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3.3 Example: Characters of Dihedral Groups

Page 2



Based on the notes by Konstantin Ardakov, Section 6

1 Induced Modules

1.1 Recap: Invariant Modules

LetV be a CG-module. The invariant submodule of V is:

Vel={veV|Vgeaq, g-v=u}

VY is the largest subspace of V which is fized by G.
(Definition 5.19)

1.2 Coinvariants

1.2.1 Definition: Space of H-Coinvariants

Let H be a finite group, and let V be a kH-module. The vector space
of H-coinvariants of V is:

Vg =V/(H-1)V
where:
(H-1)V=kh-v—v|heHveV}

Vi is the largest quotient kH-module of V' which is isomorphic to the

trivial module.
(Definition 6.1)
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1.2.2 Lemma: Factoring Through Coinvariants

Let G be a finite group with subgroup H < G.
1. Let W be a kH-module, defined by H acting trivially. If:

p: VW

1$ a kH-module homomorphism, then:

do: Vg - W
such that:
1% 4 y W
Vi
commutes
2. If

vV =W

1$ a kH -linear morphism, then it induces a morphism:

QXJHVH—>WH

3. Given an external direct sum of kH-modules V & W | the
H-coinvariant distributes:

VoW)y = Vy®Wy
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1.2.3 Remark: Isomorphism Between Invariants and Coinvariants

We always have mappings from invariants to coinvariants:
VE SV - Vy

where VI — V is simply an inclusion (as VI C V), and V' — Vy is the
surjective canonical map defined by taking a quotient.

If Maschke’s Theorem applies (so that char(k) doesn’t divide |G|), then
the composition

VH = VH
15 an tsomorphism. This is because by Maschke’s Theorem and
complete reducibility either:

o VH Vi are one-dimensional

o VH Vi are both trivial ({0})

In particular, the tnvariants of a non-trivial 1rreducible representa-
tion are 0 (otherwise, we’d have a non-trivial map onto the non-trivial
representation, and so the kernel would be non-zero, which contradicts ir-
reducibility, as the kernel is always a G-stable subspace).

1.2.4 Example: Invariants and Coinvariants Differ
e let
H=17Z=(g9)={9" |neZ}

e then, we can view kH as a ring of polynomials, since:

fekH = f=> k.-z=Y k.-g"

zeH nez

3

so f is a polynomial with coefficients in k, and whose “variable” is g (and g~ 1):

kG = klg,g7'] <= EBkg">

neZ
e let V be a free kH module of rank 1 (i.e V is a 1-dimensional module over kH)
e we have that:

VE—{feckH |VneZ, g" f=f}
C{fekH |VneZ, g-f=[}
={fekH|VneZ (g—e) f=0}
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e but since Z and k are integral domains, then the polynomial ring k[g, g!] is itself an integral domain.
Moreover, g — e € k[g, g~!] clearly, so:

VfekH (9—e)- f=0 < [f=0

SO: vEc{o) = VH={0}

e now, define:
p:V =k

via:
e(g9") = 1i

and ¢ is trivial on elements of k. Then, there exists some non-trivial morphism
Vg —k
by properties of the coinvariant, so in particular:

Vi # {0}

e hence, we see than when Mashcke’s Theorem doesn’t apply, we don’t always have an isomorphism
between invariants and coinvariants

1.3 Lemma: Group Actions on kG ® W

Let G be a finite group, with subgroup H. Let W be a kH-module.
Then:

1. there is a left G-action on kG @ W, defined on elementary
tensors via:

Vg,x € G,w e W, g-(z@w)=(9z) @w

2. there is a right H-action on kG @ W, defined on elementary
tensors via:

Vhe HuxeGweW, hx(x®@w) = (rh™') @ (h-w)
3. the left G-action and the right H-action commute pointwise:
Vg e Gm,h € Hue kG W, g-(h*u)="hx*(g-u)

(Lemma 6.2)
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Proof. These G-actions are defined on the elementary tensors. The crux of the proof is showing that these
G-actions are indeed well-defined. To do this, the principal strategy is to use the Universal Property of the
Tensor Product:

Let V., W, U be vector spaces. Then, for every bilinear map
b:VxW—=U

there is a unique linear map

b: VW —=U
such that: ~
b=b-®
In other words: _
Yo, w eV, b(v,w) = b(v @ w)
(Lemma 4.9)

For example, for @ Fix g € G, and define:

g kG x W - kG W
via:
(z,w) = gx @w

It is straightforward (albeit tedious) to show that ¢, is bilinear. Then, by the Universal Property, we get a
map:
Py  kGOW = kG W

defined precisely by:
pe(z @ w) = py(z,w) = grw

which is our G-action. Now that we know that the G-action can be seen as a unique linear morphism, it is
sufficient to check that it satisfies the properties of a G-action on the elementary tensors. Indeed:

pe(z@w)=(ex) @w=2QW

and
Py @ W) = py(h @ w) = (gh)z ® w = pyi(z @ w)

so the right G-action is well-defined.

