative eigenvalues, so H is positive semi-definite. Thus, (z,0) corresponds to min-
ima, so long as 0 < = < 4.
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(¢) Argue, as Euler would, that minimising the arclength from P to @ is the same a s
minimising the arclength of the piecewise regular paths from P to (z,0), and from (z,0)
to @, for any 0 < z < . Hw does this show that the geodesic is the straight line segment
between P and Q7

We see that to minimise the distance between P and any intermediate point, we need to go along
the line joining P and . In particular, if we then continue placing intermediate points, these will
all lie along the same straight line, so the shortest path between P and ) must necesarily lie along
this line.

2. Consider the arclength functional:

1
szAnaww

of regular curves z(t) € R? from z(0) = P to z(1) = Q, where P,Q € R? are 2 distinct points.
A reparametrisation is a continuously differentiable map:

t— t(t), %7&0, vt € [0,1],t € [a, b]

(so t is our new parameter, which depends on the original parameter t)

(a) Show that the arclength functional is reparametrisation invariant:

1 b
Stal = [ ot = [ (o)
0 a
where z(¢) denotes the derivative of z with respect to .
Consider a parametrisation y(t),t € [0,1]. Notice, since 2 parametrisations trace out the same

curve, the only different between 2 parametrisations is how quickly they traverse the curve.
Hence, define 7(¢) such that, for some other parametrisation x(t):

v(t) = z(7(t)), vt € [0,1]

AWwwmzél
= /01 x’(T)E

(1) .
[l

(0)

Then:

jt(x(r(t))H dt

dr i

so the parametrisation doesn’t affect the value of the arc length.

Without loss of generality we have assume that %

with the —7 instead.

> 0; otherwise, we can repeat the argument

(b) Show that we can always choose a parametrisation such that:
le@l =1, vt

This is called the arclength parametrisation.
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Notice we want: p
-
WOl=1 = (Dl =1
hence, we have a differential equation to solve:

r_ 1
e [l ()]

We have a boundary condition 7(0) = a. Hence, this ODe has a unique solution, and so, we can
always find our desired parametrisation 7.

(¢) The Euler-Lagrange equation for the arclength functional is:

d x
- | T =0
di (IIxI)

which is the equation of a straight line. If we subsequently choose an arclength
parametrisation (such that ||| = 1,Vt), then the equation for a straight line becomes
#=0. Let z:[0,1] — R? be a continuously differentiable curve in the plane with:

2(0) = (0,0)  2(1) =(,0)

Consider the functional: .
1.
Slal = | gt Par
0

Show that the Euler-Lagrange equation for this functional is precisely the equation
z=0.

‘We have that:

SO:

oL i d oL

or ) " T dtow

as required.
3. Let p:[0,1] = R*,¢ :[0,1] — R be continuously differentiable functions with:

p(0) = 1o p(1) =m1 ¥(0) = 6o Y(1) =0,

We will assume that:
(r0,00) # (r1,01)

Consider the functional:

smw:fé@%wﬁmwwwt

Recall that the critical points of this functional satisfy the Euler-Lagrange Equations:

doL _ oL
dt o) O
doL _or
dt dp  Op
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(a) Show that one of the Euler-Lagrange equations imply that:

is a constant.

Using:
_ 1 2]
L= (#+0%?)
we have that: oL
_ = /,2
P P
oL _
ap  *
oL
% 0
OL 9
a0 PP

Notice, the EL equation for ¥ says that:
i(de}):O — IHeR: p*p=1
dt '

(b) Show that the other Euler-Lagrange equation implies that:

2 &
E:=p(t) + —
) p(t)
is a positive constant. Why can’t £ =07
There are 2 ways of doing this:
@ Beltrami’s Identity
By Beltrami’s Identity, we know that:
oL 0L
E=9%—+p—r —
onp " Op
is constant. Hence:
oL 0L
= w— +p
o) "op

. 1/, :
*p21/12+p2f§(p2+p21/12>

_ 1 (/72 Jrp2¢2)

3o 3)) A

Hence, redefining F:

must be constant.
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(2) Using EL

The other EL gives us:

p=pi® = p%
If we multiply both sides by p, we get:
o= 0
Now, notice that:
% (6%) = pi
d 2

Thus:

as required.

