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Based on the notes by Jelle Hartong, Chapter 2

1 Geodesics and the Method of Finite Differences

1.1 The Geodesic Problem and Functionals

• What is a geodesic?

– consider 2 points P ,Q ∈ R2

– the geodesic is the shortest path between P and Q

• What is a functional?

– a mapping between a function space and the real numbers

• What is the arclength functional?

– a functional, which given a path x(t), returns the arclength of the path:

S[x] =

ˆ 1

0

∥ẋ(t)∥dt

x : [0, 1] → R2

– if CP,Q is the space of all paths between P and Q, then:

S : CP,Q → R

• How can we find the geodesic using the arclength functional?

– finding a geodesic between P ,Q is equivalent to finding the minimum of S on CP,Q

– however, this isn’t simple: functionals can be thought of as functions of infinitely many variables
(after all their domain is an infinite dimensional space), so our normal calculus won’t work
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1.2 Euler’s Method of Finite Differences

Euler tried solving this problem by using finite differences:

1. Partition [0, 1] using N endpoints:

tn =
n

N

2. Approximate x : [0, 1] → R by using line segments from
xn−1 = x(tn−1) to xn

3. The arclength of this piecewise curve is:

SN(x1, . . . , xN−1 =
N∑

n=1

∥xn − xn−1∥

4. SN is a function of several variables, so can be optimised with
calculus

However, we would require N → ∞ (so optimising a functional involves
optimising a function of infinitely many variables). Instead, the method
of variations is preferred.

2 Extrema of Functions of Several Variables

• What is a directional derivative?

–

– consider a function:
f : U → R, U ⊂ Rn

– the directional derivative of f at a in the direction of v is given by:

f ′(a; v) = lim
t→0

f(a+ tv)− f(a)

t

– if we define:
g(t) = f(a+ tv)

then equivalently:
g′(0) = f ′(a; v)

since:

g′(0) = lim
h→0

g(0 + h)− g(0)

h

= lim
h→0

f(a+ hv)− f(a)

h

= f ′(a; v)

• What is the total derivative?
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– consider a function:
f : U → R, U ⊂ Rn

– at a point a, the total derivative is Df(a)

– it is a linear map:
Df(a) : U → R

– Df(a)(v) gives the directional derivative of f at a in the direction of v:

Df(a)(v) = f ′(a)(v) =
d

dt
(f(a+ tv))

∣∣∣∣
t=0

• How can we geometrically interpret the directional derivative?

– the curve γ(t) = a+ tv represents a line in U , passing through the point a, in the direction of v

– we can think of v as giving the velocity of a point along the curve

– similarly, f(a+ tv) is a curve in R, which passes through f(a), and has velocity Df(a)(v)

– we can use the total derivative as a linear approximation to f at a:

f(a+ tv) = f(a) + tDf(a)(v) + o(t)

• What is tangent space?

– if U ⊂ Rn, and a ∈ U , the tangent space TaU is an n-dimensional, real vector space

– for example, v ∈ TaU , since v is tangential to a along the curve γ

– we can think of the total derivative as a mapping whose domain is the tangent space:

Df(a) : Ta(a) → R

• How are critical points defined, in terms of the total derivative?

– a critical point will be any point x0 such that any directional derivative is 0 at that point

– all vectors tangential to x0 can be found in tangent space, so a critical point is defined by:

Df(x0)(v) =
d

dt
(f(x0) + tv))

∣∣∣∣
t=0

= 0, ∀v ∈ Tx0
U

All this gives us 3 ingredients which are useful to define a critical point
for some mapping:

1. The point (x0 ∈ U ⊂ Rn)

2. The mapping (f : U → R)

3. The space for varying the point (the tangent space, Tx0U)

Coming up with these 3 ingredients for functionals will allow us to com-
pute critical points for the arclength functional.
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3 Extrema of Functionals

3.1 From SVC to Functionals

• What is the equivalent of a critical point in SVC for the arclength functional?

– the geodesic in the space of curves CP,Q

• What is the equivalent of a function in SVC for the arclength functional?

– the functional S[x] itself:
S[x] : CP,Q → R

• How can we define a family of curves in CP,Q?

– in SVC, we used the tangent space to move between points in space

– in the space CP,Q, we need some way of moving between functions

– for this, we define a family of curves, by specifying paths using 2 parameters:

∗ s: defines a curve within the space

∗ t: defines a point within the curve

Figure 1: A family of curves x(s, t). In bold is the “origin” curve, x(0, t). For each value of s we have a
different regular curve.

– for this particular case, we set:

x(s, 0) = P x(s, 1) = Q, ∀s

• What is a variation?

– a mapping of the form:
ε(t) : [0, 1] → R2

– the variation is defined by:

ε(t) =
∂x(s, t)

∂s

∣∣∣∣
s=0

• How does the variation compare to the tangent vectors?

