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Based on the notes by Jelle Hartong, Section 11
Until now we have only considered variational problems which involved curves in Rn. We now focus on

how we can generalise variational problems to apply to hypersurfaces in space.

1 Multidimensional Euler-Lagrange Equations

1.1 Useful Theorems

1.1.1 Theorem: The Divergence Theorem

Let D ⊂ Rm be a bounded and open set. Let ∂D be its piecewise
smooth boundary.
Let:

X = (X1, . . . , Xm)

be a smooth vector field, defined on D ∪ ∂D.
If N is the unit, outward-pointing normal of ∂D, then:

ˆ
D

∇ ·XdV =

ˆ
∂D

⟨X,N⟩ dA

where ∇· is the divergence operator:

∇ ·X =
m∑

µ=1

∂Xµ

∂xµ

(Theorem 11.1)
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1.1.2 Theorem: Multidimensional Fundamental Lemma of Variational Calculus

Let D ⊂ Rm be a bounded, open set with piecewise smooth boundary
∂D.
Let:

f : D → Rn

be a continuous function satisfying:ˆ
D

⟨f(x), h(x)⟩ dmx = 0

for all C∞ functions:
h : D → Rn

which vanish on the boundary ∂D.
Then:

f ≡ 0

(Theorem 11.2)

1.2 Theorem: The Multi-Dimensional Euler-Lagrange Equations

Let D ⊂ Rm be a bounded region, with a piecewise smooth boundary.
Let x = (x1, . . . , xm) be coordinates for D.
Consider vector fields:

y : D → Rn

and define ∇y to be the collection of mn partial derivatives of y, corre-
sponding to each of the partial derivatives associated with each component
function yi and some variable xµ in D:

yiµ =
∂yi

∂xµ

If we define a Lagrangian:

L(y,∇y, x)

then the general multi-dimensional Euler-Lagrange equations are
given by:

∂L

∂yi
=

m∑
µ=1

∂

∂xµ

(
∂L

∂yiµ

)
where we have to think of ∂L

∂yiµ
as a function of x.

(Equation 11.2)
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As a sanity check, we can consider this for the case when D is a one-dimensional space. Then:

y : [0, 1] → Rn

Moreover, our coordinates for D are defined by a single variable x. Thus:

∂L

∂yi
=

∂

∂x

(
∂L

∂yi′

)
=

d

dx

(
∂L

∂yi′

)
where:

yi
′
=

∂yi

∂x
=

dyi

dx

Proof. We can consider a simple case, where D ⊂ R2 is an open, bounded region, with piecewise smooth
boundary ∂D. Our coordinates for D are defined by 2 parameters:

x = (u, v)

Define a C2 vector field:
y : D → R

such that:
∀(u, v) ∈ D, y(u, v) ∈ Rn

We can define a Lagrangian which depends on y, u, v, alongside the partial derivatives of y with respect
to u, v. This has the form:

L : Rn︸︷︷︸
y

× R2n︸︷︷︸
y
u
,y

v

× R2︸︷︷︸
u,v

→ R

where:

yiu =
∂yi

∂u
yiv =

∂yi

∂v

With this Lagrangian, we thus have a corresponding action:

S[y] =

ˆ
D

L(y, y
u
, y

v
, u, v)dudv

where the boundary conditions are now defined by a function:

y(x) = ϕ(x), x ∈ ∂D

and:
ϕ : ∂D → Rn

(analogosuly, when D = [0, 1] then ∂D = {0} ∪ {1}, which is where we defined our boundary terms)

We now consider variations, which will be C1 functions:

ε : D → Rn
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where:
∀x ∈ ∂D, ε(x) = 0

If y is a critical point of S[y], then:

0 =
d

ds
S[y + sε]

∣∣∣∣
s=0

=

ˆ
D

d

ds

(
L(y + sε, L(y

u
+ sεu, L(yv + sεv, u, v

)
dudv

∣∣∣∣
s=0

=

ˆ
D

(
n∑

i=1

[
∂L

∂yi
εi +

∂L

∂yiu
εiu +

∂L

∂yiv
εiv

])
dudv

=

ˆ
D

(
n∑

i=1

[
∂L

∂yi
− ∂

∂u

∂L

∂yiu
− ∂

∂v

∂L

∂yiv

]
εi

)
dudv

+

ˆ
D

(
n∑

i=1

[
∂

∂u

(
∂L

∂yiu
εi
)
+

∂

∂v

(
∂L

∂yiv
εi
)])

dudv

The second integral becomes 0 by applying the Divergence Theorem, since it becomes an integral over ∂D,
and εi = 0 on the surface. Moreover, by the Fundamental Lemma:

