Variational Calculus - Week 0 - Prequel Lectures: Several Variable Calculus and Topology

Antonio León Villares

September 2022

Contents

1	Ana	alysis & Algebra Recap	3
	1.1	The Dot Product	:
	1.2	Topological Balls	4
	1.3	Continuity	4
		1.3.1 Definition: Continuous Function	4
		1.3.2 Definition: Continuous Function (via Topological Balls)	4
		1.3.3 Theorem: Topological Characterisation of Continuity	Ę
2	Der	ivatives and Change of Coordinates	Ę
	2.1	The Directional Derivative	Ę
		2.1.1 Definition: The Directional Derivative of a Scalar Field	Ę
	2.2	Definition: Differentiability of a Scalar Field	7
	2.3	· ·	8
	2.4	Example: Partial Derivatives Defined, but not Continuous	8
	2.5	Theorem: Differentiability Implies Continuity	ç
	2.6	Continuous Differentiability	10
	2.7	Theorem: Sufficient Condition for Differentiability	10
	2.8	Differentiability and Vector-Valued Functions	10
		2.8.1 Vector-Valued Functions	10
		2.8.2 Definition: Differentiability of a Vector-Valued Function	11
		2.8.3 The Total Derivative and the Jacobian Matrix	11
		2.8.4 Theorem: Sufficient Condition for Differentiability	12
		2.8.5 Theorem: The Chain Rule	13
	2.9	Change of Coordinates: Worked Example	13
3	Lev	el Sets and Implicitly Defined Functions	15
	3.1	Level Sets and Regular Points	15
	3.2	Exercise: Gradient at a Regular Point is Perpendicular to Tangent	16
	3.3	Theorem: Implicit Function Theorem in \mathbb{R}^2	16
	3.4	Theorem: The Implicit Function Theorem	18
4	The	e Hessian Matrix and Stationary Points	18
	4.1	Critical Points	
	4.2	The Hessian Matrix	
	4.3	Theorem: Nature of Extrema from Hessian	20

5		e Method of Lagrange Multipliers	2
	5.1	Lagrange Multipliers	2
	5.2	Theorem: Method of Lagrange Multipliers	2
	5.3	Lagrange Multipliers for Multiple Constraints	2
	5.4	Exercise: Applying Lagrange Multipliers	2
6	Cur	rve Parametrisation, Arc Length and Regular Surfaces	2
6		rve Parametrisation, Arc Length and Regular Surfaces Curve Parametrisation	_
6	6.1	,	
6	$6.1 \\ 6.2$	Curve Parametrisation	2
6	6.1 6.2 6.3	Curve Parametrisation	2; 2; 2;

1 Analysis & Algebra Recap

1.1 The Dot Product

- What is the dot product?
 - a **positive-definite** inner product in Euclidean space, \mathbb{R}^n :

$$\langle -, - \rangle : \mathbb{R}^n \to \mathbb{R}$$

- defined by:

$$\langle \underline{x}, \underline{y} \rangle = \sum_{i=1}^{n} x^{i} y^{i}$$

- here I am using the convention of the notes, whereby x^i denotes the *i*th component of the vector $\underline{x} \in \mathbb{R}^n$
- What are the properties of the dot product?
 - Symmetry:

$$\langle \underline{x}, y \rangle = \langle y, \underline{x} \rangle$$

- (Sesqui) Linearity:

$$\langle \lambda \underline{x}, y \rangle = \lambda \langle \underline{x}, y \rangle, \qquad \lambda \in \mathbb{R}$$

- Positive Definite:

$$\langle \underline{x}, \underline{x} \rangle \ge 0$$

with equality if and only if:

$$\underline{x} = \underline{0}$$

- What is the norm in Euclidean space?
 - **geometrically**, the **distance** between a vector and the origin
 - defined via the dot product:

$$\|\underline{x}\| = \sqrt{\langle \underline{x}, \underline{x} \rangle} = \sqrt{\sum_{i=1}^{n} (x^i)^2}$$

- What 2 inequalities are satisfied by the dot product/norm?
 - Triangle Inequality:

$$\|\underline{x} + y\| \le \|\underline{x}\| + \|y\|$$

- Cauchy-Schwarz Inequality:

$$|\langle \underline{x}, y \rangle| = ||\underline{x}|| ||y||$$

• What is an open ball?

1.2 Topological Balls

- What is an open ball?
 - an open ball of radius r centered at \underline{x} is the set:

$$B_r(\underline{x}) = \{ y \mid y \in \mathbb{R}^n, \ \|\underline{x} - y\| < r \}$$

- What is a closed ball?
 - a closed ball of radius r centered at \underline{x} is the set:

$$B_r(\underline{x}) = \{ y \mid y \in \mathbb{R}^n, \ \|\underline{x} - y\| \le r \}$$

- What is an interior point?
 - let $U \subset \mathbb{R}^n$, and consider a point $x \in U$
 - $-\underline{\mathbf{x}}$ is an **interior point** of U if there exists an open ball, centered at $\underline{\mathbf{x}}$, completely encompassed within U:

$$\exists \varepsilon > 0 : B_{\varepsilon}(x) \subset U$$

- What is an open subset?
 - $-U \subset \mathbb{R}^n$ is open if every $\underline{x} \in U$ is an interior point of U

1.3 Continuity

1.3.1 Definition: Continuous Function

Let U be an **open subset** of \mathbb{R}^n and define:

$$f:U\to\mathbb{R}^m$$

f is **continuous** at $\underline{a} \in U$ if:

$$\forall \varepsilon > 0, \exists \delta > 0 : \|\underline{x} - \underline{a}\| < \delta \implies \|f(\underline{x}) - f(\underline{a})\| < \varepsilon$$

f is **continuous** if it is continuous $\forall a \in U$.

1.3.2 Definition: Continuous Function (via Topological Balls)

Let U be an **open subset** of \mathbb{R}^n and define:

$$f:U\to\mathbb{R}^m$$

f is **continuous** at $a \in U$ if:

$$\forall \varepsilon > 0, \exists \delta > 0 : x \in B_{\delta}(\underline{a}) \implies f(\underline{x}) \in B_{\varepsilon}(f(\underline{a}))$$

[Equation A.5]

1.3.3 Theorem: Topological Characterisation of Continuity

The following gives an **equivalent** definition of continuity to the $\varepsilon - \delta$ definition.

Let U be an **open subset** of \mathbb{R}^n and define:

$$f:U\to\mathbb{R}^m$$

f is **continuous** if and only if for any **open subset** $V \subset \mathbb{R}^m$, there exists an **open subset** $W \subset \mathbb{R}^n$ with:

$$f^{-1}(V) = W \cap U$$

where:

$$f^{-1}(V) = \{x \mid x \in U, \ f(x) \in V\}$$

[Equation A.7]

2 Derivatives and Change of Coordinates

[For this, really recommend Stewart's Calculus: Early Transcendentals.]

