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Based on the notes by Jelle Hartong, Appendix A

1 Analysis & Algebra Recap

1.1 The Dot Product

• What is the dot product?

– a positive-definite inner product in Euclidean space, Rn:

⟨−,−⟩ : Rn → R

– defined by: 〈
x, y
〉
=

n∑
i=1

xiyi

– here I am using the convention of the notes, whereby xi denotes the ith component of the vector
x ∈ Rn

• What are the properties of the dot product?

– Symmetry: 〈
x, y
〉
=
〈
y, x
〉

– (Sesqui) Linearity: 〈
λx, y

〉
= λ

〈
x, y
〉
, λ ∈ R

– Positive Definite:
⟨x, x⟩ ≥ 0

with equality if and only if :
x = 0

• What is the norm in Euclidean space?

– geometrically, the distance between a vector and the origin

– defined via the dot product:

∥x∥ =
√

⟨x, x⟩ =

√√√√ n∑
i=1

(xi)2

• What 2 inequalities are satisfied by the dot product/norm?

– Triangle Inequality:
∥x+ y∥ ≤ ∥x∥+ ∥y∥

– Cauchy-Schwarz Inequality:
|
〈
x, y
〉
| = ∥x∥∥y∥

• What is an open ball?

Page 3



1.2 Topological Balls

• What is an open ball?

– an open ball of radius r centered at x is the set:

Br(x) = {y | y ∈ Rn, ∥x− y∥ < r}

• What is a closed ball?

– a closed ball of radius r centered at x is the set:

Br(x) = {y | y ∈ Rn, ∥x− y∥ ≤ r}

• What is an interior point?

– let U ⊂ Rn, and consider a point x ∈ U

– x is an interior point of U if there exists an open ball, centered at x, completely encompassed
within U :

∃ε > 0 : Bε(x) ⊂ U

• What is an open subset?

– U ⊂ Rn is open if every x ∈ U is an interior point of U

1.3 Continuity

1.3.1 Definition: Continuous Function

Let U be an open subset of Rn and define:

f : U → Rm

f is continuous at a ∈ U if:

∀ε > 0,∃δ > 0 : ∥x− a∥ < δ =⇒ ∥f(x)− f(a)∥ < ε

f is continuous if it is continuous ∀a ∈ U .

1.3.2 Definition: Continuous Function (via Topological Balls)

Let U be an open subset of Rn and define:

f : U → Rm

f is continuous at a ∈ U if:

∀ε > 0,∃δ > 0 : x ∈ Bδ(a) =⇒ f(x) ∈ Bε(f(a))

[Equation A.5]

Page 4



1.3.3 Theorem: Topological Characterisation of Continuity

The following gives an equivalent definition of continuity to the ε− δ definition.

Let U be an open subset of Rn and define:

f : U → Rm

f is continuous if and only if for any open subset V ⊂ Rm, there exists
an open subset W ⊂ Rn with:

f−1(V ) = W ∩ U

where:
f−1(V ) = {x | x ∈ U, f(x) ∈ V }

[Equation A.7]

2 Derivatives and Change of Coordinates

[For this, really recommend Stewart’s Calculus: Early Transcendentals.]

2.1 The Directional Derivative

• What is a scalar field?

– a mapping from a vector to a scalar:
f : Rn → R

2.1.1 Definition: The Directional Derivative of a Scalar Field

Let U ⊂ Rn and define the scalar field:

f : U → R

The derivative of f at an interior point a ∈ U along the direction of
y ∈ Rn is:

f ′(a; y) = Dyf(a) = lim
t→0

f(a+ ty)− f(a)

t

If y is a unit vector, f ′(a; y) is a directional derivative.
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a

a+ y

a+ ty

r

U

Figure 1: Operating in higher dimensions, derivatives depend on the direction which we pick, since the
function changes differently in different directions. We can ensure that a+ ty remains within the ball Br(a)
by enforcing 0 ≤ t < r

∥y∥ .

• What is a partial derivative?

– a directional derivative, whereby we differentiate in the direction of the canonical basis
vectors of Rn

– if we use
x1, x2, . . . , xi, . . . , xn

as the coordinate axes, with corresponding (canonical) basis vectors:

e1, e2, . . . , ei, . . . , en

we define:

f ′(a; ei) ≡
∂f

∂xi
(a)

• What is the gradient vector?

– a vector ∇f , where the ith component is the partial derivative ∂f
∂xi

– technically, the components of ∇f are themselves functions

• How do we compute directional derivatives using the gradient vector?

– given a vector y, the directional derivative at a in the direction of y can be computed via:

f ′(a; y) = Dyf(a) = (∇f · y)(a) =
〈
∇f, y

〉
(a)
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2.2 Definition: Differentiability of a Scalar Field

A scalar field f : U → R is differentiable at an interior point a ∈ U if
its total derivative exists at a. [Definition A.2]

The total derivative of f at a is a unique linear map:

Df(a) : Rn → R

such that:

f(a+ v) = f(a) +Df(a)(v) + ∥v∥E(a, v), ∀v ∈ Rn

Here, E(a, v) is an error term, such that:

lim
∥v∥→0

E(a, v) = 0

• How does the total derivative relate to the directional derivatives of a scalar field?