ˆ
D

(
n∑

i=1

[
∂L

∂yi
− ∂

∂u

∂L

∂yiu
− ∂

∂v

∂L

∂yiv

]
εi

)
dudv = 0 ⇐⇒

n∑
i=1

[
∂L

∂yi
− ∂

∂u

∂L

∂yiu
− ∂

∂v

∂L

∂yiv

]
= 0

which are our multi-dimensional EL equations

2 Solutions to Laplace’s Equation as Variational Extrema

2.1 Definition: Laplace’s Equation and Harmonic Functions

Let D ⊂ R2 be the unit disc. Laplace’s Equation is the PDE:

∆ϕ = ϕxx + ϕyy = 0

where:
ϕ : D → R

and ϕ satisfies some boundary condition (we will consider Dirichlet,
Neumann and Robin boundary conditions).

If ϕ satisfies Laplace’s Equation, then ϕ is called harmonic.
(Equation 11.3)
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2.2 Proposition: Harmonic Functions Minimise an Action

Define the energy functional:

E[ϕ] =

ˆ
D

1

2
(ϕ2

x + ϕ2
y)dx dy

Then, the extremals of E are harmonic functions; that is, solutions
to ∆ϕ = 0. Moreover, such extremals minimise the energy.
(Equation 11.4)

Proof. We could directly compute the Euler-Lagrange equations, but since we’ll want to discuss boundary
conditions, we apply variations to the functional.

Indeed, consider variations ε : D → R. Then, if ϕ is an extremal of E:

d

ds
E[ϕ+ sε]

∣∣∣∣
s=0

= 0

Hence:

0 =
d

ds
E[ϕ+ sε]

∣∣∣∣
s=0

=

ˆ
D

d

ds

(
1

2
((ϕx + sεx)

2 + (ϕy + sεy)
2)

)
dx dy

∣∣∣∣
s=0

=

ˆ
D

(ϕx + sεx)εx + (ϕy + sεy)εydx dy

∣∣∣∣
s=0

=

ˆ
D

ϕxεx + ϕyεydx dy

Now, notice we have that:
∂

∂x
(ϕxε) = ϕxxε+ ϕxεx

∂

∂y
(ϕyε) = ϕyyε+ ϕyεy

Hence:

0 = −
ˆ
D

(ϕxx + ϕyy)εdx dy +

ˆ
D

∂

∂x
(ϕxε) +

∂

∂y
(ϕyε)dx dy

Now, recalling the Divergence Theorem (or Green’s Theorem, which is equivalent in R2):

ˆ
D

∂

∂x
(ϕxε) +

∂

∂y
(ϕyε)dx dy =

ˆ
∂D

⟨N,∇ϕ⟩ εds

where ds denotes an infinitesimal arclength of our surface ∂D, and N is a unit, outward normal vector to
∂D. The quantity ⟨N,∇ϕ⟩ is known as the normal derivative of ϕ.
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Using Green’s Theorem we arrive at the same conclusion. If we
parametrise ∂D using (x(t), y(x(t)):

ˆ
D

∂

∂x
(ϕxε) +

∂

∂y
(ϕyε)dx dy =

ˆ
∂D

ε(−ϕydx+ ϕxdy)

=

ˆ
∂D

ε(−ϕyẋ+ ϕxẏ)dt

=

ˆ
∂D

1√
ẋ2 + ẏ2

ε(−ϕyẋ+ ϕxẏ)ds

=

ˆ
∂D

⟨N,∇ϕ⟩ εds

where we have used the fact that:

ds =
√

ẋ2 + ẏdt

and that the unit outward normal vector N to ∂D is precisely given by:

N =
1√

ẋ2 + ẏ
(ẏ,−ẋ)

(ẋ(t), ẏ(t))

(ẏ(t),−ẋ(t))

N

Thus, overall we get that if ϕ extremises E[ϕ] then by the Fundamental Lemma (and assuming endpoint
fixed variations ε|∂D = 0) then:

0 = ϕxx + ϕyy

so ϕ will be harmonic, as required.