2.1 The Directional Derivative

- What is a scalar field?
 - a mapping from a vector to a scalar:

$$f: \mathbb{R}^n \to \mathbb{R}$$

2.1.1 Definition: The Directional Derivative of a Scalar Field

Let $U \subset \mathbb{R}^n$ and define the scalar field:

$$f:U\to\mathbb{R}$$

The **derivative** of f at an **interior point** $\underline{a} \in U$ along the direction of $y \in \mathbb{R}^n$ is:

$$f'(\underline{a}; \underline{y}) = D_{\underline{y}} f(\underline{a}) = \lim_{t \to 0} \frac{f(\underline{a} + t\underline{y}) - f(\underline{a})}{t}$$

If y is a unit vector, $f'(\underline{a}; y)$ is a directional derivative.

Figure 1: Operating in higher dimensions, derivatives depend on the **direction** which we pick, since the function changes differently in different directions. We can ensure that $\underline{a} + t\underline{y}$ remains within the ball $B_r(\underline{a})$ by enforcing $0 \le t < \frac{r}{\|y\|}$.

• What is a partial derivative?

- a directional derivative, whereby we differentiate in the direction of the canonical basis vectors of \mathbb{R}^n
- if we use

$$x^1, x^2, \dots, x^i, \dots, x^n$$

as the coordinate axes, with corresponding (canonical) basis vectors:

$$\underline{e}_1,\underline{e}_2,\ldots,\underline{e}_i,\ldots,\underline{e}_n$$

we define:

$$f'(\underline{a};\underline{e}_i) \equiv \frac{\partial f}{\partial x^i}(\underline{a})$$

• What is the gradient vector?

- a vector ∇f , where the *i*th component is the partial derivative $\frac{\partial f}{\partial x^i}$
- technically, the components of ∇f are themselves functions

• How do we compute directional derivatives using the gradient vector?

– given a vector y, the directional derivative at \underline{a} in the direction of y can be computed via:

$$f'(\underline{a}; y) = D_y f(\underline{a}) = (\nabla f \cdot y)(\underline{a}) = \langle \nabla f, y \rangle (\underline{a})$$

2.2 Definition: Differentiability of a Scalar Field

A scalar field $f: U \to \mathbb{R}$ is **differentiable** at an interior point $\underline{a} \in U$ if its **total derivative** exists at \underline{a} . [Definition A.2]

The total derivative of f at \underline{a} is a unique linear map:

$$Df(\underline{a}): \mathbb{R}^n \to \mathbb{R}$$

such that:

$$f(\underline{a} + \underline{v}) = f(\underline{a}) + Df(\underline{a})(\underline{v}) + ||\underline{v}|| E(\underline{a}, \underline{v}), \quad \forall \underline{v} \in \mathbb{R}^n$$

Here, E(a, v) is an **error term**, such that:

$$\lim_{\|v\|\to 0} E(\underline{a},\underline{v}) = 0$$

- How does the total derivative relate to the directional derivatives of a scalar field?
 - assuming the **total derivative** exists for f, then:

$$f(\underline{a} + \underline{v}) = f(\underline{a}) + Df(\underline{a})(\underline{v}) + ||\underline{v}|| E(\underline{a}, \underline{v}), \quad \forall \underline{v} \in \mathbb{R}^n$$

– if we rewrite $\underline{v} = ty$, for some free parameter t:

$$f(\underline{a} + ty) = f(\underline{a}) + Df(\underline{a})(ty) + ||ty|| E(\underline{a}, ty)$$

- if we exploit the linearity of the norm and total derivative:

$$f(\underline{a} + ty) = f(\underline{a}) + tDf(\underline{a})(y) + |t|||y||E(\underline{a}, ty)$$

- but now if we rearrange the expression, and divide through by t:

$$\frac{f(\underline{a}+t\underline{y})-f(\underline{a})}{t}=Df(\underline{a})(\underline{y})+\frac{|t|}{t}\|\underline{y}\|E(\underline{a},t\underline{y})$$

– taking the limit as $t \to 0$, and noticing that as $t \to 0$, then $||ty|| = ||\underline{v}|| \to 0$:

$$\lim_{t \to 0} \frac{f(\underline{a} + t\underline{y}) - f(\underline{a})}{t} = f'(\underline{a}; \underline{y}) = Df(\underline{a})(\underline{y})$$

- in other words, if the total derivative exists, then so do all other directional derivatives (since the total derivative evaluated at \underline{y} is precisely the directional derivative of f in the direction of \underline{y})
- What does the directional derivative tell us about directional derivatives as function approximators?
 - the total derivative is the best linear approximator for a scalar field close to some point \underline{a}
 - but since the directional derivatives are nothing but the result of evalutating the total derivative $Df(\underline{a})(\underline{y})$, this implies that in fact the directional derivatives provide the best linear approximation of f close to \underline{a}
 - this corresponds to the notion that directional derivatives span a hyperplane at \underline{a} which best approximates the behaviour of f at said point

2.3 Remark: Justifying Differentiability

In 1 dimension, a function is **differentiable** at a point if its derivative exists at said point.

However, when dealing with several dimensions, the "natural" extension to this won't work: we can't say a scalar field is **differentiable** at a point if **all** its partial derivatives are defined at said point.

This is because we know that "if a function is differentiable at a point, then it is continuous". However, it is possible to construct a scalar field, with all directional derivatives defined at a point, but which isn't continuous at said point, which shows it won't be differentiable. More on this can be seen in this Quora article, and an example is provided below.

2.4 Example: Partial Derivatives Defined, but not Continuous

Consider the scalar field:

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & \underline{x} \neq \underline{0} \\ 0, & \underline{x} = \underline{0} \end{cases}$$

The gradient vector (when $\underline{x} \neq \underline{0}$ is:

$$\nabla f = \begin{pmatrix} \frac{y^2(-x^2+y^4)^2}{(x^2+y^4)^2} \\ \frac{2xy(x^2-y^4)^2}{(x^2+y^4)^2} \end{pmatrix}$$

So the directional derivative at \underline{a} in the direction of $\underline{u} = (u_1, u_2)^T$ is:

$$f'(x,y;\underline{u}) = \frac{y^2(-x^2+y^4)^2}{(x^2+y^4)^2}u_1 + \frac{2xy(x^2-y^4)^2}{(x^2+y^4)^2}u_2$$

If x = 0, using the definition of directional derivative:

$$f'(\underline{0}; \underline{u}) = \lim_{t \to 0} \frac{f(\underline{0} + t\underline{u}) - f(\underline{0})}{t}$$

$$= \lim_{t \to 0} \frac{f(t\underline{u})}{t}$$

$$= \lim_{t \to 0} \frac{\frac{t^3 u_1 u_2^2}{t^2 u_1^2 + t^4 u_2^4}}{t}$$

$$= \lim_{t \to 0} \frac{t u_1 u_2^2}{t u_1^2 + t^3 u_2^4}$$

$$= \lim_{t \to 0} \frac{u_1 u_2^2}{u_1^2 + t^2 u_2^4}$$

Now, if $u_1 \neq 0$, then:

$$f'(\underline{0}; \underline{u}) = \lim_{t \to 0} \frac{u_1 u_2^2}{u_1^2 + t^2 u_2^4} = \frac{u_2^2}{u_1}$$

If $u_1 = 0$, then we have an indeterminate form, but L'Hopital's Rule tells us that the limit is 0. Thus, we can see that f has well defined directional derivatives for any vector \underline{u} .

