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Based on the notes by Konstantin Ardakov, Section 7

1 Algebraic Integers

1.1 Definition: Algebraic Numbers and Algebraic Integers

Let z ∈ C. Then:

1. z is an algebraic number if:

∃f ∈ Q[t] : f(z) = 0

The set of all algebraic numbers is Q.

2. z is an algebraic integer if:

∃f ∈ Z[t] : f(z) = 0

and f is monic (its leading coefficient is 1).
The set of all algebraic integers is A

(Definition 7.1)

1.1.1 Examples: Algebraic Integers

• every integer a ∈ Z is an algebraic integer, as it satisfies t− a = 0

• every nth root of unity ω is an algebraic integer, as it satisfies tn − 1 = 0

• if z ∈ C is an algebraic number, there exists some m ∈ Z such that mz is an algebraic integer. In
particular, suppose that:

d∑
i=1

αiz
i = 0

Then, if:

αi =
ai
bi

(where ai, bi ∈ Z are coprime), then if we let:

m = lcm(b1, . . . , bd)

we have that:

0 = md+1
d∑

i=0

αiz
i =

d∑
i=1

αim
d−i(mz)i

and:
αim

d−i ∈ Z

since ∀i ∈ [0, d] bi will divide md−i

Page 2



• we have that:
α ∈ Z ⇐⇒ α ∈ Q is an algebraic integer

In other words:
Q ∩ A = Z

If α ∈ Z, then it is trivially a rational algebraic integer. On the other hand, if α is a rational algebraic
integer, there exist coprime r, s ∈ Z such that:

α =
r

s
∈ Q

and:

∃ai ∈ Z : 0 =

n∑
i=0

ai

(r
s

)i
=⇒ −rn =

n−1∑
i=0

air
isn−i

Since s divides the LHS, it must divide the RHS; but r, s being coprime implies that s = ±1 (since
their only common divisor will be 1), so α = r/s = r ∈ Z

1.2 Algebraic Integers as a Ring

1.2.1 Proposition: Preserving Subgroups Leads to Algebraic Integers

Let M be a finitely generated subgroup of (C,+). Then:

{z ∈ C | zM ⊆ M} ⊂ A

(Proposition 7.4)

Proof. Let z ∈ C be such that for any finitely generated additive subgroup of C M we have that:

zM ⊆ M

Let
V = {v1, . . . , vd}

be a generating set for M . Then, since zM ⊆ M , we have that:

∀vi ∈ V,∃uij ∈ Z : zvi =

d∑
j=1

uijvj

(without loss of generality we can always assume that the vi have been picked so that the uij are integers).

Now, we can define a matrix d× d matrix in the integers, whose i, jth entry is:

Uij = uij

Then, the equation above can be written in matrix form if we define:

v =


v1
...

vd

 ∈ Zd
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such that:
Uv = zv

This then tells us that z is in fact an eigenvalue of U . Define g(t) to be the characteristic polynomial U :

g(t) = det(tI − U)

Now, the characteristic polynomial is monic, and since the uij are integers, g will have integer coefficients.
By definition, the eigenvalues of U will be roots of g, so in particular:

g(z) = 0

which implies that z is an algebraic integer, as required.

1.2.2 Theorem: Algebraic Integers are a Subring of C

The algebraic integers A form a subring of C.
(Theorem 7.3)

Proof. Let α, β ∈ A. To show that A is a subring of C we must show it is closed under addition and
multiplication:

α+ β ∈ A αβ ∈ A

Since α, β are algebraic integers, there exist integers

{ai}i∈[0,m−1] {bi}i∈[0,n−1]

such that:
m−1∑
i=0

aiα
i = 0 =

n−1∑
i=0

biβ
i

Now, let M be the additive subgroup of C generated by the set:

{αiβj | i ∈ [0,m− 1], j ∈ [0, n− 1]}

In particular, M contains words/polynomials in the variables α, β (as by definition it is a subring of C too),
so:

α+ β ∈ M αβ ∈ M

Thus
(α+ β)M ⊆ M (αβ)M ⊆ M

so by Proposition 7.4 above:
α+ β ∈ A αβ ∈ A
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1.3 Algebraic Integers and Character Theory

1.3.1 Lemma: Characters are Algebraic Integers

Let χ be a character of the finite group G. Then:

∀g ∈ G, χ(g) ∈ A

(Lemma 7.5)

Proof. Since χ(g) is the trace of the morphism ρ(g), it is a sum of eigenvalues of ρ(g). Now, since G is a
finite group:

∃k ∈ N : gk = eG =⇒ (ρ(g))k = I

Thus, if λ is an eigenvalue:

(ρ(g))v = λv =⇒ v = Iv = (ρ(g))kv = λkv

so λk = 1, and thus, each λ is a root of unity.

In other words, χ(g) is a sum of roots of unity. But each root of unity is an algebraic integer, and since
these form a subring of C (Theorem 7.3 above), it follows that χ(g) is an algebraic integer.

1.3.2 Lemma: Subring of Group Ring Centre from Conjugacy Class Sums

Recall the definition of conjugacy class sums

Let G be a finite group with conjugacy classes:

C1, . . . , C2

Define the conjugacy class sum of Ci via:

Ĉi =
∑
x∈Ci

x ∈ kG

That is, Ĉi is the formal sum in kG containing all elements of the conju-
gacy class Ci.
(Proposition 3.15)
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Let:

• G be a finite group

• C1, . . . , Cr be conjugacy classes in G

Let S be the additive subgroup of CG generated by the conjugacy
class sums:

S =
〈
Ĉ1, . . . , .Ĉr

〉
CG

Then, S is a subring of the centre Z(CG).
(Lemma 7.6)

Proof. To show that S is a subring, it is sufficient to show that the generators Ĉi satisfy:

∀i, j, Ĉi + Ĉj ∈ S ĈiĈj ∈ S

Firstly, note that by:

Let G be a finite group with conjugacy classes:

C1, . . . , C2

Then,

{Ĉ1, . . . , Ĉ2}
is a basis for Z(kG) as a vector space, and thus:

dim(Z(kG)) = s(G)

(Proposition 3.15)

so in particular each Ĉi is central in CG.

By definition of S (as an additive subgroup), we must ahve that

Ĉi + Ĉj ∈ S

For the second condition, we can write:

ĈiĈj =

(∑
x∈Ci

x

)∑
y∈Cj

y

 =

r∑
i=1

∑
z∈Ck

aijk(z)z

where we’ve used the fact that conjugacy classes partition G, so in particular:

∀z = xy ∈ G, ∃Ck : z ∈ Ck
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What are the coefficients aijk(z)? They count the number of ways in which z can be made as a product of
x ∈ Ci, y ∈ Cj . In other words:

aijk(z) = |{(x, y) ∈ Ci × Cj | xy = z}|

But notice, these aijk are invariant under conjugation:

∀g ∈ G, aijk(g
−1zg) = |{(x, y) ∈ Ci × Cj | xy = gzg−1}|

since for each (x, y) such that xy = z we have that:

(g−1xg)(g−1yz) = g−1xyg = g−1zg

and (g−1xg, g−1yz) ∈ Ci × Cj . Thus:

∀z ∈ Ck, aijk(z) = aijk(g
−1zg)

so in particular the aijk don’t depend on the choice of representative, so:

ĈiĈj =

r∑
i=1

aijk
∑
z∈Ck

z =
a∑

k=1

aijkĈk ∈ S

1.3.3 Theorem: Conjugacy Class Sums Act Through Algebraic Integers

Let

• G be a finite group

• V be a simple CG-module

Then, for any g ∈ G:

1. The conjugacy class sum ĝG acts on V by a scalar:

∀v ∈ V, ĝG · v =
|gG|χV (g)

χV (1)
· V

where
|gG|χV (g)

χV (1)
∈ C

2. The scalar is an algebraic integer

|gG|χV (g)

χV (1)
∈ A

(Theorem 7.7)
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Proof.