@ can be proven in a similar way.

For @, we just apply the definition. If u = x ® w:

g (h+(@ew) =g (wh™ @h-w)
=gzh' @ h-w
=hx* (g @ w)
=hx(g-(r®w))
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1.4 Corollary: Space of Coinvariants of kG @ W is kG-Module

Let:
e (G be a finite group
e H be a subgroup H < G
o W be a kH-module

Then, the space of H coinvariants of kG @ W :
(kG @ W)y

with respect to the right H-action is a kG-module.
(Corollary 6.3)

Proof. When we say “(kG @ W)y with respect to the right H-action”, we mean that:
(kGW)g = (kGRW)/[(H —1) x (kG @ W)]

To show that this is a kG-module, it is sufficient to see that both kG ® W and [(H — 1) * (kG ® W)] are
preserved under the right G-action (i.e they are G-stable).

That kG ® W is G-stable is immediate from the definition of G-action on kG ® W.

That [(H — 1) * (kG ® W)] is G-stable follows from the pointwise commutativity of the left H-action and
the right G-action, since if u € kG ® W and:

v=hxu—u€(H-1)x(kg W)

then:
gv=g-(hxu—u)=hx(g-u)—(g-u)y=(h—1)x(g-u) € (H-1)* (kG W)
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1.5 Induced Modules
1.5.1 Definition: The Induced kG-Module

Let:
e (G be a finite group
e H be a subgroup H < G
o W be a kH-module

Then:
1. the induced kG -module is:

Ind§G W = (kG @ W)y
the space of H-coinvariants of kG @ W under the right H-action

2. we write g @ w as the image of g @ w € kG @ W in the quotient
space:
IndG W = (kG ® W)y

(Definition 6.4)
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1.5.2 Definition: The Induced Representation

Let:
e (G be a finite group
e H be a subgroup H < G
o W be a kH-module

Let:
o:H — GL(W)
be a representation of H afforded by W .
Then, the induced representation is the representation of G afforded
by Ind$, W
Ind% o : G — GL(Ind% W)
(Definition 6.4)

1.5.3 Lemma: Actions in the Induced kG-Module

Let:
e (G be a finite group
e H be a subgroup H < G
o W be a kH-module

Ifg € G,w e W, then:

1.
Vh € H, gh@w=gRh-w
28
Vz € G, g-(zQw)=gr@w
(Lemma 6.5)
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Proof. To show that g1 ® w1 = g2 ® wa, we need to show (by definition) that:

g1 @w; —ga@wz € (H—1) % (kg @ W)

@

gRh-w—gh®w=hx(gh®w)—gh®w
=(h—-1)*(gh®w)e (H—-1)* (kg W)

so as required:

®

We have that:

ghR@w=9gQh- -w

g-(z@w)=gruw
so immediately:
g-(@@w)—gr@w=0€(H—-1)*(kg@ W)

1.5.4 Lemma: H-Stable Subspaces of kG @ W

Let:
e (G be a finite group
e H be a subgroup H < G
o W be a kH-module

Letx € G. Then:
ckH @ W

i1s an H-stable subspace of kG @ W under the right H-action, and
there is a linear isomorphism:

a:W = (zkH® W)y

defined by:

W TRW
such that:
(Lemma 6.6)
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Proof. For the first part, suppose that we have any element:
(kxh) @ w
where h € H,g € G,w € W. Then, for any z € H:
2% ((kzh) @ w) = kx(hz™) @ 2 - w
but:

e since H is a subgroup, and h,z € H:
hz"' e H

e weW,and W is a kH submodule, so z-w € W

Thus:
Vz e H, zx* ((kzh) @ w) € tkH @ W

so z * ((kxh) ® w) is a H-stable subspace (that it is a subspace is clear, as we are just identifying a subset

kxH of kG which satisfies the subspace structure).

For the second assertion, define a (bilinear) map
B:akH xW =W

via:
3 <Z )\hxh,w> = Z An(h-w)
heH heH

In particular:
(zh,w) — h-w

Now, recalling the Universal Property of the Tensor Product:

Let V. W, U be vector spaces. Then, for every bilinear map
b:VxW—=U

there is a unique linear map

b: VW —=U
such that: ~
b=b-®

In other words: ~
Yo, w eV, b(v, w) = b(v ® w)

(Lemma 4.9)

this implies that we have a unique linear map:
B:zkHQ@W — W
which is defined on elementary tensors via:

VYhe HweW, Blzh®@w)=h-w
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In particular, for any y € H:

Bly * (zh@w)) = Bahy™' @y - w)

= (hy™") - (y-w)
—h-w
= B(zh ® w)

This implies that:
By = 1)+ (zh @ w))
so in particular, 8 is 0 on (H — 1) * (zkH @ W).

