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Based on the notes by Konstantin Ardakov, Section 7

1 Algebraic Integers

1.1 Definition: Algebraic Numbers and Algebraic Integers

Let z € C. Then:
1. z is an algebraic number if:
Qi : f()=0
The set of all algebraic numbers is Q.
2. z is an algebraic integer if:
Af €Zt] : f(z)=0

and f is monic (its leading coefficient is 1).
The set of all algebraic integers is A

(Definition 7.1)

1.1.1 Examples: Algebraic Integers
e cvery integer a € Z is an algebraic integer, as it satisfies t —a =0
e cvery nth root of unity w is an algebraic integer, as it satisfies t" —1 =10

e if 2 € C is an algebraic number, there exists some m € Z such that mz is an algebraic integer. In
particular, suppose that:
d
Z a;z' =0
i=1

Then, if:
a;
Q; = —

b
(where a;,b; € Z are coprime), then if we let:

m = lem(by, ..., bg)
we have that:

d d
0 =mat! E a;z' = E a;m@H(mz)!
i=0 i=1

and:
am?tez

since Vi € [0,d] b; will divide m?~?
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e we have that:
a €7 <= «cQisan algebraic integer

In other words:
QNA=27

If a« € Z, then it is trivially a rational algebraic integer. On the other hand, if « is a rational algebraic
integer, there exist coprime r, s € Z such that:

r
a=-€Q
s

and:

n . n—1
r\? . .
da; €7 : 0= E a; (7> = —r" = E a;rts" "
s
i=0

i=0
Since s divides the LHS, it must divide the RHS; but r, s being coprime implies that s = +1 (since
their only common divisor will be 1), so a=r/s=r€Z

1.2 Algebraic Integers as a Ring

1.2.1 Proposition: Preserving Subgroups Leads to Algebraic Integers

Let M be a finitely generated subgroup of (C,+). Then:
{zeC|zM CM}CA
(Proposition 7.4)

Proof. Let z € C be such that for any finitely generated additive subgroup of C M we have that:
zM C M

Let
V={v1,...,vq}

be a generating set for M. Then, since zM C M, we have that:
d
Vv, € V,Juy; €2 1 zv; = Zuijvj
j=1

(without loss of generality we can always assume that the v; have been picked so that the u,; are integers).
Now, we can define a matrix d x d matrix in the integers, whose i, jth entry is:
Uij = wij

Then, the equation above can be written in matrix form if we define:



such that:
Uv=2zv

This then tells us that z is in fact an eigenvalue of U. Define g(t) to be the characteristic polynomial U:
g(t) =det(tI = U)

Now, the characteristic polynomial is monic, and since the u;; are integers, g will have integer coefficients.
By definition, the eigenvalues of U will be roots of g, so in particular:

g(z) =0

which implies that z is an algebraic integer, as required.

1.2.2 Theorem: Algebraic Integers are a Subring of C

The algebraic integers A form a subring of C.
(Theorem 7.3)

Proof. Let o, 8 € A. To show that A is a subring of C we must show it is closed under addition and
multiplication:

a+pBeA af € A

Since a, S are algebraic integers, there exist integers

{aiticom—1  {biticjon-1]
such that:
m—1 n—1
S =03
i=0 i=0

Now, let M be the additive subgroup of C generated by the set:
{a'f7 | i€ [0,m—1],j€0,n—1]}

In particular, M contains words/polynomials in the variables «, 8 (as by definition it is a subring of C too),
so:
a+peM apf e M

Thus
(a+B)MCM  (af)M C M

so by Proposition 7.4 above:
a+pBeA aff € A
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1.3 Algebraic Integers and Character Theory

1.3.1 Lemma: Characters are Algebraic Integers

Let x be a character of the finite group G. Then:

VgeG,  x(g) €A
(Lemma 7.5)

Proof. Since x(g) is the trace of the morphism p(g), it is a sum of eigenvalues of p(g). Now, since G is a
finite group:
JkeN : gF=eq = (p(g9)F=1

Thus, if A is an eigenvalue:
(p(@))v =X v = v=1Iv=(p(g)*v =

so \F =1, and thus, each \ is a root of unity.