1

Recall Schur’s Lemma:

Suppose k is algebraically closed. Let V be a simple module over a
finite dimensional k-algebra A.
Then, every A-module endomorphism of V is given by the action of
some scalar λ ∈ K, such that:

EndA(V ) = k1V

(Theorem 3.6)

Schur’s Lemma applies, since by assumption V is simple. Moreover, recall that central elements induce
an endomorphism action:

Take any z ∈ Z(A), and define an endomorphism:

zV : V → V

via:
v 7→ z · v

We can check that zV is indeed an endomorphism:

zV (a · v) = z · (a · v)
= (za) · v
= (az) · v
= a · zV (v)

Hence, since conjugacy class sums are central in CG, it follows that z = ĝG acts by a scalar zV ∈ C on
every simple CG-module. Thus, we have that:

ĝG · v = zV v =⇒
∑
x∈gG

x · v = zV v

Now, taking the trace of both sides:

tr

∑
x∈gG

x · v

 =
∑
x∈gG

χV (x) = |gG|χV (g)

since χV is a class function. Similarly:
tr(zV v) = zV dim(V )

since the matrix corresponding to a scalar zV is a diagonal matrix with dim(V ) rows. Hence:

|gG|χV (g) = zV dim(V )
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Using the fact that:
χV (1) = dim(V )

we obtain the desired result.

2

Let
ρ : G → GL(V )

be the representation of G afforded by V . We can extend ρ to a C-algebra homomorphism:

ρ̃ : CG → End(V )

by defining: ∑
g∈G

agg
ρ̃7→
∑
g∈G

agρ(g)

If we restrict ρ̃ to the centre Z(CG), then each ρ̃(g) corresponds to a scalar in C; this defines a homomorphism:

Z(CG) → C

which is nothing but the central character of V :

Let A be a k-algebra, and V be an A-module where:

EndA(V ) = k1V

By Schur’s Lemma, every z ∈ Z(A) acts on V by scalar multiplica-
tion. Denote this action/endomorphism via zV .

The central character of V is the ring homomorphism:

Z(A) → k

z 7→ zV

In particular, it thus follows that:
ρ̃(Z(CG)) ⊆ C

Using Lemma 7.6:

Let:

• G be a finite group

• C1, . . . , Cr be conjugacy classes in G

Let S be the additive subgroup of CG generated by the conjugacy
class sums:

S =
〈
Ĉ1, . . . , .Ĉr

〉
CG

Then, S is a subring of the centre Z(CG).
(Lemma 7.6)
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since S is a subring of Z(CG), we must have that:

ρ̃(S) ≤ C

is a subring of C, since ρ̃ is a ring homomorphism. In particular:

zV · ρ̃(S) ⊆ ρ̃(S)

since zV ∈ ρ̃(S). Thus, by Proposition 7.4

Let M be a finitely generated subgroup of (C,+). Then:

{z ∈ C | zM ⊆ M} ⊂ A

(Proposition 7.4)

zV is an algebraic integer, as required.

1.3.4 Corollary: Dimension of Group Ring Module Divides Group Order

If V is a simple CG-module, then dim(V ) divides |G|.
(Corollary 7.8)

Proof. By row orthogonality of the character table, we have that:

⟨χV , χV ⟩ = 1

Define a complete set of representatives for the conjugacy classes of G to be:

g1, . . . , gr

Then, we have that:

1 = ⟨χV , χV ⟩

=
1

|G|
∑
g∈G

χV (g)χV (g)

=
1

|G|

r∑
i=1

|gGi |χV (g
−1
i )χV (gi)

=⇒ |G|
χV (1)

=

r∑
i=1

χV (g
−1
i )

|gGi |χV (gi)

χV (1)
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Here we’ve used the fact that:

χV (g
−1) = χV (g)

This follows from the fact that if ρ is the representation afforded by V ,
then the eigenvalues of ρ(g−1) are the inverses of the eigenvalues of
ρ(g). In particular, if ρ(g) has eigenvalues λi, then using the fact that
these eigenvalues are roots of unity:

χV (g
−1) = tr(ρ(g−1)) =

∑ 1

λi

=
∑

λi = χV (g)

Now, note that for any i ∈ [1, r]:

• χV (g
−1
i ) ∈ A, since characters are roots of unity, and roots of unity are algebraic integers

• |gG
i |χV (gi)
χV (1) ∈ A, by Theorem 7.7, part 2

Since A is a ring (Theorem 7.3), it is closed under addition and multiplication, which in particular implies
that:

|G|
χV (1)

=
|G|

dim(V )
∈ A

This is a rational number, and since Q ∩ A = Z, in particular:

|G|
dim(V )

∈ Z

so as required dim(V ) must divide |G|.

2 Burnside’s Theorem

2.1 Sylow’s Theorems

2.1.1 Definition: Sylow p-Subgroup

Let G be a finite group, and let p be a prime such that:

|G| = pαm

where p ̸ |m.
A Sylow p-subgroup of G is a subgroup P ≤ G such that:

|P | = pα

(Definition 7.10)
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2.1.2 Theorem: Sylow Theorems

Let G be a finite group,and let p be a prime such that:

|G| = pαm

where p ̸ |m.

Then:

1. G contains at least one Sylow p-subgroup

2. If P1, P2 are Sylow p-subgroups of G:

∀g ∈ G, gP1g
−1 = P2

3. Let np be the number of Sylow p-subgroups of G. Then:

(a)
np ≡ 1 (mod p)

(b)

np | m =
|G|
pα

2.2 Towards Burnside’s Theorem

2.2.1 Lemma: Order of Conjugacy Classes from Central Sylow Subgroup Elements

Let G be a finite group such that:

|G| = pαqβ

where:

• p, q are distinct primes

• α, β ≥ 1

If P ≤ G is a Sylow p-subgroup, and g ∈ Z(P ), then:

∃m ∈ N : |gG| = qm

(Lemma 7.12)
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Proof. Since g ∈ Z(P ), in particular the centraliser (set of all elements of G which commute with g) must
contain P as a subgroup:

P ≤ CG(g)

In particular, by Lagrange’s Theorem, it follows that |P | divides |CG(g)|:

|CG(g)/P | = |CG(g)|
|P |

Moreover, by the Orbit-Stabilizer Theorem, we know that:

|G|
|CG(g)|

= |gG|

Lastly, again by Lagrange’s Theorem:

|G/P | = |G|
|P |

= qβ

In particular:
|G/P |

|G/CG(g)|
=

qβ

|gG|
=

|CG(g)||G|
|G||P |

=
|CG(g)|
|P |

∈ N

In particular, this implies that |gG| divides qβ , and since q is prime, this is true if and only if |gG| is itself a
power of q.

2.2.2 Lemma: Algebraic Integer from Roots of Unity

This makes me so happy: we get to combine Representation Theory with Galois Theory. As a recap, consider
my notes on Galois Theory.

Let
ξ1, . . . , ξn

be roots of unity, and define:

α =
ξ1 + . . .+ ξn

n

Now, suppose that α is an algebraic integer (α ∈ A). Then either:

α = 0 or α = ξ1 = . . . = ξn

(Lemma 7.14)
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Proof. Without loss of generality, we may assume that there exists some primitive kth root of unity ω, such
that:

∀i ∈ [1, n], ξi ∈ Q(ω)

Let:
G = Gal(Q(ω) : Q)

Define the norm of α as the value:
a =

∏
σ∈G

σ(α)

By definition of the Galois Group, any σ ∈ G will permute the roots of unity, so:

∀j ∈ [1, n], σ ∈ G |σ(ξj)| = 1

Moreover, as an automorphism over Q:

|σ(α)| = 1

n

∣∣∣∣∣∣
n∑

j=1

σ(ξj)

∣∣∣∣∣∣ ≤ 1

n

n∑
j=1

|σ(ξj)| = 1

by the Triangle Inequality. Hence:

|a| =
∏
σ∈G

|σ(α)| ≤ 1

On the other hand, again by definition of the Galois Group as a an automorphism, any action of G on a fixes
a (since applying autmorphisms repeatedly sends each ξj to a distinct root, and the norm is symmetric with
respect to these roots). But then:

a ∈ Fix(G) ⇐⇒ a ∈ Q

by definition of the fixed set.