Hence, using

Let W be a kH-module, defined by H acting trivially. If:
p: VW

1$ a kH-module homomorphism, then:

Ap: Vg - W
such that:
14 d > W
Vi
commutes

implies there exists a well-defined lienar map:

B:(zkH@W)y — W

defined by:
Th@wr h-w

We claim that 3 defines an inverse to:
a: W = (zkHQ@ W)y

defined by:
W= TRQW

Indeed, for any h € H,w € W:
a(B(zh@w)) =a(h-w)=2@h-w=rh@w

where we have used:
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Thus,

Similarly:

SO:

o B=1urrew),

Hence, « is an isomorphism, as required.
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1.5.5 Proposition: Decomposing the Induced kG-Module

Let:
e (G be a finite group
e H be a subgroup H < G
o W be a kH-module

Let
{z1,...,2m}
be a complete set of left coset representatives for H in G, such that:
G=xn1HUx,HU.. Uz, H
Then:
1. there is a vector space decomposition for the induced

kG-module defined by the cosets:

Ind§ W =P z8W

=1

dim (Ind§; W) = |G/H| dim(W)
(Proposition 6.7)

Proof. By Lemma 6.6 above:
Vi € [1,m], zkH @ W

are H-stable subspaces of kG @ W under the right H-action. Since G is a disjoint union of cosets x; H, we
can write:

kG oW = (é ka> W = é(wikﬂ R W)

i=1 i=1
Now, using:
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Given an external direct sum of kH-modulesV & W, the H -
coinvariant distributes:

(V@W)H%JVHEBWH

alongside Lemma 6.6:

Let:
e (G be a finite group
e H be a subgroup H < G
o W be a kH-module

Let x € G. Then:
ckH @ W

s an H-stable subspace of kG @ W under the right H-action, and
there is a linear isomorphism:

a: W — (zkHQ W)y

defined by:
W TRW
such that:
(Lemma 6.6)
we get that:

m m
IndG W = (kG @ W)y = P (xikH @ W)p = @P(x; & W)
i=1 i=1
Now, since z; € G, in particular:

dim(z; @ W) = dim(z;) dim(W) = dim (W)
Then, computing the dimension over a direct sum yields that since we have |G/H| representatives z; € G:

dim (Indg W) = |G/H| dim(W)

as required.

1.5.5.1 Example: Induced Module for the Trivial Representation
e let G be some finite group with subgroup H
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e let 1 be a kH-module under the trivial action of H (so that W = k{1})
e then, by the above Proposition:
dim(Ind% 1) = |G/H| = dim(k(G/H))

e moreover, a basis for Indfl 1 is given by:

{r1®1,...,2, @1}
e the action of G on this basis is given by:

g-(@i®1)=gz;®1
e if 0(g) is some permutation of [1,m], we can then write:

gr, =T

h

a(g)
where:
_ .1 .
h =2, )0 9%
In particular, we thus have that
g (2:@1) = 25()()h D1 = Zo(g) (i) @ - 1 = To(g)(i) ® 1

by using:

Let:
— G be a finite group
— H be a subgroup H < G
— W be a kH-module

Ifg e G,w e W, then:

1.
Vh € H, ghR@w=g®h-w
2.
Vz € G, g-(zQw)=gr@w
(Lemma 6.5)

e this tells us that the action of G is thus determined by its effect on the representatives x;
e in particular, since o(g) is a bijection, this defines an isomorphism of kG-modules:
p: k(G/H) — Ind%

via:
gH — g®1
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2 Characters of Induced Representations

2.1 Restriction Module
2.1.1 Definition: Restriction Module

e (G be a finite group
e H be a subgroup H < G
o V be a kG-module

Then, define
Res% V
to be the kH-module resulting from restricting the action of kG on'V to

the action of the subring kH .
(Definition 6.9)

2.1.2 Definition: Induced and Restricted Characters

Let H < G be a subgroup of the finite group G. Then:
e if 1 is the character of G afforded by the CG-module V', then

Res% 1)
is the restricted character of the CH-module Res$, V
e if v is the character of H afforded by the CH-module W, then
Ind$ ¢
is the induced character of the CG-module ITnd%, W
(Definition 6.11)