2.3 Types of Boundary Conditions for Laplace’s Equation

2.3.1 Dirichlet Boundary Condition

• What are Dirichlet boundary conditions?

– Dirichlet boundary conditions impose conditions on the value of ϕ on ∂D:

ϕ(x)|x∈∂D = f
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where:
f : ∂D → R

• How do Dirichlet boundary conditions affect the solution to Laplace’s Equation?

– under Dirichlet conditions, ˆ
∂D

⟨N,∇ϕ⟩ εds = 0

if we have endpoint fixed variations:

ε|∂D = 0

2.3.2 Neumann Boundary Condition

• What are Neumann boundary conditions?

– Neumann boundary conditions impose conditions on the value of ∇ϕ on the boundary:

⟨N,∇ϕ⟩ = 0

• How do Neumann boundary conditions affect the solution to Laplace’s Equation?

– under Neumann conditions, ˆ
∂D

⟨N,∇ϕ⟩ εds = 0

for any free variation ε

– this states that harmonic solutions ϕ will have a vanishing normal derivative at the boundary

2.3.3 Robin Boundary Condition

• What are Robin boundary conditions?

– Robin boundary conditions impose conditions on the values of ϕ and ∇ϕ on the boundary:

⟨N,∇ϕ⟩+ αϕ = g, α ∈ R

where:
g : ∂D → R

• How do Robin boundary conditions affect the solution to Laplace’s Equation?

– Robin conditions arise when we use free variations at the boundary for the functional:

E[ϕ] =

ˆ
D

1

2
(ϕ2

x + ϕ2
y)dx dy +

ˆ
∂D

(α
2
ϕ2 − gϕ

)
ds

– working as above, we’d get that:

0 =
d

ds
E[ϕ+ sε]

∣∣∣∣
s=0

= −
ˆ
D

(ϕxx + ϕyy)εdx dy +

ˆ
∂D

(⟨N,∇ϕ⟩+ αϕ− g)εds

– for arbitrary, free variations ε we’d get that by the Fundamental Lemma:

ϕxx + ϕyy = 0 on D

⟨N,∇ϕ⟩+ αϕ− g = 0 on ∂D
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3 Minimal Surfaces

3.1 Lemma: Surface Area of a Parametric Surface

Let Σ ⊂ R3 be a surface, parametrised by u, v:

r(u, v) = x(u, v)e1 + y(u, v)e2 + z(u, v)e3

Then, the surface area of Σ is given by:ˆ
D

∥ru × rv∥dA

In particular, if Σ can be described by a function f :

x = u y = v z = f(x, y)

then the surface area of Σ is given by:ˆ
D

√
1 + f 2

x + f 2
ydxdy

Proof. The idea is to notice that, at any point on the surface, ru and rv will be tangents, and together, they
define a linear approximation to the surface (as a plane). The area of the parallelogram spanned by the
tangent vectors is precisely:

∥ru × rv∥

Doing this over each point gives us the desired result.

If the surface is defined by a function f , then notice that:

r(u, v) = r(x, y) =


x

y

f(x, y)


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so:

∥rx × ry∥ =

∥∥∥∥∥∥∥∥∥


1

0

fx

×


0

1

fy


∥∥∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥


1

−fy

−fx


∥∥∥∥∥∥∥∥∥

=
√

1 + f2
x + f2

y

as required.

3.2 Proposition: The Plateau Problem and Minimal Surfaces

The Plateau Problem is the problem of finding a minimal surface
(i.e surfaces with minimal surface area), subject to boundary condi-
tions.
If f defines a surface, then f will be a minimal surface provided it satis-
fies the PDE:

(1 + f 2
y )fxx + (1 + f 2

x)fyy − 2fxfyfxy = 0

(Equation 11.5)

Proof. We have a surface area functional:

S[f ] =

ˆ
d

√
1 + f2

x + f2
ydxdy

Extremals of S[f ] will be minimal surfaces, so we seek to find the corresponding Euler-Lagrange equations.
f depends on x.y so we need to use the multidimensional EL equations:

∂L

∂f
=

∂

∂x

∂L

∂fx
+

∂

∂y

∂L

∂fy

Since L(f, fx, fy, x, y) =
√
1 + f2

x + f2
y doesn’t depend (explicitly) on f :

∂

∂x

∂L

∂fx
+

∂

∂y

∂L

∂fy
= 0

We can compute these partial derivatives:

∂L

∂fx
=

fx√
1 + f2

x + f2
y
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∂L

∂fy
=

fy√
1 + f2

x + f2
y

Moreover:

∂

∂x

(
∂L

∂fx

)
=

∂

∂x

 fx√
1 + f2

x + f2
y


=

fxx
√
1 + f2

x + f2
y − ∂

∂x (
√

1 + f2
x + f2

y )fx

1 + f2
x + f2

y

=
fxx
√
1 + f2

x + f2
y − ( 12 (1 + f2

x + f2
y )

−1/2(2fxfxx + 2fyfyx))fx

1 + f2
x + f2

y

=
fxx(1 + f2

x + f2
y )− (fxfxx + fyfyx)fx

(1 + f2
x + f2

y )
3/2

=
fxx + f2

xfxx + f2
y fxx − f2

xfxx − fyfxfyx

(1 + f2
x + f2

y )
3/2

=
fxx(1 + f2

y )− fyfxfxy

(1 + f2
x + f2

y )
3/2

Identical working gives us:
∂

∂y

(
∂L

∂fy

)
=

fyy(1 + f2
x)− fyfxfxy

(1 + f2
x + f2

y )
3/2

Thus putting it all together:

0 =
∂

∂x

∂L

∂fx
+

∂

∂y

∂L

∂fy

=
fxx(1 + f2

y ) + fyy(1 + f2
x)− 2fyfxfxy

(1 + f2
x + f2

y )
3/2

In particular, the denominator is non-zero, so the Euler-Lagrange Equations are:

fxx(1 + f2
y ) + fyy(1 + f2

x)− 2fyfxfxy = 0

as required.

3.3 Worked Example: Soap Films

Soap films take shapes according to what minimises the surface tension. This corresponds to minimising
the surface area of the film itself. We now consider a particular (simple) example of how a soap film is
created, and use variational methods to derive the shape of the resulting film.

Consider 2 rings of radius r, and places a distance 2ℓ apart, along the
same axis (i.e the centers of the rings are aligned). Suppose a soap film
has formed between the 2 rings. Determine the shape of the film.
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Notice, such a soap film should have rotational symmetry. In particular, it can be thought of as a surface
of revolution:

That is, we have some curve in 1 dimension y(x) where x ∈ [−ℓ, ℓ] and y(±ℓ) = r. The soap film
is obtained by rotating y 2π degrees, using the x axis as an axis of rotation. The area of the surface of
revolution is:

J [y] =

ˆ ℓ

−ℓ

2πy(x)
√

1 + y′(x)dx

To derive this area, we can think of cutting y into strips of length:

ds =
√

1 + y′(x)dx

If ds is small, then it can be thought of as the height of a cylinder, whose
radius will be y(x). In particular, this small cylinder contributes an area
of:

2πy︸︷︷︸
circumference of circle of radius y

×
√

1 + y′(x)dx︸ ︷︷ ︸
height of cylinder

to the surface of revolution.

But recall, we have already since a functional very similar to this, when discussing the catenary:
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The catenary is an extremal of the functional:

ˆ ℓ0

−ℓ0

y(x)
√

1 + y′(x)2dx

subject to a length constraint.
Finding the EL equations leads to the ODE:(

y − λ

c

)2

= 1 + (y′)2

(here λ is a Lagrange Multiplier)
Solving the ODE gives:

y = c cosh
x

c
+ h− c cosh

ℓ0
c

Notice, since 2π is a constant, minimising J is equivalent to minimising the catenary action, using λ = 0.
In particular, we get the ODE:

(y′)2 =
(y
c

)2
− 1

which from the working of the catenary (see W8 notes) implies that:

y(x) = c cosh
(x
c

)
y is known as a catenoid.

We need to satisfy the boundary conditions:

y(ℓ) = r =⇒ c cosh

(
ℓ

c

)
= r ∴ cosh

(
ℓ

c

)
=

r

c

(since cosh is even, cosh
(
ℓ
c

)
= cosh

(
− ℓ

c

)
, so we only need to satisfy one of the conditions to satisfy both)

To see whether this has any solutions, we can define:

ζ =
ℓ

c
=⇒ cosh(ζ) =

r

ℓ
ζ

In other words, the boundary conditions are satisfied if cosh intersects witha line through the origin with
gradient r

ℓ . Since cosh(ζ) ≥ 1, clearly there are some gradient settings for which this intersection won’t
happen (in fact, an intersection only happens if r

ℓ ≥ ρc ≈ 1.51).
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If r
ℓ > ρc, we are guaranteed at least one solution to the boundary constraints. The line intersects cosh(ζ)

twice, then we’d need to use the action to compute the area of the corresponding surface, and then pick the
surface with smallest area (the method has found 2 extremals, but only one will be a minimum).