By hypothesis, α ∈ A, so σ(α) ∈ A for any σ ∈ G and since algebraic integers form a ring (Theorem 7.3),
i t follows that a ∈ A too. This then forces:

a ∈ Z

Alongside the restriction |a| ≤ 1, this implies that:

a ∈ {−1, 0, 1}

If a = 0, then at least one of the σ(α) is 0; but σ is an automorphism over Q, which forces α = 0.

Otherwise, |a| = 1, which forces: ∣∣∣∣∣∣
n∑

j=1

σ(ξj)

∣∣∣∣∣∣ = n ⇐⇒

∣∣∣∣∣∣
n∑

j=1

ξj

∣∣∣∣∣∣ = n

Now, we proceed by induction. If n = 1, the result is clear. Assume that for n = k, we have:∣∣∣∣∣∣
k∑

j=1

ξj

∣∣∣∣∣∣ = k

implies that all the ξj are equal. Now consider k + 1 roots of unity such that:∣∣∣∣∣∣
k+1∑
j=1

ξj

∣∣∣∣∣∣ = k + 1
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Then:
|k + ξk+1| = k + 1

By the Triangle Inequality:
|kξ1 + ξk+1| ≤ k + 1

Thus, if ξk+1 ̸= ξ1, we must have:
|kξ1 + ξk+1| < k + 1

which contradicts the initial assumption. Thus, ξk+1 = ξ1, and all the roots of unity are equal. In other
words:

|a| = 1 =⇒ α = ξ1 = . . . = ξn

2.2.3 Theorem: Simple Groups from Conjugacy Class Size

Let G be a finite group. Suppose that g ∈ G is a non-central group
element, such that |gG| is not a prime power. Then, G is not simple
(if has a non-trivial normal subgroup).
That is, if for any non-central g ∈ G we have that |gG| is a prime power,
then G contains a non-trivial normal subgroup.
(Theorem 7.13)

Proof. Let G have r conjugacy classes, and let

1, ρ2, . . . , ρr

be the irreducible (C-linear) representations of G (i.e the simple CG modules).

Assume that the Theorem is false, and that for some non-central element g with |gG| a prime power, G
is simple. Then, since the kernel of a representation is always a normal subgroup, we must have that:

ker(ρi) = {eG} or ker(ρi) = G

But since these are all irreducible, non-isomorphic representations, and 1 is the unique representation with
kernel G, it must be the case that:

∀i ∈ [2, r], ker(ρi) = {eG}

In particular, each representation ρi is injective, so by the First Isomorphism Theorem (or simple logic):

G/ ker(ρi) ∼= im(ρi) =⇒ G ∼= ρi(G)

Moreover, the image of a representation is a subgroup:

ρi(G) ≤ GLni(C)

Now, GLni(C) is not simple: it has a non-trivial centre C, given by the diagonal matrices with entries in
C×. In particular, this implies that:

ρi(G) ∩ C
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is a central subgroup of ρi(G). But then, since ρi(G) ∼= G, and G is simple, this forces:

ρi(G) ∩ C = {ρi(eG)}

so it must be trivial (since clearly ρi(G) ∩ C ̸= ρi(G), as otherwise we’d have that G is a central subgroup
of itself, and thus, G is abelian, which contradicts the fact that G is simple).

Hence, the proof reduces to finding some gj ∈ G such that ρi(gj) acts a scalar multiple of the identity:

ρi(gj)(gj) = αI, α ∈ C×

as this then implies a contradiction of the fact that

ρi(G) ∩ C = {ρi(eG)}

Now, consider the non-central element g, such that |g|G is some power of a prime q. Using column
orthogonality:

Let G be a finite group, and let

χ1, . . . , χR

be irreducible characters of G.