Page 18



2.1.3 Proposition: Induction is the Left Adjoint of Restriction

Let:
e (G be a finite group
e H be a subgroup H < G
o U be a kG-module
o W be a kH-module
Then, there exists a linear tsomorphism
® : Homyq(Ind$ W, U) — Homyg (W, Res% U)
defined by:
Ya € IndG W,w € W, O(a)(w) = a(1@w)
(Proposition 6.10)

Proof. First, we need to show that W is well-defined, as it is mapping between homomorphism which go
between cosets. To do this, we show that ® can be realised as a composition of well-defined mappings. In
particular, suppose we are given a kG-linear map:

o:IndSW — U
Then, we obtain a well-defined kH-linear mapping via restriction:
Res% o : Res$ Ind$ W — Res$ U

Now, define a map:
v : W — Res§ IndG W

via:
w— 1w

This will be kH-linear, since if we use:
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Let:
e (G be a finite group
e H be a subgroup H < G
o W be a kH-module

Ifg e G,w e W, then:

1.
Vh € H, ghRwW=9gR®h - -w
2.
Vo € G, g-(zQ@w) =gzRw
(Lemma 6.5)
we get that:

Fyh-w)=1®0Mh-w)=h@wW=h-(1Q@w) =h-vy(w)

Then, if we precompose v and Resg «, we obtain a map:
’yOResga:W%Reng

which defines out kH-linear map ®(a)). Thus, since ® is defined by well-defined operations (like kH-linear
maps), ¢ is well-defined.

To show that there is a bijection, we construct a map:
U : Homy g7 (W, Res$ U) — Homyg (Ind$ W, U)
For this, given some:
B:W — ResG U

define:
Y(B)(g®w)=g-Bw)

We again need to show that ¥ is well-defined. To this end, we need to show that
VgeG,he HweW,  (gh)-B(w)=g-B(h-w)

since this ensures that the action of gh on S(w) is compatible with the action on induced representations.
However, this is immediate from the fact that g is, by definition, a kH-linear map. Thus, it remains to shwo
that ¥(8) indeed defines a kG-linear mapping. Taking any g,z € G,w € W, we have that:

T(B)(g- (r@w)) =p(B)(9z @ w)
= (g2) - B(w)
=g (z-B(w))
=g-¥(BO(zRw)
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so it is indeed a kG-linear map. In particular, this shows that indeed ¥ defines the desired linear map:
U : Homy i (W, Res$; U) — Homyg(Ind$ W, U)

Finally, we show that ®, ¥ are mutual inverses, and thus, define the desired isomorphism. Firstly, suppose
that we have a kG-linear map:
oa:Ind§GW — U

Then, for any g € G,w € W:
Y(@(a))(g@w) =g 2()(w) =g-a(l@w)

By kG-linearity of a, we then have that:

which shows that as required:

Secondly, suppose that we have a kH-linear map:
G
B:W — Resj U

Then YVw € W:
e(V(8))(w) =¥(B)(1®w) =1 Bw) = B(w)

so as required:

(W (B)) =58

2.1.4 Corollary: Frobenius Reciprocity

Let G be a finite group, and H < G a subgroup. Then, if:
e ¢ is a character of H
e Y is a character of G

it follows that:
(Indfj ¢, %) = (¢, Resfi ¥}

For any group K, (), denotes the inner product on the class func-
tions of K :
(— =) :C(K)xC(K)—C

(Corollary 6.12)
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Proof. Identifying representations with modules, let:

1) correspond to the character associated to a CG-module U

@ correspond to the character associated to a CH-module W

Then, using:

Let V., W be finite diemnsional CG-modules. Then:

1.
Homee(V, W) = Hom(V, W)€

(xv, xw) = dim (Homce(V, W))
(Proposition 5.22)

it follows that:

<Indg ©, 1/1>G = dim (Homcg (Ind$ W, U)) (¢, Res$ ¢),, = dim (Homeg (W, Res$ U))

But by Proposition 6.10 above, we have an isomorphism:

Homeg (Ind$; W, U) =2 Homey (W, Res$ U)

so it follows that:

(md§ o) = (¢.Resi ),

as required.