In other words, x(g) is a sum of roots of unity. But each root of unity is an algebraic integer, and since
these form a subring of C (Theorem 7.3 above), it follows that x(g) is an algebraic integer.
O
1.3.2 Lemma: Subring of Group Ring Centre from Conjugacy Class Sums

Recall the definition of conjugacy class sums

Let G be a finite group with conjugacy classes:
Ci,...,Cy

Define the conjugacy class sum of C; via:

@:erm

zeC;

That is, 61 1s the formal sum in kG containing all elements of the conju-
gacy class C;.
(Proposition 3.15)
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Let:
e (G be a finite group
e (,...,C, be conjugacy classes in G

Let S be the additive subgroup of CG generated by the conjugacy

class sums: /\ /\
S = <01,...,.cr>
caG

Then, S is a subring of the centre Z(CG).
(Lemma 7.6)

Proof. To show that S is a subring, it is sufficient to show that the generators a satisfy:
Vij, Ci+CieS GCyeS
Firstly, note that by:

Let G be a finite group with conjugacy classes:

Ci,...,Cy
Then, e .
{C4,...,Cy}

is a basts for Z(kG) as a vector space, and thus:

dim(Z(kG)) = s(G)

(Proposition 3.15)

so in particular each a is central in CG.
By definition of S (as an additive subgroup), we must ahve that

a-Jr@eS

For the second condition, we can write:

76 - (£4) (2] - £ 5w

zeC; yeCy i=1 zeC}

where we’ve used the fact that conjugacy classes partition G, so in particular:

Vz=2ay € G, C, : z€ Cy
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What are the coefficients a;;x(2)? They count the number of ways in which z can be made as a product of
z € Cy,y € Cj. In other words:

aijk(z) = {(z,y) € Ci x Cj | xy = 2}
But notice, these a;j;, are invariant under conjugation:
Vge G,  ayilg ' zg) = {(z,y) € Ci x Cj | wy = gzg~'}|

since for each (z,y) such that zy = z we have that:

(97 zg) (g yz) = g ayg = g7tz
and (g7 'zg,g 'yz) € C; x C;. Thus:

Vz € Ch, a;ji(z) = aijk(g_lzg)
so in particular the a;;; don’t depend on the choice of representative, so:

r a
5@ = Zaijk Z z = Zazjk@ €S
=1 k=1

2€C

1.3.3 Theorem: Conjugacy Class Sums Act Through Algebraic Integers

Let

e (G be a finite group

o V be a stimple CG-module
Then, for any g € G:

1. The conjugacy class sum 55 acts on'V by a scalar:

_ @
vvev’ gG'/U:|g |XV(g)V
xv(1)
where .
9" (9)
xv(1)
2. The scalar is an algebraic integer
@
l9%xv(9)

xv (1)

(Theorem 7.7)
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Proof.

@

Recall Schur’s Lemma:

Suppose k is algebraically closed. LetV be a simple module over a
finite dimensional k-algebra A.

Then, every A-module endomorphism of V is given by the action of
some scalar A\ € K, such that:

Enda(V) = kly
(Theorem 3.6)

Schur’s Lemma applies, since by assumption V is simple. Moreover, recall that central elements induce
an endomorphism action:

Take any z € Z(A), and define an endomorphism:
2y . V-V
va:
Vi zev
We can check that zy s indeed an endomorphism:
zv(a-v)=2z-(a-v)

= (za) - v

(az)-v

=a-zy(v)

Hence, since conjugacy class sums are central in CG, it follows that z = g& acts by a scalar zyy € C on
every simple CG-module. Thus, we have that:

g% v =1z2yv = g TV =2yv
z€gC

Now, taking the trace of both sides:

tr Z T-v| = Z xv(z) = |9G|XV<9)

z€g® zeg®

since xy is a class function. Similarly:
tr(zyv) = zy dim(V)

since the matrix corresponding to a scalar zy is a diagonal matrix with dim (V') rows. Hence:

19%[xv (9) = zv dim(V)
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Using the fact that:
we obtain the desired result.