However, f isn't continuous at the origin. To show this, it is sufficient to show that the limit obtained by moving along 2 different curves which pass through the origin is different. Indeed, if we approach the origin via straight lines, f seems to be continuous:

$$f(x, mx) = \frac{m^2x^3}{x^2 + m^4x^4} = \frac{m^2x}{1 + m^4x^2}$$

So taking the limit as $(x, y) \rightarrow (0, 0)$:

$$\lim_{(x,y)\to(0,0)} \frac{m^2x}{1+m^4x^2} = 0$$

so we get that the limit is 0 along any straight line trhough the origin, and this is the value of f at the origin, so f is continuous along these paths.

However, if we use a parabolic path $x = my^2$:

$$f(my^2, y) = \frac{my^4}{m^2y^4 + y^4} = \frac{m}{m+1} \neq 0$$

Hence, since the limits differ, f isn't continuous at the origin, even though all its partial derivatives are defined there.

This goes to show how the requirement of all partial derivatives being defined is not **sufficient** - as we will see below, we in fact require that the partial derivatives be defined **in the neighbourhood** of the point; that is, they must also be **continuous**.

2.5 Theorem: Differentiability Implies Continuity

if $f: U \to \mathbb{R}$ is **differentiable** (in the sense that its total derivative exists) at an **interior point** $\underline{a} \in U$, then f is **continuous** at \underline{a} . (Theorem A.3)

Proof. Since f is differentiable at \underline{a} :

$$f(\underline{a} + \underline{v}) = f(\underline{a}) + Df(\underline{a})(\underline{v}) + ||\underline{v}|| E(\underline{a}, \underline{v}), \quad \forall \underline{v} \in \mathbb{R}^n$$

If we rearrange:

$$f(a+v) - f(a) = \langle \nabla f, v \rangle + ||v|| E(a, v), \quad \forall v \in \mathbb{R}^n$$

Taking the absolute value of both sides:

$$|f(\underline{a} + \underline{v}) - f(\underline{a})| = |\langle \nabla f, \underline{v} \rangle + ||\underline{v}|| E(\underline{a}, \underline{v})|, \quad \forall \underline{v} \in \mathbb{R}^n$$

If we then apply the Cauchy-Schwarz Inequality, followed by the Triangle Inequality on the RHS:

$$0 \le |f(\underline{a} + \underline{v}) - f(\underline{a})| \le ||\nabla f|| ||\underline{v}|| + ||\underline{v}|| |E(\underline{a},\underline{v})|, \quad \forall \underline{v} \in \mathbb{R}^r$$

Then, as $||v|| \to 0$, also $||\nabla f|| ||\underline{v}|| + ||\underline{v}|| ||E(\underline{a},\underline{v})|| \to 0$, so by Squeeze Theorem:

$$|f(a+v)-f(a)| \to 0 \implies f(a+v) \to f(a)$$

so f is continuous at \underline{a} , as required.

2.6 Continuous Differentiability

- When is a function continuously differentiable at a point?
 - let $f: U \to \mathbb{R}$ and consider $\underline{a} \in U$
 - if:
 - * f is differentiable at \underline{a}
 - * all the partial derivatives of f at \underline{a} are continuous

then f is **continuously differentiable** at \underline{a}

- When is a function differentiable?
 - when it is differentiable at every point in its domain
- When is a function continuously differentiable?
 - when it is continuously differentiable at every point in its domain
 - then, we say that $f:U\to\mathbb{R}$ is such that $f\in C^1(U)$, the class of continuously differentiable function on U

2.7 Theorem: Sufficient Condition for Differentiability

Let $f: U \to \mathbb{R}$, and let $\underline{a} \in U$ be an interior point. If:

- 1. all partial derivatives exist at a
- 2. all partial derivatives are continuous at a

then f is **differentiable** at \underline{a} . (Theorem A.4)

2.8 Differentiability and Vector-Valued Functions

2.8.1 Vector-Valued Functions

- What is a vector-valued function?
 - a mapping:

$$f:U\to\mathbb{R}^m$$

where $U \subset \mathbb{R}^n$, and n, m need not be the same

- we can think of vector-valued functions as **vectors** containing scalar fields as components:

$$f = (f^1, \dots, f^m) = \sum_{i=1}^m f^i \underline{e}_i$$

where:

$$f^i:U\to\mathbb{R}$$

- How do we defined the derivative of a vector valued function?
 - the derivative is itself a vector, obtained by **componentwise** differentiation
 - formally, at an interior point $\underline{a} \in U$, the derivative in the direction of $y \in \mathbb{R}^n$ is:

$$f'(\underline{a};\underline{y}) = \lim_{t \to 0} \frac{f(\underline{a} + t\underline{y}) - f(\underline{a})}{t} = (f^{1'}(\underline{a};\underline{y}), f^{2'}(\underline{a};\underline{y}), \dots, f^{m'}(\underline{a};\underline{y}))^T$$

2.8.2 Definition: Differentiability of a Vector-Valued Function

Let $f: U \to \mathbb{R}^m, U \subset \mathbb{R}^n$.

f is differentiable at an interior point $a \in U$ if its total derivative exists.