– assuming the total derivative exists for f , then:

f(a+ v) = f(a) +Df(a)(v) + ∥v∥E(a, v), ∀v ∈ Rn

– if we rewrite v = ty, for some free parameter t:

f(a+ ty) = f(a) +Df(a)(ty) + ∥ty∥E(a, ty)

– if we exploit the linearity of the norm and total derivative:

f(a+ ty) = f(a) + tDf(a)(y) + |t|∥y∥E(a, ty)

– but now if we rearrange the expression, and divide through by t:

f(a+ ty)− f(a)

t
= Df(a)(y) +

|t|
t
∥y∥E(a, ty)

– taking the limit as t → 0, and noticing that as t → 0, then ∥ty∥ = ∥v∥ → 0:

lim
t→0

f(a+ ty)− f(a)

t
= f ′(a; y) = Df(a)(y)

– in other words, if the total derivative exists, then so do all other directional derivatives (since the
total derivative evaluated at y is precisely the directional derivative of f in the direction of y)

• What does the directional derivative tell us about directional derivatives as function
approximators?

– the total derivative is the best linear approximator for a scalar field close to some point a

– but since the directional derivatives are nothing but the result of evalutating the total derivative
Df(a)(y), this implies that in fact the directional derivatives provide the best linear approximation
of f close to a

– this corresponds to the notion that directional derivatives span a hyperplane at a which best
approximates the behaviour of f at said point
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2.3 Remark: Justifying Differentiability

In 1 dimension, a function is differentiable at a point if its derivative
exists at said point.
However, when dealing with several dimensions, the “natural” extension to
this won’t work: we can’t say a scalar field is differentiable at a point if
all its partial derivatives are defined at said point.
This is because we know that “if a function is differentiable at a
point, then it is continuous”. However, it is possible to construct a
scalar field, with all directional derivatives defined at a point, but which
isn’t continuous at said point, which shows it won’t be differentiable.
More on this can be seen in this Quora article, and an example is provided
below.

2.4 Example: Partial Derivatives Defined, but not Continuous

Consider the scalar field:

f(x, y) =

{
xy2

x2+y4 , x ̸= 0

0, x = 0

The gradient vector (when x ̸= 0 is:

∇f =

y2(−x2+y4)2

(x2+y4)2

2xy(x2−y4)2

(x2+y4)2


So the directional derivative at a in the direction of u = (u1, u2)

T is:

f ′(x, y;u) =
y2(−x2 + y4)2

(x2 + y4)2
u1 +

2xy(x2 − y4)2

(x2 + y4)2
u2

If x = 0, using the definition of directional derivative:

f ′(0;u) = lim
t→0

f(0 + tu)− f(0)

t

= lim
t→0

f(tu)

t

= lim
t→0

t3u1u
2
2

t2u2
1+t4u4

2

t

= lim
t→0

tu1u
2
2

tu2
1 + t3u4

2

= lim
t→0

u1u
2
2

u2
1 + t2u4

2

Now, if u1 ̸= 0, then:

f ′(0;u) = lim
t→0

u1u
2
2

u2
1 + t2u4

2

=
u2
2

u1

If u1 = 0, then we have an indeterminate form, but L’Hopital’s Rule tells us that the limit is 0.
Thus, we can see that f has well defined directional derivatives for any vector u.
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However, f isn’t continuous at the origin. To show this, it is sufficient to show that the limit obtained by
moving along 2 different curves which pass through the origin is different. Indeed, if we approach the origin
via straight lines, f seems to be continuous:

f(x,mx) =
m2x3

x2 +m4x4
=

m2x

1 +m4x2

So taking the limit as (x, y) → (0, 0):

lim
(x,y)→(0,0)

m2x

1 +m4x2
= 0

so we get that the limit is 0 along any straight line trhough the origin, and this is the value of f at the origin,
so f is continuous along these paths.

However, if we use a parabolic path x = my2:

f(my2, y) =
my4

m2y4 + y4
=

m

m+ 1
̸= 0

Hence, since the limits differ, f isn’t continuous at the origin, even though all its partial derivatives are
defined there.

This goes to show how the requirement of all partial derivatives being de-
fined is not sufficient - as we will see below, we in fact require that the
partial derivatives be defined in the neighbourhood of the point; that is,
they must also be continuous.