2.1.5 Example: Counting Simple Modules

suppose that U is a simple CG-module
let 1 denotes the trivial character (which is 1 for each group element)
finally, let H = {e} be the trivial subgroup of some finite group G
we saw in an example above that:
C(G/H)=Indf;1 = CG=Ind{,1

For this particular example, this is simple to see, since the induced representation will have as basis
elements of the form x; ® 1, whereby x; are representatives of the left cosets of {e}, so in fact G forms
a basis and thus we must have that Ind{Ge} 1=Ca

thus, by Frobenius Reciprocity:

(CG,xv)e = <LR€S§ XU>{ e} = xu(e) = dim(U)

where we have used the fact that since H is trivial, the dot product is a sum over the single term {e};
then we’ve just applied the fact that characters on trivial group elements yield the dimension (when
U is simple)
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e but how can we interpret (CG, xv)s?

e if we think of CG as a direct sum of simple modules:

(CG,xv)g = <@ XVNXU>G = (v xw)

That is, (CG, xv ) will count the number of times that U appears in the decomposition of CG, which
by the above work will be dim(U)!

e this is what we’d expect based on

Suppose that k is algebraically closed.
Let G be a finite group such that |G| # 0 in k, and let

Vi,.... Ve

be a complete list of pairwise nonisomorphic simple kG-modules.
Then:

1. kG (as a kG-module) is such that:

LG V—ldim(V1) ... ‘/rdim(Vr)

G| = dim(V;)?
=1

(Corollary 3.20)
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2.2 From Characters to Induced Characters

2.2.1 Lemma: Computing Induced Characters

Let H < G be a subgroup of the finite group G. Let
{z1,...,2m}
be a complete set of left coset representatives for H, such that:
G=xHU... Uz, H
Suppose that g € G acts on [1, m] via a permutation such that
Vi € [1,m], griH = x4, H

and define:
Fix(g) ={i € [1,m] | g-i =1}
Then, for every finite dimensional CH-module W, we have that:

1.
Vi € [1,m)], g (i ®@W)Cx; @W

(Ind§xw) (9) = Y xwi(x; 'gz:)

1€Fix(g)

(Lemma 6.14)

Proof.

Using
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alongside the fact that:
gri = x4, H <= x;%gxiH =H — xg_,zl-gxi eH
it follows that:
g (z;@w) =gr; dw
= (xg.i(xg_.ll-)gm,-®w
= 2g.4((2,.;9:) Ow

= 244 ®((wgi92:) - w

S Ig.i®W

W is a CH-module, so ((mg_igxl) weWw
@ Suppose that the representation afforded by the CG-module Indg W is

p: G — GL(Ind§ W)
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Let:
e (G be a finite group
e H be a subgroup H < G
o W be a kH-module

Let
{z1,...,2n}

be a complete set of left coset representatives for H in G, such that:
G=xHUxHU... Uz, H
Then:

1. there is a vector space decomposition for the induced
kG-module defined by the cosets:

Indf; W =Pz aW

=1

dim (Ind§; W) = |G/H| dim(W)

(Proposition 6.7)

we can write:

IndG W =Pz 8w

i=1

for a given choice of representatives. Moreover, by @, p(g) acts on these summands by permutation of the

representatives via g.

If we consider the matrix p(g), this will be a block matrix, with the block diagonal matrices corresponding
to the matrix representation of p(g) when restricted to act on each of the x; ® W. In particular, a block
matrix contributes to the trace of p(g) if and only if ¢ fixes x; ® W. The trace of the restriction of p(g) to
2; @ W (when ¢ -4 = i) is then given by the trace of the H-action given by x;%gmi = xi_lgxi on W, from

which the result follows:

(mafxw) (@)= Y wla; gz:)

i1€Fix(g)
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2.2.2 Theorem: Computing Induced Characters Invariantly

The above definition of the induced character depends on a choice of representative for each of the left coset.
We can make the induced character invariant to this by defining an extension by zero of the character.

Let H < G be a subgroup of the finite grouop G. Given a morphism:
p:H—>C

we define its extension by zero to G as the morphism

G- C
defined by:
0 _ 90(1'), HANS H
2@ =1 reG\H

Then, if W is a finite dimensional CH -module, for any g € G we have
that:

1 0 (-1
@ﬁW@ZEZW@W)

zeG

(Theorem 6.16)

Proof. First note that for any g € G:
i € Fix(g) <= gv;H=2,H = z;'gr;H=H <= uz;'gr,€ H
In particular, given m representatives {x1, ..., Z,, }, this means that we can rewrite:
m
(Indfz XW) (9= > xwle gz:) =Y Xz gz:)

i€Fix(g) =1

since if i ¢ Fix(g), z; 'gr; € G\ H, so 3y (z; 'gzi) = 0.
Moreover, suppose that y € G and h € H. Then, hyh™' € Hify € H, and hyh ' €e G\ H ify € G\ H

(otherwise we’d have the contradiction that y € H). In particular, and since x};, will be a class function on
H, we have that:

X (hyh™") = Xy ()
Lastly, notice that since the cosets of H partition G:

Vee G,Nz; € G,Ahe H . x=x=uzh
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Putting all this together:

> Xl gr) = Xw ((zih) " g(wih))

ze€G

I

-
Il
—
>
m
=

Xw (h ™ (zigzi)h))