That is, there exists a **linear map** $Df(\underline{a} \text{ such that:}$

$$f(\underline{a} + \underline{v}) = f(\underline{a}) + Df(\underline{a})(\underline{v}) + ||\underline{v}|| E(\underline{a}, \underline{v})$$

Here, $E(\underline{a},\underline{v})$ is a **vector-valued error term** such that:

$$\lim_{\underline{v}\to\underline{0}} E(\underline{a},\underline{v}) = \underline{0}$$

2.8.3 The Total Derivative and the Jacobian Matrix

- How are the derivatives of a vector-valued function related to its total derivative?
 - by defining $\underline{v} = ty$ it can be shown that:

$$Df(\underline{a})(y) = f'(\underline{a}; y) = (f^{1'}(\underline{a}; y), f^{2'}(\underline{a}; y), \dots, f^{m'}(\underline{a}; y))^T$$

- that is, derivatives provide the best linear approximation for the vector-valued function
- What is the Jacobian Matrix?
 - a generalisation of the **gradient vector** for vector-valued function
 - the **matrix representation** of the total derivative Df(a)
 - with respect to the canonical basis of \mathbb{R}^n we have:

$$Df(\underline{a})(\underline{y}) = (f^{1'}(\underline{a}; \underline{y}), f^{2'}(\underline{a}; \underline{y}), \dots, f^{m'}(\underline{a}; \underline{y}))^{T}$$

$$= (\langle \nabla f^{1}, \underline{y} \rangle (\underline{a}), \dots, \langle \nabla f^{m}, \underline{y} \rangle (\underline{a}))$$

$$= \sum_{j=1}^{m} \langle \nabla f^{i}, \underline{y} \rangle (\underline{a}) \underline{e}_{j}$$

$$= \sum_{j=1}^{m} \left(\sum_{i=1}^{n} y^{i} \frac{\partial f^{j}}{\partial x^{i}} (\underline{a}) \right) \underline{e}_{j}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} y^{i} \frac{\partial f^{j}}{\partial x^{i}} (\underline{a}) \underline{e}_{j}$$

- the $m \times n$ matrix $Df(\underline{a})$ is the matrix with entries defined by:

$$[Df(\underline{a})]_i^j = \frac{\partial f^j}{\partial x^i}(\underline{a})$$

(here we consider the entry at row j and column i)

– alternatively, the Jacobian matrix is the matrix obtained by using the **gradient vector** of each f^i as rows:

$$Df(\underline{a}) = \begin{pmatrix} \nabla f^{1}(\underline{a})^{T} \\ \nabla f^{2}(\underline{a})^{T} \\ \vdots \\ \nabla f^{m}(\underline{a})^{T} \end{pmatrix} = \begin{pmatrix} \frac{\partial f^{1}}{\partial x^{1}}(\underline{a}) & \frac{\partial f^{1}}{\partial x^{2}}(\underline{a}) & \dots & \frac{\partial f^{1}}{\partial x^{n}}(\underline{a}) \\ \frac{\partial f^{2}}{\partial x^{1}}(\underline{a}) & \frac{\partial f^{2}}{\partial x^{2}}(\underline{a}) & \dots & \frac{\partial f^{2}}{\partial x^{n}}(\underline{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f^{m}}{\partial x^{1}}(\underline{a}) & \frac{\partial f^{m}}{\partial x^{2}}(\underline{a}) & \dots & \frac{\partial f^{m}}{\partial x^{n}}(\underline{a}) \end{pmatrix}$$

2.8.4 Theorem: Sufficient Condition for Differentiability

Let $f: U \to \mathbb{R}^m, U \subset \mathbb{R}^n$, and let $\underline{a} \in \mathbb{R}^n$ be an interior point. If:

- 1. the **Jacobian Matrix** exists at <u>a</u>
- 2. all partial derivatives are continuous at a

then f is differentiable at \underline{a} .

2.8.5 Theorem: The Chain Rule

Consider:

$$\begin{split} f: U \to \mathbb{R}^m, & U \subset \mathbb{R}^n \\ g: V \to \mathbb{R}^n, & V \subset \mathbb{R}^p \\ h = f \circ g: W \to \mathbb{R}^m, & W = V \cap g^{-1}(U) \subset \mathbb{R}^p \end{split}$$

(we required $g^{-1}(U)$ to defined W to ensure that if $\underline{w} \in W$, then $f(g(\underline{w}))$ is defined, since $g(\underline{w}) \in U$ by construction). Now, assume that:

- \underline{a} is an interior point of W
- g is differentiable at a
- f is **differentiable** at $\underline{b} = g(\underline{a})$

Then, h is differentiable at \underline{a} , and the derivative is given by the chain rule:

$$Dh(\underline{a}) = Df(\underline{b}) \circ Dg(\underline{a})$$

Thinking of operators as matrices, we obtain the **Jacobian** of h by matrix multiplication of the jacobians of f, g:

$$[Dh(\underline{a})]_k^j = \sum_{i=1}^n [Df(\underline{b})]_i^j [Dg(\underline{a})]_k^i$$

where:

- Dh(a) is a $m \times p$ matrix
- $Df(\underline{b})$ is a $m \times n$ matrix
- Dq(a) is $a n \times p$ matrix

 $(Theorem\ A.6)$

2.9 Change of Coordinates: Worked Example

Thus far we have worked over the canonical basis; however, this need not be the basis of choice for certain problems. For instance, when working with circles/circular symmetry, polar coordinates might be more convenient:

$$x(r,\theta) = r\cos(\theta)$$
 $y(r,\theta) = r\sin(\theta)$
$$r(x,y) = \sqrt{x^2 + y^2}$$
 $\theta(x,y) = \arctan\left(\frac{y}{x}\right)$

We note:

- the radius is defined on the range $0 < r < \infty$
- the argument is defined on the range $\theta_0 \leq \theta < \theta_0 + 2\pi$, where θ_0 is any angle in radians

• this allows us to describe $\mathbb{R}^2 \setminus \{0\}$, since (0,0) can't be described by a single argument

Now, if we want to operate over polar coordinates, but f uses x, y as arguments, how can we determine the derivative of f with respect to (r, θ) ?

If
$$f: U \to \mathbb{R}, U \subset \mathbb{R}^2 \setminus \{0\}$$
, define:

$$g(r,\theta) = f(r\cos\theta, r\sin\theta)$$

We define g so that we have an explicit dependence on polar coordinates, and thus, can define partial derivatives.