2.5 Theorem: Differentiability Implies Continuity

if f : U → R is differentiable (in the sense that its total derivative
exists) at an interior point a ∈ U , then f is continuous at a.
(Theorem A.3)

Proof. Since f is differentiable at a:

f(a+ v) = f(a) +Df(a)(v) + ∥v∥E(a, v), ∀v ∈ Rn

If we rearrange:
f(a+ v)− f(a) = ⟨∇f, v⟩+ ∥v∥E(a, v), ∀v ∈ Rn

Taking the absolute value of both sides:

|f(a+ v)− f(a)| = | ⟨∇f, v⟩+ ∥v∥E(a, v)|, ∀v ∈ Rn

If we then apply the Cauchy-Schwarz Inequality, followed by the Triangle Inequality on the RHS:

0 ≤ |f(a+ v)− f(a)| ≤ ∥∇f∥∥v∥+ ∥v∥|E(a, v)|, ∀v ∈ Rn

Then, as ∥v∥ → 0, also ∥∇f∥∥v∥+ ∥v∥|E(a, v)|∥ → 0, so by Squeeze Theorem:

|f(a+ v)− f(a)| → 0 =⇒ f(a+ v) → f(a)

so f is continuous at a, as required.
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2.6 Continuous Differentiability

• When is a function continuously differentiable at a point?

– let f : U → R and consider a ∈ U

– if:

∗ f is differentiable at a

∗ all the partial derivatives of f at a are continuous

then f is continuously differentiable at a

• When is a function differentiable?

– when it is differentiable at every point in its domain

• When is a function continuously differentiable?

– when it is continuously differentiable at every point in its domain

– then, we say that f : U → R is such that f ∈ C1(U), the class of continuously differentiable
function on U

2.7 Theorem: Sufficient Condition for Differentiability

Let f : U → R, and let a ∈ U be an interior point. If:

1. all partial derivatives exist at a

2. all partial derivatives are continuous at a

then f is differentiable at a.
(Theorem A.4)

2.8 Differentiability and Vector-Valued Functions

2.8.1 Vector-Valued Functions

• What is a vector-valued function?

– a mapping:
f : U → Rm

where U ⊂ Rn, and n,m need not be the same

– we can think of vector-valued functions as vectors containing scalar fields as components:

f = (f1, . . . , fm) =

m∑
i=1

f iei

where:
f i : U → R

• How do we defined the derivative of a vector valued function?

– the derivative is itself a vector, obtained by componentwise differentiation

– formally, at an interior point a ∈ U , the derivative in the direction of y ∈ Rn is:

f ′(a; y) = lim
t→0

f(a+ ty)− f(a)

t
= (f1′(a; y), f2′(a; y), . . . , fm′

(a; y))T
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2.8.2 Definition: Differentiability of a Vector-Valued Function

Let f : U → Rm, U ⊂ Rn.
f is differentiable at an interior point a ∈ U if its total derivative
exists.
That is, there exists a linear map Df(a such that:

f(a+ v) = f(a) +Df(a)(v) + ∥v∥E(a, v)

Here, E(a, v) is a vector-valued error term such that:

lim
v→0

E(a, v) = 0

2.8.3 The Total Derivative and the Jacobian Matrix

• How are the derivatives of a vector-valued function related to its total derivative?

– by defining v = ty it can be shown that:

Df(a)(y) = f ′(a; y) = (f1′(a; y), f2′(a; y), . . . , fm′
(a; y))T

– that is, derivatives provide the best linear approximation for the vector-valued function

• What is the Jacobian Matrix?

– a generalisation of the gradient vector for vector-valued function

– the matrix representation of the total derivative Df(a)

– with respect to the canonical basis of Rn we have:

Df(a)(y) = (f1′(a; y), f2′(a; y), . . . , fm′
(a; y))T

= (
〈
∇f1, y

〉
(a), . . . ,

〈
∇fm, y

〉
(a))

=

m∑
j=1

〈
∇f i, y

〉
(a)ej

=
m∑
j=1

(
n∑

i=1

yi
∂f j

∂xi
(a)

)
ej

=

n∑
i=1

m∑
j=1

yi
∂f j

∂xi
(a)ej

– the m× n matrix Df(a) is the matrix with entries defined by:

[Df(a)]ji =
∂f j

∂xi
(a)

(here we consider the entry at row j and column i)
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– alternatively, the Jacobian matrix is the matrix obtained by using the gradient vector of each
f i as rows:

Df(a) =


∇f1(a)T

∇f2(a)T

...

∇fm(a)T

 =



∂f1

∂x1 (a)
∂f1

∂x2 (a) . . . ∂f1

∂xn (a)

∂f2

∂x1 (a)
∂f2

∂x2 (a) . . . ∂f2

∂xn (a)
...

...
. . .

...

∂fm

∂x1 (a)
∂fm

∂x2 (a) . . . ∂fm

∂xn (a)


2.8.4 Theorem: Sufficient Condition for Differentiability

Let f : U → Rm, U ⊂ Rn, and let a ∈ Rn be an interior point. If:

1. the Jacobian Matrix exists at a

2. all partial derivatives are continuous at a

then f is differentiable at a.
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2.8.5 Theorem: The Chain Rule

Consider:
f : U → Rm, U ⊂ Rn

g : V → Rn, V ⊂ Rp

h = f ◦ g : W → Rm, W = V ∩ g−1(U) ⊂ Rp

(we required g−1(U) to defined W to ensure that if w ∈ W , then f(g(w)) is
defined, since g(w) ∈ U by construction).
Now, assume that:

• a is an interior point of W

• g is differentiable at a

• f is differentiable at b = g(a)

Then, h is differentiable at a, and the derivative is given by the chain
rule:

Dh(a) = Df(b) ◦Dg(a)

Thinking of operators as matrices, we obtain the Jacobian of h by ma-
trix multiplication of the jacobians of f, g:

[Dh(a)]jk =
n∑

i=1

[Df(b)]ji [Dg(a)]ik

where:

• Dh(a) is a m× p matrix

• Df(b) is a m× n matrix

• Dg(a) is a n× p matrix

(Theorem A.6)

2.9 Change of Coordinates: Worked Example

Thus far we have worked over the canonical basis; however, this need not be the basis of choice for certain
problems. For instance, when working with circles/circular symmetry, polar coordinates might be more
convenient:

x(r, θ) = r cos(θ) y(r, θ) = r sin(θ)

r(x, y) =
√
x2 + y2 θ(x, y) = arctan

(y
x

)
We note:

• the radius is defined on the range 0 < r < ∞

• the argument is defined on the range θ0 ≤ θ < θ0 + 2π, where θ0 is any angle in radians
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• this allows us to describe R2 \ {0}, since (0, 0) can’t be described by a single argument

Now, if we want to operate over polar coordinates, but f uses x, y as arguments, how can we determine
the derivative of f with respect to (r, θ)?

If f : U → R, U ⊂ R2 \ {0}, define:

g(r, θ) = f(r cos θ, r sin θ)

We define g so that we have an explicit dependence on polar coordinates, and thus, can define partial
derivatives.

Let a be a point described in polar coordinates, and b the corresponding point in cartesian coordinates.
If we apply the chain rule, we know that:

∂g

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r

∂g

∂θ
=

∂f

∂x

∂x

∂θ
+

∂f

∂y

∂y

∂θ

We can compute:
∂x

∂r
= cos θ

∂x

∂θ
= −r sin θ

∂y

∂r
= sin θ

∂t

∂θ
= r cos θ

So:
∂g

∂r
(a) =

∂f

∂x
(b) cos θ +

∂f

∂y
(b) sin θ = ⟨∇f(b), er⟩ = f ′(b; er)

∂g

∂θ
(a) = −r

∂f

∂x
(b) sin θ + r

∂f

∂y
(b) cos θ =⇒ 1

r

∂g

∂θ
(a) = ⟨∇f(b), eθ⟩ = f ′(b; eθ)

where we use:
er = cos θe1 + sin θe2

eθ = − sin θe1 + cos θe2

In other words, if we use er, eθ as basis vectors (we can verify they are orthonormal), this tells us that the
partial derivatives of g are nothing but directional derivatives in another basis.

We can then use this to compute the gradient in polar coordinates. Notice, since er, eθ defines a basis,
we can write any vector y in terms of it:

y = yrer + yθeθ

where:
yθ =

〈
y, er

〉
yθ =

〈
y, eθ

〉
Now, if we consider the directional derivative:

f ′(b; y) =
〈
∇f(b), y

〉
=
〈
∇f(b), yrer + yθeθ

〉
= yr ⟨∇f(b), er⟩+ yθ ⟨∇f(b), eθ⟩

= yr
∂g

∂r
(a) + yθ

1

r

∂g

∂θ
(a)

=
〈
∇g(a), y

〉
So we can conclude that in polar coordinates (with respect to the new basis):

∇g =
∂g

∂r
er +

1

r

∂g

∂θ
eθ
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3 Level Sets and Implicitly Defined Functions

3.1 Level Sets and Regular Points

• What is a level set?

– consider a scalar field f : U → R, U ⊂ Rn

– for some c ∈ R in the co-domain of f , define the level set L(c) as:

L(c) = {x | x ∈ U, f(x) = c}

– for example, for f(x, y, z) = x2 + y2 + z2, L(1) is precisely the surface of a sphere in 3 dimensions
of radius 1

• What is a regular point?

– a point a ∈ L(c) such that:
∇f(a) ̸= 0

• What do level sets represent?

– they represent a hypersurface in space

– also known as codimension 1 surfaces:

∗ the codimension corresponds to the number of linearly independent normal vectors of
the surface

∗ with one constraint f(x) = c, we defined a surface in Rn, which only has 1 normal vector,
and so, is codimension 1

∗ with 2 constraints f(x) = c, g(x) = k, we embed a lower dimensional surface (from Rn−1)
into Rn, so it has to lid normal vectors, and so, is codimension 2

∗ for example, in R3 the surface obtained by the intersection of 2 surfaces derived from con-
straints gives a curve from R2, but embedded in R3; such a curve has 2 normal vectors, which
will be perpendicular

– it is possible that if f(x1, . . . , xn) = c, we can sometimes solve to express a variable in terms of
the other variables:

xn = g(x1, . . . , xn−1)

Then, we can think of the surface as the graph of f

– however, this representation is only local: with f(x, y, z) = x2 + y2 + z2, we only get a local
representation of the sphere:

∗ if z > 0, z =
√
R2 − x2 − y2 is the northern hemisphere

∗ if z < 0, z = −
√
R2 − x2 − y2 is the southern hemisphere

∗ however, it is impossible to define the whole sphere through this representation

∗ here, we have defined z(x, y) implicitly by f(x, y, z) = R2

• How can we determine the tangent plane to a level set at a point?