I
,MS

-
Il
—
>
m
T

ng(%‘gfﬂi))

I

-
Il
—
>
m
Iy

Xw (zig;))

%
NE

1

Ind XW) (9)

.
Il

I
=

e Under what conditions does the above guarantee that (Indg XW) (9)?
— suppose that
g¢NH=0

— then
Vr € G, rgr ¢ H

so we’d have that:
Vo € G, X (zgz™) =0

2.2.3 Corollary: Induction of Class Function is Left Adjoint to Restriction of Class Functions

Let H < G be a subgroup of the finite group G. For any class function
of Hp € C(H), define:

(Indf ¢) (9) = % > ¢z ga)

zelG

Then:
Ind$ : C(H) — C(G) 4 Res§, : C(G) — C(H)

where Res% sends 1) € C(G) to its restriction on H :
g H—C
The adjunction is defined in the sense that:
Yo € C(G),v € C(H) (Ind% @, %), = (o, ResG )
(Corollary 6.18)
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Proof. If p,1) are characters of the representations of H, G, by Theorem 6.16 above, we know that we can
write:

1 _
(Indﬁ @) @) = 177 > oty (@gr)
zeG
Moreover, by Frobenius Reciprocity, we have that:

(md§ o) = (¢.Resi ),
Lastly, by

The irreducible characters of G form an orthonormal basis for
C(G).
(Corollary 5.15)

we have that by properties of the inner product, the result must follow for any class function ¢ € C(G), ¥ €
C(H).
O
2.2.4 Corollary: Reformulation of Induced Character

We can reformulate Theorem 6.16 in a way which makes it more practical for calculations.

Let H < G be a subgroup of the finite group G. For any g € G, con-
sider the intersection:
¢“NH

Define hy,...,hy € H to be a complete set of representatives of the
conjugacy classes of H contained in ¢¢ N H, such that:

¢
gGﬂH:UhZH

i=1
Then, if W is a finite dimensional CH -module:

H

|G| <~ |hY]
Xma¢ w(9) = 1747 xw (hi
IdHW( ) |H| ; |gG| W( )

(Corollary 6.19)

Notice here we are using a slight change in notation for the induced character, but we have that:

Xmag w(9) = (Indg XW) (9)
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Proof. For any g € G, define the set:

S={zeG|zgz 't cg®nH}
={z€G|xgz"! € H}
= U fzeclalge=y}

yE€gSNH
Now, if we fix:
y:xalgxo ceg“NH
we can define a mapping:
7y : Calg) = {z € G |27 gz =y}
via:
Ty(2) = zx0
since indeed:
(zx0) " tg(zm0) = w0z~ tgzae = x5 2 zgre = x5 gz = y
so clearly zzg € {x € G | z7tgx = y}. We claim that 7 defines a bijection:

azg € {r € G| 27 gz =y}

1 -1 -1
a ~garo =Y =Ty gxo

Ty
1 .
a ga=yg

ga =ag

a € Cqlg)

1ree

Now, by Theorem 6.16, we can write:

| HlXtnag w9) = Y Xz~ 'gz)

H

In particular, notice that:
re€S = zgrtecH = % (z7'gz) = xw(z gx)

Thus, we can rewrite the summand to run over S:
| H | Xmag w(g) = Z xw(z” gz)
zeS
Now, applying the definition of S:
S = U {reG | gz =1y}
y€geNH

H

7 7

since each element of x € S is defined by some y € ¢“ N H, and ¢© N H is a disjoint union of h

write: ,
[ H | Xtnag w(g) = Z Z Z xw(z ! gx)

i=lyeh zer; M (Caly))

we can
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But by definition, if z € 7,7 (Ca(g)) then z~ gz =y, so:

|H|X1ndGW Z Z |Ca(9)Ixw(y)

=1 thH

Similarly, since xw is a class function, yw (y) is invariant under conjugation, so without loss of generality,
we may assume that:

Yy € hi', xw (y) = xw (hi)

S0:

|H|X1ndgw =|Caly |Z|hH|XW

Finally, since:

VgeG, |Gl =1¢%Ccl(g)l
(Lemma 5.17)

we get that:

il
3

14
Gl 5~ |
XInd$§ w(g) = W Z g€
i=1

as required.
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3 Characters for Normal Subgroups

3.1 x-Twists

3.1.1 Motivating x-Twists

Suppose that we consider induced representations over normal sub-
groups.
Recall, when computing the induced character

(Indf, XW) (9)

we decomposed Indg Xw according to the decomposition of G into left

cosets of H:
i=1

Then, the action of g on each x; @ W could be thought of as a permuta-
tion of the block matrices which composed the block diagonal matrix
representation of g.