Let \underline{a} be a point described in polar coordinates, and \underline{b} the corresponding point in cartesian coordinates. If we apply the chain rule, we know that:

$$\begin{split} \frac{\partial g}{\partial r} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \\ \frac{\partial g}{\partial \theta} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} \end{split}$$

We can compute:

$$\frac{\partial x}{\partial r} = \cos \theta$$
$$\frac{\partial x}{\partial \theta} = -r \sin \theta$$
$$\frac{\partial y}{\partial r} = \sin \theta$$
$$\frac{\partial t}{\partial \theta} = r \cos \theta$$

So:

$$\frac{\partial g}{\partial r}(\underline{a}) = \frac{\partial f}{\partial x}(\underline{b})\cos\theta + \frac{\partial f}{\partial y}(\underline{b})\sin\theta = \langle \nabla f(\underline{b}), \underline{e}_r \rangle = f'(\underline{b}; \underline{e}_r)$$

$$\frac{\partial g}{\partial \theta}(\underline{a}) = -r\frac{\partial f}{\partial x}(\underline{b})\sin\theta + r\frac{\partial f}{\partial y}(\underline{b})\cos\theta \implies \frac{1}{r}\frac{\partial g}{\partial \theta}(\underline{a}) = \langle \nabla f(\underline{b}), \underline{e}_\theta \rangle = f'(\underline{b}; \underline{e}_\theta)$$

where we use:

$$\begin{split} \underline{e}_r &= \cos\theta \underline{e}_1 + \sin\theta \underline{e}_2 \\ \underline{e}_\theta &= -\sin\theta \underline{e}_1 + \cos\theta \underline{e}_2 \end{split}$$

In other words, if we use $\underline{e}_r, \underline{e}_\theta$ as basis vectors (we can verify they are orthonormal), this tells us that the partial derivatives of g are nothing but directional derivatives in another basis.

We can then use this to compute the gradient in polar coordinates. Notice, since e_r , e_θ defines a basis, we can write any vector y in terms of it:

$$\underline{y} = y^r \underline{e}_r + y^{\theta} \underline{e}_{\theta}$$

where:

$$y^{\theta} = \langle y, e_r \rangle$$
 $y^{\theta} = \langle y, e_{\theta} \rangle$

Now, if we consider the directional derivative:

$$\begin{split} f'(\underline{b};\underline{y}) &= \left\langle \nabla f(\underline{b}),\underline{y} \right\rangle \\ &= \left\langle \nabla f(\underline{b}),y^r\underline{e}_r + y^{\theta}\underline{e}_{\theta} \right\rangle \\ &= y^r \left\langle \nabla f(\underline{b}),\underline{e}_r \right\rangle + y^{\theta} \left\langle \nabla f(\underline{b}),\underline{e}_{\theta} \right\rangle \\ &= y^r \frac{\partial g}{\partial r}(\underline{a}) + y^{\theta} \frac{1}{r} \frac{\partial g}{\partial \theta}(\underline{a}) \\ &= \left\langle \nabla g(\underline{a}),y \right\rangle \end{split}$$

So we can conclude that in polar coordinates (with respect to the new basis):

$$\nabla g = \frac{\partial g}{\partial r} \underline{e}_r + \frac{1}{r} \frac{\partial g}{\partial \theta} \underline{e}_{\theta}$$

3 Level Sets and Implicitly Defined Functions

3.1 Level Sets and Regular Points

- What is a level set?
 - consider a scalar field $f: U \to \mathbb{R}, U \subset \mathbb{R}^n$
 - for some $c \in \mathbb{R}$ in the co-domain of f, define the level set L(c) as:

$$L(c) = \{ \underline{x} \mid \underline{x} \in U, \ f(\underline{x}) = c \}$$

- for example, for $f(x, y, z) = x^2 + y^2 + z^2$, L(1) is precisely the surface of a sphere in 3 dimensions of radius 1
- What is a regular point?
 - a point $\underline{a} \in L(c)$ such that:

$$\nabla f(\underline{a}) \neq \underline{0}$$

- What do level sets represent?
 - they represent a **hypersurface** in space
 - also known as **codimension** 1 surfaces:
 - * the **codimension** corresponds to the number of **linearly independent** normal vectors of the surface
 - * with one constraint $f(\underline{x}) = c$, we defined a surface in \mathbb{R}^n , which only has 1 normal vector, and so, is **codimension 1**
 - * with 2 constraints $f(\underline{x}) = c, g(\underline{x}) = k$, we embed a lower dimensional surface (from \mathbb{R}^{n-1}) into \mathbb{R}^n , so it has to lid normal vectors, and so, is **codimension 2**
 - * for example, in \mathbb{R}^3 the surface obtained by the intersection of 2 surfaces derived from constraints gives a curve from \mathbb{R}^2 , but embedded in \mathbb{R}^3 ; such a curve has 2 normal vectors, which will be perpendicular
 - it is possible that if $f(x^1, \ldots, x^n) = c$, we can sometimes solve to express a variable in terms of the other variables:

$$x^n = g(x^1, \dots, x^{n-1})$$

Then, we can think of the surface as the **graph** of f

- however, this representation is only **local**: with $f(x, y, z) = x^2 + y^2 + z^2$, we only get a local representation of the sphere:
 - * if z > 0, $z = \sqrt{R^2 x^2 y^2}$ is the **northern hemisphere**
 - * if z < 0, $z = -\sqrt{R^2 x^2 y^2}$ is the **southern hemisphere**
 - * however, it is impossible to define the **whole** sphere through this representation
 - * here, we have defined z(x,y) implicitly by $f(x,y,z)=R^2$
- How can we determine the tangent plane to a level set at a point?
 - consider any $\underline{a} \in L(c)$
 - since the tangent to L(c) at \underline{a} is orthogonal to ∇f , any $\underline{x} \in \mathbb{R}^n$ satisfying:

$$\langle (x-a), \nabla f \rangle = 0$$

will be part of the tangent plane at \underline{a}

- What is a regular surface?
 - a level set in which the gradient is never 0

3.2 Exercise: Gradient at a Regular Point is Perpendicular to Tangent

Define a curve:

$$\underline{\gamma}:I\to U,\qquad I\subset\mathbb{R}$$

where γ is continuously differentiable, and parametrised by $t \in I$. $\gamma(t)$ lies entirely in the level set L(c) - that is, $\forall t \in I$:

$$f(\gamma(t)) = c$$

If \underline{a} is a regular point, and $\underline{a} = \gamma(t_0)$, show that $\nabla f(\underline{a})$ is orthogonal to the tangent curve $\underline{\gamma}$ at t_0 . Since $f(\gamma(t)) = c$, we can differentiate with respect to t, applying the chain rule:

$$\sum_{i=1}^{n} \frac{\partial f}{\partial \gamma^{i}} \frac{d\gamma^{i}}{dt} = 0 \implies \langle \nabla f, \underline{\gamma}' \rangle = 0$$

as required.

3.3 Theorem: Implicit Function Theorem in \mathbb{R}^2

The implicit function theorem gives us conditions under which we can solve for variables in implicitly defined functions, in terms of the other variables.