If r
ℓ = ρc, then the line intersects cosh(ζ) precisely once, and there is a unique solution.

If r
ℓ < ρc, then this method doesn’t tell us anything. J might still be minimisible, but by a class of

functions which isn’t a surface of revolution. For instance, if y(x) is a discontinuous function, such that the
soap film has “broken”, and it extends between the 2 rings individually:
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4 The One-Dimensional Wave Equation

4.1 Proposition: The One-Dimensional Wave Equation

Let y(t, x) denote the position of an oscillating string at time t and po-
sition x ∈ [0, ℓ]. Moreover, assume that the string is fixed at the end-
points:

∀t > 0, y(t, 0) = y(t, ℓ) = 0

and that it has constant mass density ρ.
Then, assuming that the string vibrates with a small amplitude, y sat-
isfies the one-dimensional wave equation:

ρ
∂2y

∂t2
= τ

∂2y

∂x2

where τ is a tension term.

4.1.1 From Physics

Proof. We shall use the following diagram to aid the derivation:

• we consider a small segment of horizontal position, from x to x+∆x

• similarly, we consider the vertical displacement on this interval, from y to y +∆y

• the length of the string on these intervals is ∆s

• at the endpoints of the intervals, there are forces due to tension:

Ftension(x, y) Ftension(x+∆x, y +∆y)

• tension forces have the same magnitude τ , and act tangentially to the string in opposite directions:

Ftension(x, y) = −τ(cos(θ1), sin(θ1))

Ftension(x, y) = τ(cos(θ2), sin(θ2))
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• moreover, recall that for some function f(x), its Taylor Expansion about the point a is:

f(x) =

∞∑
n=1

f (n)(a)

n!
(x− a)n

In particular, if we expand f(x+∆x) about the point x:

f(x+∆x) =

∞∑
n=1

f (n)(x)

n!
(x+∆x− x)n =

∞∑
n=1

f (n)(x)

n!
∆xn

We can define:
∆θ = θ2 − θ1

The tangent is the quotient of opposite and adjacent, so:

tan(θ1) ≈
∂y

∂x
(x)

tan(θ2) ≈
∂y

∂x
(x+∆x)

We now consider the forces along the x and y directions. Along the x direction, the total force is:

τ(cos(θ2)− cos(θ1))

But we can write:
cos(θ2) = cos(θ1 +∆θ)

so Taylor Expanding about θ1:

cos(θ2) = cos(θ1 +∆θ) = cos(θ1)−∆θ sin(θ1) +O(∆θ2)

Hence:
τ(cos(θ2)− cos(θ1)) ≈ τ(−∆θ sin(θ1) +O(∆θ2))

But now Taylor expanding sin(θ1) about 0:

sin(θ1) = θ1 +O(θ31)

and since θ1 is small:
τ(cos(θ2)− cos(θ1)) ≈ 0

Hence, the horizontal force is 0.

We now consider the vertical force:

τ(sin(θ2)− sin(θ1)) = τ(cos(θ2) tan(θ2)− cos(θ1) tan(θ2))

≈ τ

(
cos(θ2)

∂y

∂x
(x+∆x)− cos(θ1)

∂y

∂x
(x)

)
= τ

(
cos(θ1 +∆θ)

∂y

∂x
(x+∆x)− cos(θ1)

∂y

∂x
(x)

)
≈ τ

([
cos(θ1)−∆θ sin(θ1) +O(∆θ2)

] [∂y
∂x

(x) + ∆x
∂2y

∂x2
+O(∆x2)

]
− cos(θ1)

∂y

∂x
(x)

)
≈ τ

(
cos(θ1)∆x

∂2y

∂x2
−∆θ sin(θ1)

∂y

∂x
(x)

)
≈ τ∆x

∂2y

∂x2
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where the terms involving ∆θ∆x are very small and thus have been dropped; similarly, since θ1 is small,
cos(θ1) ≈ 1 and sin(θ1) ≈ 0.