Now, if H < G, the permutation action of g € H on G/H is trivial, since:

g(x;H) = xi(z; g H = 2 H

where we ve used the fact that H is normal, so x; 'gx; € H. This implies
that the action of g € H on Indg W will preserve the block diagonals,
since:

g (7, Rw) = zi(x; ' g7:) ®w = 7, (7 ' gT)w € T, @ W
m
S

We call the construction x~'gx an x-twist.
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3.1.2 Definition: x-Twist

Let N <G be a normal subgroup of the finite group GG. Consider some
morphism:
p:N—>C

Then, for any x € G, the x-twist of ¢ is the function:
©*:N—-C
defined by conjugation with x:
" (h) = p(z~" ha)
(Definition 6.20)

3.1.3 Proposition: Properties of the x-Twist

Let N <« G be a normal subgroup of the finite group G. If ¢ is an x-
twast, then:

1. If p € C(N), then ¢® € C(N)
2. If p € C(N), there is a permutation action of G/N on C(N) via:

aN - ="

Proof.

@

By definition of a normal subgroup N, conjugation of elements in N by some x € GG defines an automor-
phism of N. Thus, if ¢ is a class function:

¥ (97" hg) = p((z~ g )h(gx)) = ¢(h)
" (h) = p(a™ ha) = ¢(h)

so indeed:

¢ (g~ hg) = ©"(h)

and ¢” is a class function on N.

®

As we saw above, ¢* depends on the choice of coset N € G/N, so in particular it defines the permutation
action of G/N on C(N) defined above.
O
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3.2 Proposition: x-Twists as Characters

Let N <G be a normal subgroup of the finite group G. If ¢ is a char-
acter of N (so that for some CN module W, we have that ¢ = xw ), then:

1. ¢" is a character of N

2. if
{z1,...,2m}
defines a complete set of left coset representatives for N in G,
then:

Res$ Ind$ ¢ = Z T

i=1

(Proposition 6.21)

Proof.

@

Consider W as a C vector space, and define an N-linear action via:

n*, w = (z " 'nr)w

This action corresponds to the representation W?, and thus ¢* defines a character of N too (the represen-
tation associated to ¢ just acting directly n - w = nw).

Here, suppose that p is the representation associated to xw . Then, the
representation associated to xi, = ©* is p*, which we can define via:

p*(9) = p(z~'gx)

and since x™ gx € N (as conjugation is an automorphism), p* gives a
well-defined representation p* : N — GL(W), and thus, * = x§y, is a
well-defined character.

©)

As we saw in the motivation, the N-action on x; ® W preserves the space, so x; @ W defines a CN-
module. In particular, we can then decompose Res% Indg xw as a direct sum of CN modules, based on
the representatives z; (here is is important to apply the restriction, as otherwise we wouldn’t be considering
N-actions). In particular, this yields that:

Resg Ind% p= Res% Ind% Xw = Z Xo: ®W
i=1
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But in the motivation we saw that if A € N, then:
h-2,Qw = x; @(xi_lhxi)w
which is equivalent to applying p™*, since:
pYi(h) - (v, @w) = (z] hey) - (v, @w) = 2, @(x;  hay)w

so:
— P AT
so as required:
m
Res$ Ind§ ¢ = z P
i=1

Alternatively, recall that by the proof of Lemma 6.14, we have that p(g)
preserves x; @ W, and restriction to the subspace will have trace equal to
the trace of the action x; 'gx; € H on W. In other words:

— Zq
XZ‘Z@W - SD ‘

3.2.1 Corollary: Constructing Irreducible Characters of Normal Subgroups

Let N <« G be a normal subgroup of the finite group G. Suppose that ¢
is an 1rreductble character of N, such that:

Ve e G\N, ¢"#¢p
Then, the induced character
Ind§ ¢

18 1rreducible.
(Corollary 6.22)

Proof. By Frobenius Reciprocity:
[ Indy G| = (Indy G); = (Res§ Indy G, @)

Then, using Proposition 6.21 above, we know that if z; are representatives of the left cosets of NV in G:

Res% Indy Gy = Z P
i=1
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In particular, since x; are representatives, we may assume that at least one pf the z; are elements of IV; in
particular, WLOG let 1 = e. Then, since by assumption

Vee G\N, ¢"#¢

we have that:

Using row orthogonality:

Let p, 1 be irreducible characters of the finite group G. Then:

1, =1

2. %) = 0, ©F# Y

(Theorem 5.13)

and since ¢, p*¢ are irreducible characters, it follows that:
- i=1
PIN T o, i>2

since when z; = eq, ¢°¢(h) = p(eg heg) = (h). In particular, it follows that by the linearity of the dot
product:

(%

I nd ¢* = 1
Now, let x = Ind]C\;, @. Using

The irreducible characters of G form an orthonormal basis for
C(@Q).
(Corollary 5.15)

if x;,1 € [1,7] are the irreducible characters of N which span C(IV), then we have that:

n
X = Z miXi
i=1

(notice here that each x; corresponds to the character obtained by restricting the representation to z; @ W,
and m; is nothing but the multiplicity of x; ® W in the decomposition of Ind]C\;, W).