Let $f: U \to \mathbb{R}, U \subset \mathbb{R}^2$ be a **continuously differentiable** function. Define (x_0, y_0) to be an **interior point** of U, satisfying $f(x_0, y_0) = 0$. If $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$, then there exists a **neighbourhood** of (x_0, y_0) such that for x sufficiently close to x_0 , there is a **unique continuously differentiable function** y = F(x) such that:

- $\bullet \ y_0 = F(x_0)$
- f(x, F(x)) = 0

•

$$F'(x) = -\frac{\frac{\partial f}{\partial x}(x, F(x))}{\frac{\partial f}{\partial y}(x, F(x))}$$

 $(Theorem\ A.10)$

Proof. Without loss of generality, since $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$, we can assume that $\frac{\partial f}{\partial y}(x_0, y_0) > 0$ (otherwise just repeat argument with -f).

Now, f is continuously differentiable, so all its partial derivatives are continuous, which means that $\frac{\partial f}{\partial u}(x,y) > 0$ for any (x,y) in a **neighbourhood** of (x_0,y_0) .

We can consider a rectangle within this neighbourhood, defined for $\delta, \varepsilon > 0$:

- $x_0 \delta < x < x_0 + \delta$
- $y_0 \varepsilon < y < y_0 + \delta$

We can now consider varying y, whilst keeping $x = x_0$ fixed. In particular, since in the rectangle $\frac{\partial f}{\partial y}(x,y) > 0$, on the line $y_0 - \varepsilon < y < y_0 + \varepsilon$ $f(x_0,y)$ is an increasing function; since it attains a 0 at (x_0,y_0) it follows that:

$$\exists y_1 > y_0, y_2 < y_0 \in (y_0 - \varepsilon, y_0 + \varepsilon) : f(x_0, y_1) > 0, \quad f(x_0, y_2) < 0$$

But again by continuity of the partial derivative, in some interval around x_0 , if we fix y_1, y_2 we will have that for $x \in (x_0 - \delta, x_0 + \delta)$:

- $f(x, y_1) > 0$
- $f(x, y_2) < 0$

In this neighbourhood, we still have $\frac{\partial f}{\partial y}(x,y) > 0$, so f will be strictly increasing; hence, for each x in the neighbourhood, we can always find a unique $y \in (y_2, y_1)$ such that f(x, y) = 0 (since we have a continuous, increasing function, which goes from negative to positive values).

Thus, in this neighbourhood, we have implicitly defined y as a function of x (since for each x, there is a unique y satisfying f(x,y) = 0), so we can write y = F(x). By construction, we will have $y_0 = F(x_0)$.

Finally, by definition we have that f(x, F(x)) = 0 in the neighbourhood (this is the definition of F), so if we differentiate with respect to x:

$$\frac{\partial f}{\partial x}(x,F(x)) + \frac{\partial f}{\partial y}(x,F(x))F'(x) = 0 \implies F'(x) = -\frac{\frac{\partial f}{\partial x}(x,F(x))}{\frac{\partial f}{\partial y}(x,F(x))}$$

Notice, this doesn't outline the neighbourhood on which this relationship can be made explicit, nor does it guarantee that we can actually obtain the explicit expression y = F(x). However, it does give us an explicit expression for the derivative of an implicitly defined function - what is known as **implicit differentiation**.

3.4 Theorem: The Implicit Function Theorem

4 The Hessian Matrix and Stationary Points

4.1 Critical Points

- What is a critical point?
 - let $f: U \to \mathbb{R}$ be a scalar field
 - an interior point \underline{x}_0 is a **critical point** (or **extremum**) if the directional derivatives of f vanish in all directions at \underline{x}_0
 - this implies that $f(\underline{x}_0)$ is a local maximum/minimum or a saddle point
- How does a scalar field behave around a critical point?

- consider a ball B around a critical point \underline{x}_0 :
 - * if $\forall \underline{x} \in B$, $f(\underline{x}) f(\underline{x}_0) > 0$, then \underline{x}_0 is a **local minimum**
 - * if $\forall \underline{x} \in B$, $f(\underline{x}) f(\underline{x}_0) < 0$, then \underline{x}_0 is a **local maximum**
 - * if the sign of $f(\underline{x}) f(\underline{x}_0)$ depends on the direction in which we move away from \underline{x}_0 , then \underline{x}_0 is a **saddle point**

4.2 The Hessian Matrix

- What is the Hessian matrix?
 - if f has **well-defined** and **continuous** second order partial derivatives at a point \underline{a} , we can expand:

$$f(\underline{a} + \underline{v}) = f(\underline{a}) + Df(\underline{a})(\underline{v}) + \frac{1}{2}\underline{v}^T Hf(\underline{a})(\underline{v})\underline{v} + \|\underline{v}\|^2 E(\underline{a},\underline{v})$$

(this is similar to a second order Taylor expansion)

- $-E(\underline{a},\underline{v})$ is an **error-term** which vanishes as $\underline{v} \to \underline{0}$
- $Hf(\underline{a})$ is the **Hessian** of f at \underline{a} , and has entries:

$$[Hf(\underline{a})]_{ij} = \frac{\partial^2 f}{\partial x^i \partial x^j}(\underline{a})$$

- What are the properties of the Hessian matrix?
 - if the second order partial derivatives are **continuous** at \underline{a} , then the **Hessian** is **symmetric**
 - this means that:
 - * it has real eigenvalues
 - * eigenvectors of different eigenvalues are orthogonal
 - * it can be diagonalised:

$$Hf(a) = P^T DP$$

where P is the matrix with eigenvectors as columns, and D is the diagonal matrix with eigenvalues in the diagonal

- Why is the Hessian matrix useful for determining the nature of extrema?
 - by definition:

$$Df(a)(v) = \langle \nabla f(a), v \rangle$$

so at a critical point \underline{x}_0 , we have that $Df(\underline{x}_0)(\underline{v}) = 0$

- hence:

$$f(\underline{x}_0 + \underline{v}) - f(\underline{x}_0) = \frac{1}{2}\underline{v}^T H f(\underline{a})(\underline{x}_0)\underline{v} + \|\underline{v}\|^2 E(\underline{x}_0,\underline{v})$$

- as $\underline{v} \to \underline{0}$, we can see that the sign of $f(\underline{x}_0 + \underline{v}) - f(\underline{x}_0)$ will **solely** depend on the **quadratic** form $\underline{v}^T H f(\underline{a})(\underline{x}_0)\underline{v}$

4.3 Theorem: Nature of Extrema from Hessian

Let $f: U \to \mathbb{R}$ be a **scalar field** whose second order partial derivatives at an **extremum** \underline{x}_0 exist and are **continuous** in a ball around \underline{x}_0 . The **extremum** at \underline{x}_0 is:

- a local minimum if all the eigenvalues of $Hf(\underline{x}_0)$ are positive
- a local maximum if all the eigenvalues of $Hf(\underline{x}_0)$ are negative
- a saddle point if $Hf(\underline{x}_0)$ has both positive and negative eigenvalues
- inconclusive if there is at least one zero eigenvalue, with all other eigenvalues of the same sign

Proof. Diagonalising the Hessian, we can transform the quadratic form:

$$\underline{v}^T H f(\underline{a})(\underline{x}_0)\underline{v} = \underline{v}^T (P^T D P)\underline{v} = \underline{w}^T D \underline{w}$$

where $\underline{w} = P\underline{v}$.