©)

Let
p:G— GL(V)
be the representation of G afforded by V. We can extend p to a C-algebra homomorphism:
p:CG — End(V)

by defining:
> agg D agplg)
geG geG
If we restrict p to the centre Z(CG), then each j(g) corresponds to a scalar in C; this defines a homomorphism:
Z(CG)—C

which is nothing but the central character of V:

Let A be a k-algebra, and V' be an A-module where:
Ends (V) = kly

By Schur’s Lemma, every z € Z(A) acts on'V by scalar multiplica-
tion. Denote this action/endomorphism via zy .

The central character of V is the ring homomorphism.:

Z(A) — k

Z = 2y

In particular, it thus follows that:
p(Z(CG)) cC
Using Lemma 7.6:

Let:
e (G be a finite group
e (,...,C, be conjugacy classes in G

Let S be the additive subgroup of CG generated by the conjugacy

class sums: A A
S=<a,”,a>
caG

Then, S is a subring of the centre Z(CG).
(Lemma 7.6)
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since S is a subring of Z(CG), we must have that:
p(s) <C
is a subring of C, since p is a ring homomorphism. In particular:
2v - 5(8) C A(S)

since zy € p(S). Thus, by Proposition 7.4

Let M be a finitely generated subgroup of (C,+). Then:
{zreC|zM CM}CA
(Proposition 7.4)

zy is an algebraic integer, as required.

1.3.4 Corollary: Dimension of Group Ring Module Divides Group Order

If V is a simple CG-module, then dim(V') divides |G]|.
(Corollary 7.8)

Proof. By row orthogonality of the character table, we have that:

(xv,xv) =1

Define a complete set of representatives for the conjugacy classes of G to be:

gl)""gT

Then, we have that:

1= (xv,xv)

ﬁ%Zﬁ@wU

gGG

G —1 7
| | ZX |gx|\)/<2/1())
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Here we’ve used the fact that:

xvig™) =xv(g)

This follows from the fact that if p is the representation afforded by V,
then the eigenvalues of p(g=') are the inverses of the eigenvalues of
p(9). In particular, if p(g) has eigenvalues \;, then using the fact that
these eigenvalues are roots of unity:

xvlg™) =tr(p(g™) =D % => Xi=xv(9)

Now, note that for any i € [1,7]:

o xvi(g; 1) € A, since characters are roots of unity, and roots of unity are algebraic integers
¢ i
. % € A, by Theorem 7.7, part 2

Since A is a ring (Theorem 7.3), it is closed under addition and multiplication, which in particular implies

that:
Gl _ |G|

xv(l) — dim(V)

This is a rational number, and since Q N A = Z, in particular:
G|

dim(V)

€A

ez

so as required dim(V') must divide |G|.

2 Burnside’s Theorem

2.1 Sylow’s Theorems

2.1.1 Definition: Sylow p-Subgroup

Let G be a finite group, and let p be a prime such that:
|G| = p*m

wherep fm.
A Sylow p-subgroup of G is a subgroup P < G such that:

|P| =p°
(Definition 7.10)
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2.1.2 Theorem: Sylow Theorems

Let G be a finite group,and let p be a prime such that:
|G| =p*m

where p fm.

Then:
1. G contains at least one Sylow p-subgroup
2. If Py, P, are Sylow p-subgroups of G:
Vge G,  gPg =P

3. Let n, be the number of Sylow p-subgroups of G. Then:

(a)

n, =1 (mod p)

(b)
Gl

np|m:—a

2.2 Towards Burnside’s Theorem

2.2.1 Lemma: Order of Conjugacy Classes from Central Sylow Subgroup Elements

Let G be a finite group such that:
G| =p*¢”

where:

® p,q are distinct primes

e, f>1
If P < G is a Sylow p-subgroup, and g € Z(P), then:

ImeN : |¢% ="

(Lemma 7.12)
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Proof. Since g € Z(P), in particular the centraliser (set of all elements of G which commute with ¢g) must

contain P as a subgroup:
P < Cq(g)

In particular, by Lagrange’s Theorem, it follows that |P| divides |Cg(g):

[Ca(9)]
1P|

|Ca(9)/ Pl =

Moreover, by the Orbit-Stabilizer Theorem, we know that:

G| G
=19
Cotal
Lastly, again by Lagrange’s Theorem:
G|
|G/P| == = q°
/Pl P
In particular:
G/PL & _ 1Calo)lC] _ 1Ceo)] _
IG/Calg)l g G| P| |P|

In particular, this implies that |¢¢| divides ¢”, and since q is prime, this is true if and only if |¢| is itself a
power of g.
O

2.2.2 Lemma: Algebraic Integer from Roots of Unity

This makes me so happy: we get to combine Representation Theory with Galois Theory. As a recap, consider
my notes on Galois Theory.