Thus, we have that:

n
Il = milal* =1
=1

In particular, since m; € N, this is possible if and only if there is a unique non-zero m; which is non-zero,
and equal to 1. This forces that 3i € [1,r] such that:

X = Xi

and so y = Indjc\:, @ is irreducible, as required.
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Here is a nice StackExchange post regarding the inner product of characters.

3.3 Example: Characters of Dihedral Groups

We now how that if:
G = Dot

for m > 1, then G has:
e m irreducible characters of degree 2
e 2 linear characters (which are automatically irreducible)

In particular, we can define:

2m+1 _ 2 -1

<r7s|r eq = 8,8 Ts:r_1>

whereby:

e s corresponds to a rotation

2m
2m—+1

e 1 corresponds to a rotation by

Now, let
N =(r)

N is normal, since |G/N| = 2. Moreover, N corresponds to the group of rotations, and it is abelian (since
it is cyclic and generated by r); in particular

N =2 Copmia

Now, since N is abelian, N' = {eg}, so by:

Let G be a finite group. Then, G has
IG/G']

distinct complex linear characters.
(Lemma 5.10)

N has 2m + 1 (linear) characters. In particular, for each r* € N,k € [0,2m], we can identify a corre-
sponding linear character ©*. In particular, each ©* must send 7 to a (2m + 1)th root of unity (since r has
order 2m + 1 in N, and by Lemma 5.6 linear characters correspond to homomorphisms ¢ : N — C*).
In particular, defining;:

27T
w = e2m,+1
we have that:
k k
pi(r)=w

Now, we want to use the theory we have developed when using induced characters. For this, we would like
to be able to use Corollary 6.22:
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Let N < G be a normal subgroup of the finite group G. Suppose that ¢
1s an irreducible character of N, such that:

Ve G\N, ¢"#¢
Then, the induced character
Ind§ ¢

1s 1rreducible.
(Corollary 6.22)

Suppose that © € G'\ N. Then, for some j € [0,2m], we have that x = sr7 so:

(sr) "tk (sp9) = p=dsT ik gpd = pmdpRpmd = =k

which implies that: ' ' _ _ _
(@) (") = ' (r ) =w ™ = o7 (rh) = PR
Thus, for any z € G\ N, we have that that:
()" # ¢’
(except for the trivial homomorphism Y = 1). In particular, {¢,...,¢™} define m irreducible characters
of N (via the induction Ind§ ). To this end, define:

Xi = Indjc\;, api

Now, N partitions G into 2 cosets via:
G=sNUrN

since:
e s/ contains all the reflections:
e N contains all the rotations (trivially):

if we use:

Let N <G be a normal subgroup of the finite group G. If ¢ is a char-
acter of N (so that for some CN module W, we have that ¢ = xw ), then:

1. ¢* is a character of N

2. if
{z1,..., 20}
defines a complete set of left coset representatives for N in G,
then:

Res$ Ind$ ¢ = Z ©*
i=1

(Proposition 6.21)

Page 38



which in particular implies that we have the decomposition:
Res§ Ind§(¢') = (0)° + (¢') = ¢ + ¢

where we have used the work above where we showed that:

alongside the (trivial) fact that: . ‘ .

(") (") = @ (k) = ' ()
In particular, since the restricted character takes characters in G, and restricts them to N, it follows that
each y; must be a degree 2 character in G (since it decomposes into 2 irreducibles in G, and we have that

o' # @Y.

Lastly, we have that:
G/N = (Cs

Again, since Cs is abelian, it has 2 linear representations, and these correspond to homomorphisms:
X : Cy — Cc*

of which there are only 2:

and
a(l)=-1 a(-1) =1

In particular, we can inflate these into linear characters of G (and these won’t be equal to any of the y;,
since x; has degree 2, whereas the inflated cahracters are linear).

Using:

Let
X1,--+5 Xr

be a complete list of characters of the complex irreps of a finite

gorup G. Then:
Gl =) xi(1)?
=1

(Proposition 5.7)

we see that:

S xi(1P+ 12412 =4m+2 =G
i=1

so these must be all the irreducible characters of G.
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