Hence, if we apply Newton’s Second Law on the segment of string of length ∆s, the only force comes
from the vertical tension so:

τ∆x
∂2y

∂x2︸ ︷︷ ︸
force

= ρ∆s︸︷︷︸
mass

∂2y

∂t2︸︷︷︸
acceleration

But now, we know that, since we have a small amplitude:

∆s =

ˆ x+∆x

x

√
1 +

(
dy

dz

)2

dz ≈
ˆ x+∆x

x

√
1 + 0dz = ∆x

so:

τ∆x
∂2y

∂x2
= ρ∆x

∂2y

∂t2
=⇒ τ

∂2y

∂x2
= ρ

∂2y

∂t2

as required.

4.1.2 From Euler-Lagrange Equations

Recall, for functions of 2 variables (in our case y = y(x, t)), the Euler-Lagrange Equations are:

∂L

∂y
=

∂

∂t

∂L

∂yt
+

∂

∂x

∂L

∂yx

Again, assuming a small amplitude, the kinetic energy of the string will be 1
2ρy

2
t , whilst its potential energy

will be 1
2τy

2
x. Hence, we define a Lagrangian:

L(yt, yx) =
1

2
ρy2t −

1

2
τy2x

The Euler-Lagrange Equation is thus:
∂L

∂yt
= ρyt

∂L

∂yx
= −τyx

so:
0 = ρytt − τyxx =⇒ ρytt = τyxx

as required.
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4.2 Theorem: Solutions to the One-Dimensional Wave Equation

The general solution for the wave equation:

yxx −
1

v2
ytt = 0

subject to the initial condition:

y(t, 0) = y(t, ℓ) = 0

where:
v2 =

τ

ρ
x ∈ [0, ℓ] t > 0

is:
y(t, x) = f(x+ vt) + g(x− vt)

where f, g are 2ℓ periodic functions, and:

f(x+ vt) = −g(−x− vt)

In other words, solutions to the wave equation are 2 identical waves, mov-
ing in opposite directions, thus forming a standing wave.

Proof. We introduce the change of variables:

U = x+ vt V = x− vt

Thus, if we define:
y(t, x) = Ψ(U, V )

we have that:
yt = ΨUUt +ΨV Vt = ΨUv −ΨV v

ytt = ΨUUvUt +ΨUV vVt −ΨV V vVt −ΨV UvUt

= ΨUUv
2 −ΨUV v

2 +ΨV V v
2 −ΨV Uv

2

= v2(ΨUU +ΨV V − 2ΨUV )

yx = ΨUUx +ΨV Vx = ΨU +ΨV

yx = ΨUUUx +ΨUV Vx +ΨV V Vx +ΨV UUx

= ΨUU +ΨUV −ΨV V +ΨV U

= ΨUU +ΨV V + 2ΨUV

So the wave equation becomes:

yxx − 1

v2
ytt = 0 =⇒ 4ΨUV = 0 =⇒ ΨUV = 0
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Explicitly, this says that:

∂

∂V

(
∂Ψ

∂U

)
= 0

=⇒ ∂Ψ

∂U
= f(U)

=⇒ Ψ(U, V ) = f(U) + g(V )

=⇒ y(t, x) = f(x+ vt) + g(x− vt)

(here we are being a bit careless, by ignoring rewriting some integrals in terms of the function being inte-
grated)

We need to make sure that y satisfies the boundary conditions:

∀t > 0, y(t, 0) = y(t, ℓ) = 0

If x = 0:
y(t, 0) = 0 =⇒ f(vt) + g(−vt) = 0

But this relation must be true for any t, so in particular it must be true for t := x+ vt for any fixed x:

f(x+ vt) = −g(−x− vt)

If x = ℓ:
y(t, ℓ) = 0 =⇒ f(ℓ+ vt) + g(ℓ− vt) = 0

but using the relation for the condition x = 0:

f(ℓ+ vt) = −g(−ℓ− vt)

so we have that:
−g(−ℓ− vt) = −g(ℓ− vt)

In other words, g must be 2ℓ periodic, since adding 2ℓ to its argument leaves the value of g unchanged.

We can thus write:
y(t, x) = g(x− vt)− g(−x− vt)

To fully specify y on [0, ℓ], we need to provide the initial conditions for y at t = 0, noting that:

y(0, x) = g(x)− g(−x)

yt(0, x) = −v(gx(x) + gx(−x))
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