Let
§1y-- 5 6n

be roots of unity, and define:

L+...+ &
n

o =

Now, suppose that o is an algebraic integer (o € A). Then either:
a=0 or a=§&=...=¢&,

(Lemma 7.14)
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Proof. Without loss of generality, we may assume that there exists some primitive kth root of unity w, such
that:
Vi € [1,7’1], gz € Q(w)

Let:
G = Gal(Q(w) : Q)

a= H o(a)

oc€g

Define the norm of « as the value:

By definition of the Galois Group, any ¢ € G will permute the roots of unity, so:
Viellinoeg |o(&)l=1

Moreover, as an automorphism over Q:

by the Triangle Inequality. Hence:

On the other hand, again by definition of the Galois Group as a an automorphism, any action of G on a fixes
a (since applying autmorphisms repeatedly sends each ; to a distinct root, and the norm is symmetric with
respect to these roots). But then:

a € Fix(G) <= a€Q

by definition of the fixed set.
By hypothesis, a € A, so o(a) € A for any ¢ € G and since algebraic integers form a ring (Theorem 7.3),

it follows that a € A too. This then forces:
a € Z

Alongside the restriction |a| < 1, this implies that:
a€{-1,0,1}
If @ = 0, then at least one of the o(«) is 0; but ¢ is an automorphism over Q, which forces o = 0.

Otherwise, |a| = 1, which forces:

n
Za(§j) =n < Zéj =n
j=1
Now, we proceed by induction. If n = 1, the result is clear. Assume that for n = k, we have:
k
D G| =k
j=1

implies that all the &; are equal. Now consider k + 1 roots of unity such that:

k+1

DGl =k+1
j=1
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Then:
|k + & =k +1

By the Triangle Inequality:
k&1 + Epy1] <k +1

Thus, if {41 # &1, we must have:
|k&1 + Eryr| <k +1

which contradicts the initial assumption. Thus, {11 = &1, and all the roots of unity are equal. In other
words:
af=1 = a=&4=...=§

2.2.3 Theorem: Simple Groups from Conjugacy Class Size

Let G be a finite group. Suppose that g € G is a non-central group
element, such that |g®| is not a prime power. Then, G is not simple
(if has a non-trivial normal subgroup).

That is, if for any non-central g € G we have that |g%| is a prime power,

then G contains a non-trivial normal subgroup.
(Theorem 7.13)

Proof. Let G have r conjugacy classes, and let

]]-7p2a"'7p7“

be the irreducible (C-linear) representations of G (i.e the simple CG modules).

Assume that the Theorem is false, and that for some non-central element g with |¢%| a prime power, G
is simple. Then, since the kernel of a representation is always a normal subgroup, we must have that:

ker(p;) = {ec} or ker(p;) =G

But since these are all irreducible, non-isomorphic representations, and 1 is the unique representation with
kernel G, it must be the case that:

Viel[2,r],  ker(p) = {ec}
In particular, each representation p; is injective, so by the First Isomorphism Theorem (or simple logic):
G/ker(p;) Zim(p;)) = G = p;i(G)
Moreover, the image of a representation is a subgroup:
pi(G) < GL,,(C)

Now, GL,,(C) is not simple: it has a non-trivial centre C, given by the diagonal matrices with entries in
C*. In particular, this implies that:
pi(G)NC
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is a central subgroup of p;(G). But then, since p;(G) = G, and G is simple, this forces:

pi(G) N C = {pi(ec)}

so it must be trivial (since clearly p;(G) N C # p;(G), as otherwise we'd have that G is a central subgroup
of itself, and thus, G is abelian, which contradicts the fact that G is simple).