Since the diagonals of D are the eigenvalues of $Hf(\underline{a})(\underline{x}_0)$:

$$\underline{w}^T D \underline{w} = \sum_{i=1}^n \lambda_i (w^i)^2$$

Hence, it follows that since $(w^i)^2 \geq 0$:

- if all the eigenvalues are positive, $\underline{v}^T H f(\underline{a})(\underline{x}_0)\underline{v} > 0$, and so $f(\underline{x}_0 + \underline{v}) f(\underline{x}_0) > 0$ so x_0 is a local minimum
- if all the eigenvalues are negative, $\underline{v}^T H f(\underline{a})(\underline{x}_0)\underline{v} < 0$, and so $f(\underline{x}_0 + \underline{v}) f(\underline{x}_0) < 0$ so x_0 is a local maximum

5 The Method of Lagrange Multipliers

5.1 Lagrange Multipliers

- What is a constrained optimisation problem?
 - the problem of finding an **extremum** of a function, subject to **constraints**
 - typically, we seek to find an extremum of $f(\underline{x})$, given that the variables (domain) are constrained to satisfy $g(\underline{x}) = c$ (can be simplified to $g(\underline{x}) = 0$, by defining $g(\underline{x}) := g(\underline{x}) c$)
- How can one go about solving a constrained optimisation problem?
 - given $g(\underline{x}) = 0$, we can solve the constraint for one variable:

$$x^n = F(x^1, \dots, x^{n-1})$$

- then, we can optimise:

$$f(x^1, \dots, x^{n-1}, F(x^1, \dots, x^{n-1}))$$

by the previous methods (i.e Hessian)

- however, F will only apply locally, so this approach might not work in general

• What is the method of Lagrange multipliers?

- method providing **necessary** conditions for a point to be a critical point

- we seek an extremum for $f(\underline{x})$, given that \underline{x} must lie (satisfy) within the curve $g(\underline{x}) = 0$
- this is equivalent to finding the largest value of c such that the level curve $f(\underline{x}) = c$ intersects $g(\underline{x}) = 0$
- intuitively, this occurs precisely when the 2 level curves intersect tangentially
- but if the curves are tangential, this is equivalent to the **gradient vectors** being parallel. In other words, at an extremum \underline{x}_0 , there exists $\lambda \in \mathbb{R}$ such that:

$$\nabla f(x) = \lambda \nabla g(x)$$

(since both gradient vectors are perpendicular to the tangent)

– with this, we can find all \underline{x}_0 satisfying the Lagrange multipliers, and then use the Hessian to verify the nature of the points

• What is the Lagrangian?

- in practice, when applying the method of Lagrange multipliers, we typically use the Lagrangian:

$$\mathcal{L}(\underline{x}, \lambda) = f(\underline{x}) - \lambda g(\underline{x})$$

- if we compute the gradient:

$$\nabla \mathcal{L}(\underline{x}, \lambda) = \begin{pmatrix} \nabla f(\underline{x}) - \lambda \nabla g(\underline{x}) \\ - - - - \\ g(\underline{x}) \end{pmatrix}$$

– notice, at a critical point \underline{x}_0 which satisfies the constraint, we get:

$$\nabla \mathcal{L}(\underline{x}_0, \lambda) = \underline{0}$$

- in other words, any critical point of λ will be a critical point of f given the constraint g

5.2 Theorem: Method of Lagrange Multipliers

Let:

$$f, g: U \to \mathbb{R}, \qquad U \subset \mathbb{R}^n$$

Let \underline{x}_0 be an interior point of U, such that \underline{x}_0 is an **extremum** of f, subject to $g(\underline{x}) = 0$.

Define the set of all \underline{x} satisfying the constraint as U_0 :

$$U_0 = \{ \underline{x} \mid \underline{x} \in U, g(\underline{x}) = 0 \}$$

Assume there exists an n-ball $B(\underline{x}_0)$, such that:

- $f(\underline{x}) \le f(\underline{x}_0), \quad \forall x \in U_0 \cap B(\underline{x}_0)$
- $or f(\underline{x}) \ge f(\underline{x}_0), \quad \forall x \in U_0 \cap B(\underline{x}_0)$

Then, if $\nabla g(\underline{x}_0) \neq 0$, $\exists \lambda in \mathbb{R}$ such that \underline{x}_0 is a critical point of the Lagrangian:

$$\mathcal{L}: U \times \mathbb{R} \to \mathbb{R}$$

$$\mathcal{L}(\underline{x}, \lambda) = f(\underline{x}) - \lambda g(\underline{x})$$

 $(Theorem\ A.12)$

5.3 Lagrange Multipliers for Multiple Constraints

- How do Lagrange Multipliers apply when there are multiple constraints?
 - consider the scalar field:

$$f: \mathbb{R}^n \to \mathbb{R}$$

- if there are m constraints (with m < n) we can encode them within a **vector-valued function**:

$$g: \mathbb{R}^n \to \mathbb{R}^m$$

– then, we seek to find all $\underline{x} \in \mathbb{R}^n$ satisfying the m constrains:

$$g(x) = 0 \in \mathbb{R}^m$$

- we can use a modified Lagrangian:

$$\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$$

$$\mathcal{L}(\underline{x}, \lambda) = f(\underline{x}) - \langle \underline{\lambda}, g(\underline{x}) \rangle, \qquad \underline{\lambda} \in \mathbb{R}^m$$

to determine all possible critical points

- if $(\underline{x}_0, \underline{\lambda}_0)$ is a critical point of \mathcal{L} then:

*
$$Df(\underline{x}_0) = \langle \lambda_0, Dg(\underline{x}_0) \rangle$$

* $g(x_0 = 0)$

- here, recall that $Dg(\underline{x}_0)$ is a **Jacobian Matrix**, with ∇g_i^T as row vectors; for this to yield an answer, we require that the matrix have rank m in other words, that the gradients ∇g_i are LiD
- also notice that the \underline{x}_0 can satisfy all the conditions, but not be a critical point of f it can just be a linear combination of the gradients of g
- less abstractly, if we have 2 constrains g_1, g_2 then we need to satisfy:

*
$$\nabla f(\underline{x}) + \lambda_1 \nabla g_1(\underline{x}) + \lambda_2 \nabla g_2(\underline{x}) = \underline{0}$$

- $* g_1(\underline{x}) = 0$
- $* g_2(\underline{x}) = 0$
- more can be found in this article by the University of Toronto