– in SVC, we used the tangent vectors to a point to move between points

– for functionals, we use the variation to move between curves:
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– in fact, close to s = 0, we have:

x(s, t) = x(t) + sε(t) + o(s)

Strictly speaking, for every fixed t, ε(t) ∈ Tx(t)R2; that is, it is a tangent
vector to R2 at x(t).
Moreover the endpoint conditions are:

ε(0) = 0 ∈ TPR2

ε(1) = 0 ∈ TQR2

However, we can (and will) identify all the tangent spaces with R2 by
translating them to the origin in R2 and this is why we have written ε as
a map ε : [0, 1]ßR2 ε(0) = ε(1) = 0.

• What is an endpoint-fixed variation?

– a variation with pre-defined endpoints

– in the case of our functional, we impose:

ε(0) = ε(1) = 0

– this ensures that x(s, 0) = P and x(s, 1) = Q, since:

x(s, 0) = x(0) + sε(0) + o(s) = P + sε(0) + o(s) = P

x(s, 1) = x(1) + sε(1) + o(s) = Q+ sε(1) + o(s) = Q

• How can we determine a critical point to the arclength functional?

– in SVC, a critical point required:

d

dt
(f(x0) + tv))

∣∣∣∣
t=0

= 0, ∀v ∈ Tx0
U

– analogously for functionals:

d

ds
(S[x+ sε])

∣∣∣∣
s=0

= 0, for all endpoint-fixed variations ε(t)

3.2 Lemma: The Fundamental Lemma of the Calculus of Variations

Before solving the arclength problem, we present a very important - in fact, fundamental - lemma.
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Let:
f : [0, 1] → Rn

be a continuous function which obeys:

ˆ 1

0

⟨f(t), h(t)⟩ dt = 0

for all:
h : [0, 1] → Rn

h(0) = h(1) = 0

where h ∈ C∞ (that is, h is infinitely continuously differentiable).
Then, f ≡ 0.
(Theorem 2.1)

Proof. We begin by proving this for the simpler case n = 1.
Let f : [0, 1] → R be a continuous function obeying:

ˆ 1

0

f(t)h(t)dt = 0

for all h : [0, 1] → R with h ∈ C∞ and h(0) = h(1) = 0. We claim that f ≡ 0.
Assume ∃t0 ∈ (0, 1) such that f(t0) ̸= 0 (by continuity, if f is non-zero at the endpoints, it must be non-zero
in their neighbourhood, so we can just consider (0, 1)). We can also assume that f(t0) > 0 (otherwise just
apply same argument with −f). Furthermore, by continuity ∃c ∈ (a, b) ⊂ (0, 1) such that:

f(t) > c, ∀t ∈ (a, b)

Now, assume there exists a C∞, non-negative function h : [0, 1] → R, with h(0) = h(1) = 0, such that:

1. h(t) = 0, ∀t ̸∈ (a, b)

2.
´ 1
0
h(t)dt > 0

If such a function exists, then:

ˆ 1

0

f(t)h(t)dt =

ˆ b

a

f(t)h(t)dt

> c

ˆ b

a

h(t)dt

> 0

But this is a contradiction, since we claimed that the integral was 0. Hence, no such t0 must exist, so
f(t) = 0,∀t ∈ [0, 1] as required.
We now consider th emultidimensional case. Let f : [0, 1] → Rn, and assume that:

ˆ 1

0

⟨f(t), h(t)⟩ dt = 0

for all C∞ functions h : [0, 1] → Rn, with h(0) = h(1) = 0.
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Again, assume that ∃t0 ∈ (0, 1) such that f(t0) ̸= 0. Then, at least one component of f must be non-zero.
Without loss of generality, assume f1(t0) ̸= 0. By the work for n = 1, if there exists a function h1 : [0, 1] → R
with h1(0) = h1(1) = 0, then: ˆ 1

0

f1(t)h1(t)dt ̸= 0

Now, define:
h : [0, 1] → Rn

such that:

h(t) =


h1(t)

0
...

0


h is smooth, and satisfies h(0) = h(1) = 0. Furthermore,

ˆ 1

0

⟨f(t), h(t)⟩ dt =
ˆ 1

0

f1(t)h1(t)dt ̸= 0

so no such t0 must exist, and f = 0,∀t ∈ [0, 1], as required.