Notice, this is clearly non-negative (it is a sum of squares). However, we can’t have E = 0. If we
did, then:

If £ =0, then: )
p? =0

We know that p # 0 (otherwise E would be undefined), so it follows that ¥ = 0. Thus, both 0,0
must be constant. But this contradicts the fact that:

(ro,00) # (r1,61)

Hence, £ > 0.
Show that if [ =0 then:
Y(t) =06 =61
p(t) =ro +t(r1 — o)
Find F in terms of rq,r;.
If £ = 0, as discussed above we must have that:

V=0
so 1 is constant:
Y =00 =01
Moreover, we have that:
E=/?
Hence, p is a positive constant:
p=at+b
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Using initial conditions:
p(0)=rg = b=rg

Hence:
p(t) = (r1 —ro)t + 10

and so:
E=p*= (1 —7“0)2

(d) Let I > 0. Solve the Euler-Lagrange equations to find p(t),%(t). You may leave the
answer in terms of integration constants, which can be determined in terms of the
boundary values rg, 71, 6q, 0.

We solve the equations by using:

Rearranging:
o 2 dp /Ep?>— {2
p°=FE— - = o=
p dt p
Thus:

p
t-l—C:/id
VEp* — 12 P

du
— =2F
dp P

If we let u = Ep? — (? then:

SO:

Solving for p:

Using this, we have that:
2\ .
(= (E(t+0)2+E>¢
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so: i B B .
P2+ (E(t4ce)? o 14 (E(t;—@)2

This looks like the derivative of arctan, so applying the chain rule:

£, p

= t
1 = arc an( 7

(e) Make the variable substitution
p(t) = Va2 (t) +y2(t)
P(t) = arctan(y(t)/z(t))

and rewrite the functional S[p, ] as a functional S;[x,y], and hence interpret the solu-
tions found in part d) geometrically.

We compute:
. + . ) . + . 2
T+ yy o (zd+yy)

Va2 +y? r- z? +y?
1 yr — Y yr — Y

= 7 X 2 T 242
1+ 4 x =ty

¢ =
Then: T _ )2
; yr —xy
P = 2 1 42
e +y
So:
(z2 +yy)* + (yz — 2y)*
22 + y?
_ (z@)? 4 2zdyy + (y9)® + (Yo)* — 2gady + (i)
x? + y?
_2?(@ +9%) + v (@ +7)
o x2 + y?

p2 _|_p277b2 —

— ]:'2 + yQ
Hence:

St = [ 56 +7)

The extremals of this Lagrangian must still be straight line paths. We can see that p, 1 represent
angular coordinates for these paths.

4. Let z: [0,1] — R3 be a regular curve, such that:
@l =1, vt

In other words, z is a regular curve on the unit sphere in R3. Moreover, assume that:

z(0)=P  2(1)=Q
are 2 distinct points on the sphere. Using spherical polar coordinates, we can write:

sin 0(t) sin ¢(¢)
z(t) = | sin(t) cos p(t)
cos 6(t)

for some continuously differentiable functions 6(¢), ¢(t).
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(a) (3 marks) Show that the arclength:

Sle] = / () ldt

defines a functional:

1 . .
S[6, o] :/O \/92(t) + sin? O(t) P2 (t)dt

We shall use:
0=0() ¢=0o()
throughout for readability.

We compute & by using the chain rule:

%(sin@sin @) = die(sinﬂsin $)0 + %(Sinasin P)o

= fcosfsing + ¢sinb cos ¢

%(sin& cos¢) = dila(sin 0 cos ¢)6 + %(sin(‘) cos @)

= fcosfcos ¢ — dsinbsin ¢

d d .
%(cos 0) = @(COS 0)0

= —0sind
Hence, we have that:
0 cos B sin ¢ + ¢ sin 0 cos ¢
&= |0cosbcos¢— psinfsin¢
—fsin
Thus:
|Z]|> = (0 cos Osin ¢ + ¢ sin 6 cos @)% + (6 cos § cos ¢ — psin fsin ¢)? + (—0 sin §)?
= 6% cos® Osin® ¢ + 20¢ cos O sin ¢ sin 6 cos ¢ + ¢ sin? O cos® ¢
+ 62 cos? 0 cos? ¢ — 20(;5 cos fsin ¢ sin 6 cos ¢ + gf)Q sin? 0 sin? ¢ + 62 sin® 0
= 02 cos? O(sin® ¢ + cos® @) + $? sin? O(sin? ¢ + cos? ¢) + 6% sin? 0
= 6?(cos? 0 + sin” 0) + ¢ sin 0
= 6%+ ¢*sin? 0

Finally, it follows that:

S[x]:/o H:’t(t)Hdt:/O V() + sin? 0(1) 2 (1)t

as required.
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(b) (4 marks) Write down the corresponding Euler-Lagrange equations and show that one
of the equations implies that:

_ sin” 0(t)(t)
VO (0) +sin ()82 (1)

is a constant, and that |¢] < 1.