5.4 Exercise: Applying Lagrange Multipliers

Find the maxima of the function f(x,y) = xy subject to the constraint $x^2 + y^2 = 1$. We begin by computing $\nabla f, \nabla g$:

$$\frac{\partial f}{\partial x} = y$$
 $\frac{\partial f}{\partial y} = x$ $\frac{\partial g}{\partial x} = 2x$ $\frac{\partial g}{\partial y} = 2y$

Lagrange multipliers tell us that for (x, y) to be a critical point:

$$y = \lambda 2x$$
 $x = \lambda 2y$

Substituting values in:

$$y = \lambda 2x \implies y = 4\lambda^2 y \implies \lambda = \pm \frac{1}{2}$$

Hence, the Lagrange multiplier can only be $\pm \frac{1}{2}$. We now satisfy the constraint, by using the fact that $y = \pm x$:

$$x^{2} + y^{2} = 1 \implies 2x^{2} = 1 \implies x = \frac{1}{\sqrt{2}}$$

Hence, there are 4 (possible) critical points:

$$\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right) \qquad \left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right) \qquad \left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) \qquad \left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$$

By inspection, it can be seen that $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ lead to maximising f.

6 Curve Parametrisation, Arc Length and Regular Surfaces

6.1 Curve Parametrisation

- What is a parametrised curve/surface?
 - a way of describing a curve/surface by using a **parameter space**
 - simpler than defining implicitly
 - for example, a **sphere**:

$$x^2 + y^2 + z^2 = R^2$$

can be parametrised using spherical coordinates:

$$x(\phi, \theta) = R\cos\phi\sin\theta$$

$$y(\phi, \theta) = R \sin \phi \sin \theta$$
$$x(\phi, \theta) = R \cos \theta$$

where $0 \le \phi < 2\pi$ and $0 < \theta < \pi$

6.2 The Arc-Length

• How do we compute the arc length of a curve?

Figure 2: We can approximate each segment of the curve with a small segment $ds = dx^2 + dy^2$.

– for a explicit curve y = f(x), the arc length between 2 points x_1, x_2 :

$$L = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$

- if the curve is parametrised, such that $x_1 = x(t_1)$ and $x_2 = x(t_2)$, we have:

$$L = \int_{x_1}^{x_2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{t_1}^{t_2} \sqrt{1 + \left(\frac{dy/dt}{dx/dt}\right)^2} \frac{dx}{dt} dt = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

- this can be written in much simpler form:

$$L = \int_{t_1}^{t_2} \|\underline{\dot{x}}(t)\| dt$$

- this assumes that the curve $\underline{x}(t)$ is **regular**: its derivative is non-zero $\forall t$

• How does parametrisation affect the arc length?

- arc length is independent of parametrisation
- for example, if we have the curve $y = x^2$, we would expect that:

$$(x(t), y(t)) = (t, t^2)$$

$$(x(t), y(t)) = (2t, 4t^2)$$

have the same arc length

- because of this, wlg we could argue that the only interval that matters is $t \in [0, 1]$, since any other interval can be attained by reparametrising the curve

6.3 Exercise: Arc Length is Independent of Reparametrisation

Consider a parametrisation $\gamma(t), t \in [0,1]$. Notice, since 2 parametrisations trace out the same curve, the only different between 2 parametrisations is how **quickly** they traverse the curve.

Hence, define $\tau(t)$ such that, for some other parametrisation x(t):

$$\gamma(t) = x(\tau(t)), \quad \forall t \in [0, 1]$$

Then:

$$\int_{0}^{1} \|\gamma'(t)\| dt = \int_{0}^{1} \left\| \frac{d}{dt} (x(\tau(t))) \right\| dt$$
$$= \int_{0}^{1} \left\| x'(\tau) \frac{d\tau}{dt} \right\| dt$$
$$= \int_{\tau(0)}^{\tau(1)} \|x'(\tau)\| d\tau$$

so the parametrisation doesn't affect the value of the arc length.

6.4 Surface of Revolution

- What is a surface of revolution?
 - the surface obtained by rotating a curve around an axis
 - for a curve (x, y(x)), the surface area of such a surface for $x \in [x_0, x_1]$ is:

$$\int_{x_0}^{x_1} 2\pi y(x) \sqrt{1 + y'(x)^2} dx$$

- intuitively, the surface area can be thought of as the sum of many small cylinders, where:
 - * y(x) gives the radius of the cylinder
 - * $\sqrt{1+y'(x)^2}$ gives the height of the cylinder

6.5 Surface Area

- What is a regular surface in \mathbb{R}^3 ?
 - a continuously differentiable map:

$$x: U \subset \mathbb{R}^2 \to \mathbb{R}^3$$

defined by:

$$(u,v) \mapsto x(u,v)$$

- for all $(u, v) \in U$, we require that the tangent vectors $\frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}$ be **linearly independent**: they should **span** the **tangent plane** to the surface at any point (this is because the cross product of the vectors defines the tangent plane, and if they are lienarly dependent, the cross product will yield $\underline{0}$)
- How do we compute the surface area of a regular surface?
 - recall, the **norm** of a cross product gives the area of the parallelogram defined by the vectors in the cross product

- from this, we derive the **surface area** of a regular surface:

$$\iint \left\| \frac{\partial x}{\partial u} \times \frac{\partial x}{\partial v} \right\| du \ dv$$

- alternatively:

$$\iint \sqrt{\left\|\frac{\partial x}{\partial u}\right\|^2 \left\|\frac{\partial x}{\partial v}\right\|^2 - \left(\left\langle\frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}\right\rangle\right)^2} du \ dv$$

If we use the parametrisation:

then the partial derivatives are:

$$\frac{\partial x}{\partial u} = \begin{pmatrix} 1\\0\\\frac{\partial z}{\partial u} \end{pmatrix} \qquad \frac{\partial x}{\partial v} = \begin{pmatrix} 0\\1\\\frac{\partial z}{\partial v} \end{pmatrix}$$

So the surface area becomes:

$$\iint \sqrt{\left\|\frac{\partial x}{\partial u}\right\|^2 \left\|\frac{\partial x}{\partial v}\right\|^2 - \left(\left\langle\frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}\right\rangle\right)^2} du \, dv$$

$$= \iint \sqrt{\left(1 + \left(\frac{\partial z}{\partial u}\right)^2\right) \left(1 + \left(\frac{\partial z}{\partial v}\right)^2\right) - \left(\frac{\partial z}{\partial u}\right)^2 \left(\frac{\partial z}{\partial u}\right)^2} du \, dv$$

$$\iint \sqrt{1 + \left(\frac{\partial z}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2} du \, dv$$