We now consider the construction of the smooth function h(t) for the case n = 1.
Consider:

θ(t) =

{
e−

1
t , t > 0

0, t ≤ 0

θ is infinitely differentiable, even at t = 0

−1 1 2 3

0.2

0.4

0.6

t

θ(t)

Now define a new function:
ϕ(t) = θ(t)θ(1− t)

Notice that:

• this is a product of smooth functions, so it is smooth

• θ(t) enforces that for t ≤ 0, ϕ(t) = 0
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• θ(1− t) enforces that for t ≥ 1, ϕ(t) = 0

0.2 0.4 0.6 0.8

0.5

1

1.5

·10−2

t

θ(t)

We can then rescale ϕ, such that it vanishes outside any interval (a, b), not just (0, 1):

ϕa,b(t) = ϕ

(
t− a

b− a

)
Picking 0 < a < b < 1, let:

u(t) =
t− a

b− a
=⇒ du

dt
=

t

b− a

Then we have:

ˆ b

a

ϕa,b(t)dt =

ˆ u(b)

u(a)

ϕ(u)(b.a)du

= (b− a)

ˆ 1

0

ϕ(t)dt

From the graph, we can see that
´ 1
0
ϕ(t)dt > 0, so it follows that:

ˆ b

a

ϕa,b(t)dt > 0

Hence, taking h(t) = ϕa,b satisfies the restrictions placed.

3.3 Solving the Arclength Problem

The geodesic for the arclength functional is obtained by finding x such that:

d

ds
(S[x+ sε])

∣∣∣∣
s=0

= 0

In terms of the functional,

S[x+ sε] =

ˆ 1

0

∥ẋ(t) + sε̇(t)∥dt
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Using the inner product, we can write:

∥ẋ+ sε̇∥ =
√

⟨ẋ+ sε̇, ẋ+ sε̇⟩

=
√

⟨ẋ, ẋ⟩+ 2s ⟨ẋ, ε̇⟩+ s2 ⟨ε̇, ε̇⟩

Hence:

d

ds
(S[x+ sε]) =

d

ds

ˆ 1

0

√
⟨ẋ, ẋ⟩+ 2s ⟨ẋ, ε̇⟩+ s2 ⟨ε̇, ε̇⟩dt

=

ˆ 1

0

d

ds

(√
⟨ẋ, ẋ⟩+ 2s ⟨ẋ, ε̇⟩+ s2 ⟨ε̇, ε̇⟩

)
dt

=

ˆ 1

0

2 ⟨ẋ, ε̇⟩+ 2s ⟨ε̇, ε̇⟩
2∥ẋ+ sε̇∥

dt

=

ˆ 1

0

⟨ẋ+ sε̇, ε̇⟩
∥ẋ+ sε̇∥

dt

Evaluating at s = 0:
d

ds
(S[x+ sε])

∣∣∣∣
s=0

=

ˆ 1

0

⟨ẋ, ε̇⟩
∥ẋ∥

dt =

ˆ 1

0

〈
ẋ

∥ẋ∥
, ε̇

〉
dt

Integration by Parts for the Dot Product
Say you have a function:

f(t) = ⟨u(t), v(t)⟩

then:
ḟ(t) = ⟨u̇(t), v(t)⟩+ ⟨u(t), v̇(t)⟩

If we then have:

ˆ b

a

⟨u(t), v̇(t)⟩ dt =
ˆ b

a

(ḟ(t)− ⟨u̇(t), v(t)⟩)dt

= [⟨u(t), v(t)⟩]ba −
ˆ b

a

⟨u̇(t), v(t)⟩)dt

We don’t know anything about ε̇, so we can use integration by parts to get rid of it:

d

ds
(S[x+ sε])

∣∣∣∣
s=0

=

ˆ 1

0

〈
ẋ

∥ẋ∥
, ε̇

〉
dt

=

[〈
ẋ

∥ẋ∥
, ε

〉]1
0

−
ˆ 1

0

〈
d

dt

(
ẋ

∥ẋ∥

)
, ε

〉
)dt

= −
ˆ 1

0

〈
d

dt

(
ẋ

∥ẋ∥

)
, ε

〉
)dt, (since ε(0) = ε(1) = 0)

But then, if we require that:

d

ds
(S[x+ sε])

∣∣∣∣
s=0

= 0 =⇒ −
ˆ 1

0

〈
d

dt

(
ẋ

∥ẋ∥

)
, ε

〉
)dt = 0
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by the Fundamental Lemma of the Calculus of Variations, it must be the case that:

d

dt

(
ẋ

∥ẋ∥

)
= 0

In other words, the velocity vector of x must be constant, so in particular, x(t) must just be a straight line,
as expected.

3.4 Exercises

1. Show that for variations ε proportional to the tangent of the original curve x(t), the ex-
pression: ˆ 1

0

〈
d

dt

(
ẋ

∥ẋ∥

)
, ε

〉
dt = 0

interpret the result.

2. Generalise the preceding discussion to paths in Rn between any 2 distinct points.

3. What is the shortest path in the plane from the origin to the line x = 1? Solve this problem
using the variational calculus, but notice that variations are not necessarily fixed at one
endpoint.
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