– consider any a ∈ L(c)

– since the tangent to L(c) at a is orthogonal to ∇f , any x ∈ Rn satisfying:

⟨(x− a),∇f⟩ = 0

will be part of the tangent plane at a

• What is a regular surface?

– a level set in which the gradient is never 0
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3.2 Exercise: Gradient at a Regular Point is Perpendicular to Tangent

Define a curve:
γ : I → U, I ⊂ R

where γ is continuously differentiable, and parametrised by t ∈ I. γ(t) lies entirely in the level set L(c) - that
is, ∀t ∈ I:

f(γ(t)) = c

If a is a regular point, and a = γ(t0), show that ∇f(a) is orthogonal to the tangent curve γ at t0.
Since f(γ(t)) = c, we can differentiate with respect to t, applying the chain rule:

n∑
i=1

∂f

∂γi

dγi

dt
= 0 =⇒

〈
∇f, γ′〉 = 0

as required.

3.3 Theorem: Implicit Function Theorem in R2

The implicit function theorem gives us conditions under which we can solve for variables in implicitly defined
functions, in terms of the other variables.

Let f : U → R, U ⊂ R2 be a continuously differentiable function.
Define (x0, y0) to be an interior point of U , satisfying f(x0, y0) = 0.
If ∂f

∂y
(x0, y0) ̸= 0, then there exists a neighbourhood of (x0, y0) such that

for x sufficiently close to x0, there is a unique continuously differen-
tiable function y = F (x) such that:

• y0 = F (x0)

• f(x, F (x)) = 0

•

F ′(x) = −
∂f
∂x
(x, F (x))

∂f
∂y
(x, F (x))

(Theorem A.10)

Proof. Without loss of generality, since ∂f
∂y (x0, y0) ̸= 0, we can assume that ∂f

∂y (x0, y0) > 0 (otherwise just

repeat argument with −f).
Now, f is continuously differentiable, so all its partial derivatives are continuous, which means that

∂f
∂y (x, y) > 0 for any (x, y) in a neighbourhood of (x0, y0).

We can consider a rectangle within this neighbourhood, defined for δ, ε > 0:

• x0 − δ < x < x0 + δ

• y0 − ε < y < y0 + δ
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(x0, y0)

(x0 − δ, y0 + ε) (x0 + δ, y0 + ε)

(x0 + δ, y0 − ε)(x0 − δ, y0 − ε)

We can now consider varying y, whilst keeping x = x0 fixed. In particular, since in the rectangle
∂f
∂y (x, y) > 0, on the line y0 − ε < y < y0 + ε f(x0, y) is an increasing function; since it attains a 0 at (x0, y0)
it follows that:

∃y1 > y0, y2 < y0 ∈ (y0 − ε, y0 + ε) : f(x0, y1) > 0, f(x0, y2) < 0

(x0, y0)

(x0, y0 + ε)

(x0, y0 − ε)

(x0, y2)

(x0, y1)f(x0, y1) > 0

f(x0, y2) < 0

(x0 − δ, y0 + ε) (x0 + δ, y0 + ε)

(x0 + δ, y0 − ε)(x0 − δ, y0 − ε)

But again by continuity of the partial derivative, in some interval around x0, if we fix y1, y2 we will have
that for x ∈ (x0 − δ, x0 + δ):

• f(x, y1) > 0

• f(x, y2) < 0
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(x0, y0)

(x0, y0 + ε)

(x0, y0 − ε)

(x0, y2)

(x0, y1)

(x0 − δ, y0 + ε) (x0 + δ, y0 + ε)

(x0 + δ, y0 − ε)(x0 − δ, y0 − ε)

f(x, y) > 0

f(x, y) < 0

In this neighbourhood, we still have ∂f
∂y (x, y) > 0, so f will be strictly increasing; hence, for each x in the

neighbourhood, we can always find a unique y ∈ (y2, y1) such that f(x, y) = 0 (since we have a continuous,
increasing function, which goes from negative to positive values).

Thus, in this neighbourhood, we have implicitly defined y as a function of x (since for each x, there is a
unique y satisfying f(x, y) = 0), so we can write y = F (x). By construction, we will have y0 = F (x0).

Finally, by definition we have that f(x, F (x)) = 0 in the neighbourhood (this is the definition of F ), so
if we differentiate with respect to x:

∂f

∂x
(x, F (x)) +

∂f

∂y
(x, F (x))F ′(x) = 0 =⇒ F ′(x) = −

∂f
∂x (x, F (x))
∂f
∂y (x, F (x))

Notice, this doesn’t outline the neighbourhood on which this relationship can be made explicit, nor does
it guarantee that we can actually obtain the explicit expression y = F (x). However, it does give us an explicit
expression for the derivative of an implicitly defined function - what is known as implicit differentiation.