If g, h ∈ G, then:

R∑
i=1

χi(g)χi(h) =

{
|CG(g)|, gG = hG

0, otherwise

In other words, taking the dot product of columns in the character
table will alwyas be 0.
(Theorem 5.23)

with the first column and the column associated to gG (and letting χi be the character associated to
representation ρi):

0 = 1 +

r∑
i=2

χi(1)χi(g)

Now, does q divide all of the χi(1)? If it did, then:

−1

q
=

r∑
i=2

(
χi(1)

q

)
χi(g)

Under the assumption that q divides each χi(1), the RHS is a linear combination of algebraic integers, so it
must be an algebraic integer. But since q ≥ 2, − 1

q ̸∈ A (the only rational algebraic integers are the integers

themselves). This implies that:
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•
∃i ∈ [2, r] : q ̸ |χi(1)

• for said i, χi(g) ̸= 0 (since otherwise whether q divides χi(1) or not wouldn’t matter)

Finally, we bring it all together. Let:

|gG| = qβ , β > 0

Since q ̸ |χi(1), in particular:
gcd(|gG|, χi(1)) = 1

since only q divides |gG|. Hence, by Bezout’s Lemma:

∃a, b ∈ Z : aχi(i) + b|gG| = 1

This implies that:

a
|gG|χi(g)

χi(1)
+ bχi(g) =

χi(g)

χi(1)

The LHS is again a linear combination of algebraic integers (using Theorem 7.7, part 2 and Lemma 7.5),
and since algebraic integers form a ring, this implies that:

χi(g)

χi(1)
∈ A

Now, χi(1) gives the dimension ni of the CG-module represented by ρi. Moreover, χi(g) is a sum of ni

eigenvalues of ρi(g), and these eigenvalues are all roots of unity, say ξij . Since by assumption χi(g) ̸= 0, we
thus have that:

1

ni

ni∑
j=1

ξij ̸= 0

Hence, using

Let
ξ1, . . . , ξn

be roots of unity, and define:

α =
ξ1 + . . .+ ξn

n

Now, suppose that α is an algebraic integer (α ∈ A). Then either:

α = 0 or α = ξ1 = . . . = ξn

(Lemma 7.14)

it follows that each of the eigenvalues of ρi are all the same, say χ. In particular, this then means that:

ρi(g) = ξI

But this contradicts the fact that:
ρi(G) ∩ C = {ρi(eG)}

since ξI ∈ C is clearly a central element. Hence, it follows by contradiction that if g is a non-central element
of G, with |gG| = qβ for some prime p, that G can’t be simple, as required.
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2.2.4 Theorem: Burnside’s Theorem

Let G be a finite, non-abelian group of order pαqβ, where p, q are
primes. Then, G is not simple.
(Theorem 7.9)

We may assume that α, β ≥ 1.
Otherwise, |G| = pn implies that G has a non-trivial centre, by the pre-
vious Group Theory course.
If |G| is prime, then it will be cyclic, and so, abelian so Burnside’s
Theorem doesn’t apply to them).

Proof.

By Sylow I, G has a Sylow p-subgroup, call it P . Since α ≥ a, P is a non-trivial p-group, so it has a
non-trivial centre, Z(P ) (again, by this theorem). Hence, we can always find a non-trivial central element
g ∈ Z(P ).

If g ∈ Z(G) aswell, then ⟨g⟩ defines a non-trivial, proper normal subgroup of G, in which case we are
done.

Otherwise, g isn’t central in G, in which case by

Let G be a finite group such that:

|G| = pαqβ

where:

• p, q are distinct primes

• α, β ≥ 1

If P ≤ G is a Sylow p-subgroup, and g ∈ Z(P ), then:

∃m ∈ N : |gG| = qm

(Lemma 7.12)

we have that |gG| is a prime power, which by:
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Let G be a finite group. Suppose that g ∈ G is a non-central group
element, such that |gG| is not a prime power. Then, G is not simple
(if has a non-trivial normal subgroup).
That is, if for any non-central g ∈ G we have that |gG| is a prime power,
then G contains a non-trivial normal subgroup.
(Theorem 7.13)

implies that G isn’t simple.
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