Let:

L(6,6.6.,) = \[62(t) + sin? 6(1)52 1
The Euler-Lagrange equations for the arclength S[0, ¢] are:

ddL _dL
dat 9§~ 99
ddL oL
dtos 99

We compute these quantities:

oL 1 0 ¢ sin A cos 0
20 — 3L 80(9 +sin? 0p?) = —7
oL 1 _ 0 0
6% + sin’ 6 —
96~ 21 " 9" M=
oL 1 0 9
87(1) oL 8¢>(9 +sin? 0¢%) = 0
oL _ 1 0 (bsin? 0
62 + sin? 0>
Hence, the Euler-Lagrange equations for the arclength are:
d ﬁ B $2 sin 6 cos 6
d\L| L
i q.bsin2 0\
dt L B
The second equation implies that:
gﬁsizl29_ -(,Z.SSiI-129 —/eR
\/02 + $2sin’ 0
Moreover:
#| sin? 0
o= A8
\/ 02 + ¢ sin? 0
|p| sin? 0

(since 62 > 0,Vt and ¢* = |¢| )

<
\/|6[2sin? 6

~ [|9|2sin* 0
|p[2 sin? 0

= |sin |
<1
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so it follows that:
<1

as required.

(¢) Argue that the geodesics on the sphere are great circles as follows. First notice that
there is a rotation of the sphere about the origin which takes P to the North pole, and
takes () to the points with coordinates:

(1) =06, >0 $(1)=0
i. (4 marks) Show that with these boundary conditions:
S[97 QS] Z 01

Without loss of generality, we can assume that 0(t), ¢(¢t) are (strictly) non-decreasing functions
of t. This means that: . )
60>0 >0

They must be monotonic, since they range over angles, and if they are (strictly) non-increasing,
we can, just reparametrise via:

0:=0(1—1t) ¢ :=¢(l—1t)

to make them (stricly) non-decreasing.

Notice, Vt € R: _
sin? 9¢2 >0

1
5[9,¢]:/ \/ 62 + sin® 092dt
0
1
> [ Véra
>,

1
Z/ Odt, (since § >0)
0

SO:

= 0(1) — 0(0)
=0, — 0(0)

But now, since P is at the North Pole, we have that:

0 sin 0(0) sin ¢(0)
P=10[=]sin6(0)cos®(0)
1 cos 6(0)

which implies that:
Hence, we have shown that:

as required.
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ii.

iii.

(3 marks) Show that S[f,¢] = 6, precisely when ¢(¢t) = 0 for all ¢, so that [ = 0. In
this case, the curve is a segment of a meridian, which is part of a great circle.

Firstly, if V¢ € [0, 1], ¢(t) = 0, then:
1
S[6, ¢] :/ Vo2dt = 6,
0

by the part above.

Notice, by the work above we have that:

1
S[6, 4] :/ \/ 602 + sin® 0¢2dt = 6,
0
— Vtel0,1], 1/0%+sin®0p2 = V2

— Vtel0,1], sin?0¢? =0

Since 6(1) = 6, > 0, we know that 6(¢) isn’t always 0, so by the continuity of 6 we must also
have that sin® # isn’t always 0. Thus:

S0, =0, — Vte[0,1], ¢*(t)=0 < Viel|0,1], ¢t) =0
However, this is true if and only if:
vte [0,1], ot)=CeR

But by the initial condition, ¢(1) = 0, so ¢ must be identically 0 for any ¢ € [0,1], and so we
have:
Sl0,9) =60, < Vte|0,1], ¢(t)=0

as required.

(1 mark) Argue that the original geodesic from P to (), which is obtained from this
one by rotating the sphere back to the original position, is again part of a great
circle.

This geodesic is a great circle, which means there exists a plane II in R3, going through the
origin, such that the intersection of plane and sphere gives this geodesic. If we rotate the sphere
back to its original position, since the sphere is rotated about the origin, the sphere remains
centered at the origin and in the same location in R3. Thus, the plane IT will remain intersecting
the sphere, albeit through the original geodesic. Hence, the original geodesic must be part of a
great circle.
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