3.4 Theorem: The Implicit Function Theorem

4 The Hessian Matrix and Stationary Points

4.1 Critical Points

• What is a critical point?

– let f : U → R be a scalar field

– an interior point x0 is a critical point (or extremum) if the directional derivatives of f vanish
in all directions at x0

– this implies that f(x0) is a local maximum/minimum or a saddle point

• How does a scalar field behave around a critical point?
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– consider a ball B around a critical point x0:

∗ if ∀x ∈ B, f(x)− f(x0) > 0, then x0 is a local minimum

∗ if ∀x ∈ B, f(x)− f(x0) < 0, then x0 is a local maximum

∗ if the sign of f(x)− f(x0) depends on the direction in which we move away from x0, then x0

is a saddle point

4.2 The Hessian Matrix

• What is the Hessian matrix?

– if f has well-defined and continuous second order partial derivatives at a point a, we can
expand:

f(a+ v) = f(a) +Df(a)(v) +
1

2
vTHf(a)(v)v + ∥v∥2E(a, v)

(this is similar to a second order Taylor expansion)

– E(a, v) is an error-term which vanishes as v → 0

– Hf(a) is the Hessian of f at a, and has entries:

[Hf(a)]ij =
∂2f

∂xi∂xj
(a)

• What are the properties of the Hessian matrix?

– if the second order partial derivatives are continuous at a, then the Hessian is symmetric

– this means that:

∗ it has real eigenvalues

∗ eigenvectors of different eigenvalues are orthogonal

∗ it can be diagonalised:
Hf(a) = PTDP

where P is the matrix with eigenvectors as columns, and D is the diagonal matrix with
eigenvalues in the diagonal

• Why is the Hessian matrix useful for determining the nature of extrema?

– by definition:
Df(a)(v) = ⟨∇f(a), v⟩

so at a critical point x0, we have that Df(x0)(v) = 0

– hence:

f(x0 + v)− f(x0) =
1

2
vTHf(a)(x0)v + ∥v∥2E(x0, v)

– as v → 0, we can see that the sign of f(x0 + v) − f(x0) will solely depend on the quadratic
form vTHf(a)(x0)v
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4.3 Theorem: Nature of Extrema from Hessian

Let f : U → R be a scalar field whose second order partial derivatives at
an extremum x0 exist and are continuous in a ball around x0.
The extremum at x0 is:

• a local minimum if all the eigenvalues of Hf(x0) are positive

• a local maximum if all the eigenvalues of Hf(x0) are negative

• a saddle point if Hf(x0) has both positive and negative
eigenvalues

• inconclusive if there is at least one zero eigenvalue, with all other
eigenvalues of the same sign

Proof. Diagonalising the Hessian, we can transform the quadratic form:

vTHf(a)(x0)v = vT (PTDP )v = wTDw

where w = Pv.
Since the diagonals of D are the eigenvalues of Hf(a)(x0):

wTDw =

n∑
i=1

λi(w
i)2

Hence, it follows that since (wi)2 ≥ 0:

• if all the eigenvalues are positive, vTHf(a)(x0)v > 0, and so f(x0 + v) − f(x0) > 0 so x0 is a local
minimum

• if all the eigenvalues are negative, vTHf(a)(x0)v < 0, and so f(x0 + v) − f(x0) < 0 so x0 is a local
maximum

5 The Method of Lagrange Multipliers

5.1 Lagrange Multipliers

• What is a constrained optimisation problem?

– the problem of finding an extremum of a function, subject to constraints

– typically, we seek to find an extremum of f(x), given that the variables (domain) are constrained
to satisfy g(x) = c (can be simplified to g(x) = 0, by defining g(x) := g(x)− c)

• How can one go about solving a constrained optimisation problem?

– given g(x) = 0, we can solve the constraint for one variable:

xn = F (x1, . . . , xn−1)
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– then, we can optimise:
f(x1, . . . , xn−1, F (x1, . . . , xn−1))

by the previous methods (i.e Hessian)

– however, F will only apply locally, so this approach might not work in general

• What is the method of Lagrange multipliers?

– method providing necessary conditions for a point to be a critical point

– we seek an extremum for f(x), given that x must lie (satisfy) within the curve g(x) = 0

– this is equivalent to finding the largest value of c such that the level curve f(x) = c intersects
g(x) = 0

– intuitively, this occurs precisely when the 2 level curves intersect tangentially

– but if the curves are tangential, this is equivalent to the gradient vectors being parallel. In
other words, at an extremum x0, there exists λ ∈ R such that:

∇f(x) = λ∇g(x)

(since both gradient vectors are perpendicular to the tangent)

– with this, we can find all x0 satisfying the Lagrange multipliers, and then use the Hessian to verify
the nature of the points

• What is the Lagrangian?