Hence, the proof reduces to finding some g; € G such that p;(g;) acts a scalar multiple of the identity:
pi(gi)g;) =al,  aeC”
as this then implies a contradiction of the fact that

pi(G)NC = {pi(ec)}

Now, consider the non-central element g, such that |g| is some power of a prime ¢q. Using column
orthogonality:

Let G be a finite group, and let

X15---3XR

be irreducible characters of G.

If g, h € G, then:

[Ca(9)l; g¢ = h¢

0, otherwise

mel(h) =

In other words, taking the dot product of columns in the character

table will alwyas be 0.
(Theorem 5.23)

with the first column and the column associated to g (and letting x; be the character associated to
representation p;):

0=1+Y x()xi(9)
=2
Now, does ¢ divide all of the x;(1)? If it did, then:

T

—é => (Xi;1)> xi(9)

=2

Under the assumption that g divides each x;(1), the RHS is a linear combination of algebraic integers, so it
must be an algebraic integer. But since q > 2, —% ¢ A (the only rational algebraic integers are the integers
themselves). This implies that:
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e 2,r] g fxa(l)
e for said 7, x;(g) # 0 (since otherwise whether ¢ divides y;(1) or not wouldn’t matter)
Finally, we bring it all together. Let:
991=d",  B>0
Since ¢ fxi(1), in particular:
ged(lg], xi(1)) = 1

@|. Hence, by Bezout’s Lemma:

since only ¢ divides |g
Ja,b€Z : axi(i) +blg¢| =1

This implies that:

9% xi(9) xi(9)
MDD ) =
xi(1) ’ xi(1)
The LHS is again a linear combination of algebraic integers (using Theorem 7.7, part 2 and Lemma 7.5),
and since algebraic integers form a ring, this implies that:

Xi(9)
e €A

Now, x;(1) gives the dimension n; of the CG-module represented by p;. Moreover, x;(g) is a sum of n;
eigenvalues of p;(g), and these eigenvalues are all roots of unity, say f; Since by assumption x;(g) # 0, we

thus have that:
1 o~
w25 0
n; <
7j=1

Hence, using

Let
gla"'aé-n

be roots of unity, and define:

n

o =

Now, suppose that o is an algebraic integer (o € A). Then either:

a=0 or azglz...:fn

(Lemma 7.14)

it follows that each of the eigenvalues of p; are all the same, say x. In particular, this then means that:

pi(g) = &I
But this contradicts the fact that:
pi(G)NC ={pi(ec)}
since {1 € C'is clearly a central element. Hence, it follows by contradiction that if g is a non-central element

of G, with |g%| = ¢” for some prime p, that G can’t be simple, as required.
O
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2.2.4 Theorem: Burnside’s Theorem

Let G be a finite, non-abelian group of order p®q®, where p, q are

primes. Then, G is not simple.
(Theorem 7.9)

We may assume that o, 5 > 1.
Otherwise, |G| = p" implies that G has a non-trivial centre, by the pre-

vious Group Theory course.
If |G| is prime, then it will be cyclic, and so, abelian so Burnside’s

Theorem doesn’t apply to them).

Proof.

By Sylow I, G has a Sylow p-subgroup, call it P. Since o > a, P is a non-trivial p-group, so it has a
non-trivial centre, Z(P) (again, by this theorem). Hence, we can always find a non-trivial central element

g € Z(P).

If g € Z(G) aswell, then (g) defines a non-trivial, proper normal subgroup of G, in which case we are

done.

Otherwise, g isn’t central in G, in which case by

Let G be a finite group such that:
|G| = p*¢”
where:
e p,q are distinct primes
oo, f21
If P < G is a Sylow p-subgroup, and g € Z(P), then:
ImeN : |g¢] =q™

(Lemma 7.12)

we have that |g©| is a prime power, which by:
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Let G be a finite group. Suppose that g € G is a non-central group
element, such that |g¢| is not a prime power. Then, G is not simple
(if has a non-trivial normal subgroup).

That is, if for any non-central g € G we have that |g%| is a prime power,

then G' contains a non-trivial normal subgroup.
(Theorem 7.13)

implies that G isn’t simple.
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