– in practice, when applying the method of Lagrange multipliers, we typically use the Lagrangian:

L(x, λ) = f(x)− λg(x)

– if we compute the gradient:

∇L(x, λ) =


∇f(x)− λ∇g(x)

−−−−−

g(x)


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– notice, at a critical point x0 which satisfies the constraint, we get:

∇L(x0, λ) = 0

– in other words, any critical point of λ will be a critical point of f given the constraint g

5.2 Theorem: Method of Lagrange Multipliers

Let:
f, g : U → R, U ⊂ Rn

Let x0 be an interior point of U , such that x0 is an extremum of f , sub-
ject to g(x) = 0.
Define the set of all x satisfying the constraint as U0:

U0 = {x | x ∈ U, g(x) = 0}

Assume there exists an n-ball B(x0), such that:

• f(x) ≤ f(x0), ∀x ∈ U0 ∩B(x0)

• or f(x) ≥ f(x0), ∀x ∈ U0 ∩B(x0)

Then, if ∇g(x0) ̸= 0, ∃λinR such that x0 is a critical point of the La-
grangian:

L : U × R → R
L(x, λ) = f(x)− λg(x)

(Theorem A.12)

5.3 Lagrange Multipliers for Multiple Constraints

• How do Lagrange Multipliers apply when there are multiple constraints?

– consider the scalar field:
f : Rn → R

– if there are m constraints (with m < n) we can encode them within a vector-valued function:

g : Rn → Rm

– then, we seek to find all x ∈ Rn satisfying the m constrains:

g(x) = 0 ∈ Rm

– we can use a modified Lagrangian:
L : Rn × Rm → R

L(x, λ) = f(x)− ⟨λ, g(x)⟩ , λ ∈ Rm

to determine all possible critical points

– if (x0, λ0) is a critical point of L then:
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∗ Df(x0) = ⟨λ0, Dg(x0)⟩
∗ g(x0 = 0

– here, recall that Dg(x0) is a Jacobian Matrix, with ∇gTi as row vectors; for this to yield an
answer, we require that the matrix have rank m - in other words, that the gradients ∇gi are LiD

– also notice that the x0 can satisfy all the conditions, but not be a critical point of f - it can just
be a linear combination of the gradients of g

– less abstractly, if we have 2 constrains g1, g2 then we need to satisfy:

∗ ∇f(x) + λ1∇g1(x) + λ2∇g2(x) = 0

∗ g1(x) = 0

∗ g2(x) = 0

– more can be found in this article by the University of Toronto

5.4 Exercise: Applying Lagrange Multipliers

Find the maxima of the function f(x, y) = xy subject to the constraint x2 + y2 = 1.
We begin by computing ∇f,∇g:

∂f

∂x
= y

∂f

∂y
= x

∂g

∂x
= 2x

∂g

∂y
= 2y

Lagrange multipliers tell us that for (x, y) to be a critical point:

y = λ2x x = λ2y

Substituting values in:

y = λ2x =⇒ y = 4λ2y =⇒ λ = ±1

2

Hence, the Lagrange multiplier can only be ± 1
2 . We now satisfy the constraint, by using the fact that

y = ±x:

x2 + y2 = 1 =⇒ 2x2 = 1 =⇒ x =
1√
2

Hence, there are 4 (possible) critical points:(
1√
2
,
1√
2

) (
− 1√

2
,
1√
2

) (
1√
2
,− 1√

2

) (
− 1√

2
,− 1√

2

)
By inspection, it can be seen that

(
1√
2
, 1√

2

)
and

(
− 1√

2
,− 1√

2

)
lead to maximising f .

6 Curve Parametrisation, Arc Length and Regular Surfaces

6.1 Curve Parametrisation

• What is a parametrised curve/surface?

– a way of describing a curve/surface by using a parameter space

– simpler than defining implicitly

– for example, a sphere:
x2 + y2 + z2 = R2

can be parametrised using spherical coordinates:

x(ϕ, θ) = R cosϕ sin θ
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y(ϕ, θ) = R sinϕ sin θ

x(ϕ, θ) = R cos θ

where 0 ≤ ϕ < 2π and 0 < θ < π

6.2 The Arc-Length

• How do we compute the arc length of a curve?

Figure 2: We can approximate each segment of the curve with a small segment ds = dx2 + dy2.

– for a explicit curve y = f(x), the arc length between 2 points x1, x2:

L =

ˆ x2

x1

√
1 +

(
dy

dx

)2

dx
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– if the curve is parametrised, such that x1 = x(t1) and x2 = x(t2), we have:

L =

ˆ x2

x1

√
1 +

(
dy

dx

)2

dx =

ˆ t2

t1

√
1 +

(
dy/dt

dx/dt

)2
dx

dt
dt =

ˆ t2

t1

√(
dx

dt

)2

+

(
dy

dt

)2

dt

– this can be written in much simpler form:

L =

ˆ t2

t1

∥ẋ(t)∥dt

– this assumes that the curve x(t) is regular: its derivative is non-zero ∀t

• How does parametrisation affect the arc length?

– arc length is independent of parametrisation

– for example, if we have the curve y = x2, we would expect that:

(x(t), y(t)) = (t, t2)

(x(t), y(t)) = (2t, 4t2)

have the same arc length

– because of this, wlg we could argue that the only interval that matters is t ∈ [0, 1], since any other
interval can be attained by reparametrising the curve

6.3 Exercise: Arc Length is Independent of Reparametrisation

Consider a parametrisation γ(t), t ∈ [0, 1]. Notice, since 2 parametrisations trace out the same curve, the
only different between 2 parametrisations is how quickly they traverse the curve.

Hence, define τ(t) such that, for some other parametrisation x(t):

γ(t) = x(τ(t)), ∀t ∈ [0, 1]

Then: ˆ 1

0

∥γ′(t)∥dt =
ˆ 1

0

∥∥∥∥ d

dt
(x(τ(t))

∥∥∥∥ dt
=

ˆ 1

0

∥∥∥∥x′(τ)
dτ

dt

∥∥∥∥ dt
=

ˆ τ(1)

τ(0)

∥x′(τ)∥dτ

so the parametrisation doesn’t affect the value of the arc length.

6.4 Surface of Revolution

• What is a surface of revolution?

– the surface obtained by rotating a curve around an axis

– for a curve (x, y(x)), the surface area of such a surface for x ∈ [x0, x1] is:ˆ x1

x0

2πy(x)
√
1 + y′(x)2dx

– intuitively, the surface area can be thought of as the sum of many small cylinders, where:

∗ y(x) gives the radius of the cylinder

∗
√
1 + y′(x)2 gives the height of the cylinder
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6.5 Surface Area

• What is a regular surface in R3?

– a continuously differentiable map:

x : U ⊂ R2 → R3

defined by:
(u, v) 7→ x(u, v)

– for all (u, v) ∈ U , we require that the tangent vectors ∂x
∂u ,

∂x
∂v be linearly independent: they

should span the tangent plane to the surface at any point (this is because the cross product of
the vectors defines the tangent plane, and if they are lienarly dependent, the cross product will
yield 0)

• How do we compute the surface area of a regular surface?

– recall, the norm of a cross product gives the area of the parallelogram defined by the vectors in
the cross product

– from this, we derive the surface area of a regular surface:

¨ ∥∥∥∥∂x∂u × ∂x

∂v

∥∥∥∥ du dv

– alternatively: ¨ √∥∥∥∥∂x∂u
∥∥∥∥2 ∥∥∥∥∂x∂v

∥∥∥∥2 − (〈∂x

∂u
,
∂x

∂v

〉)2

du dv
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If we use the parametrisation:

(u, v, z(u, v))

then the partial derivatives are:

∂x

∂u
=


1

0

∂z
∂u

 ∂x

∂v
=


0

1

∂z
∂v


So the surface area becomes:

¨ √∥∥∥∥∂x∂u
∥∥∥∥2 ∥∥∥∥∂x∂v

∥∥∥∥2 − (〈∂x

∂u
,
∂x

∂v

〉)2

du dv

=

¨ √√√√(1 + (∂z

∂u

)2
)(

1 +

(
∂z

∂v

)2
)

−
(
∂z

∂u

)2(
∂z

∂u

)2

du dv

¨ √
1 +

(
∂z

∂u

)2

+

(
∂z

∂v

)2

du dv

Page 27


	Analysis & Algebra Recap
	The Dot Product
	Topological Balls
	Continuity
	Definition: Continuous Function
	Definition: Continuous Function (via Topological Balls)
	Theorem: Topological Characterisation of Continuity


	Derivatives and Change of Coordinates
	The Directional Derivative
	Definition: The Directional Derivative of a Scalar Field

	Definition: Differentiability of a Scalar Field
	Remark: Justifying Differentiability
	Example: Partial Derivatives Defined, but not Continuous
	Theorem: Differentiability Implies Continuity
	Continuous Differentiability
	Theorem: Sufficient Condition for Differentiability
	Differentiability and Vector-Valued Functions
	Vector-Valued Functions
	Definition: Differentiability of a Vector-Valued Function
	The Total Derivative and the Jacobian Matrix
	Theorem: Sufficient Condition for Differentiability
	Theorem: The Chain Rule

	Change of Coordinates: Worked Example

	Level Sets and Implicitly Defined Functions
	Level Sets and Regular Points
	Exercise: Gradient at a Regular Point is Perpendicular to Tangent
	Theorem: Implicit Function Theorem in R2
	Theorem: The Implicit Function Theorem

	The Hessian Matrix and Stationary Points
	Critical Points
	The Hessian Matrix
	Theorem: Nature of Extrema from Hessian

	The Method of Lagrange Multipliers
	Lagrange Multipliers
	Theorem: Method of Lagrange Multipliers
	Lagrange Multipliers for Multiple Constraints
	Exercise: Applying Lagrange Multipliers

	Curve Parametrisation, Arc Length and Regular Surfaces
	Curve Parametrisation
	The Arc-Length
	Exercise: Arc Length is Independent of Reparametrisation
	Surface of Revolution
	Surface Area


