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Based on the notes by Konstantin Ardakov, Section 6

1 Induced Modules

1.1 Recap: Invariant Modules

Let V be a CG-module. The invariant submodule of V is:

V G = {v ∈ V | ∀g ∈ G, g · v = v}

V G is the largest subspace of V which is fixed by G.
(Definition 5.19)

1.2 Coinvariants

1.2.1 Definition: Space of H-Coinvariants

Let H be a finite group, and let V be a kH-module. The vector space
of H-coinvariants of V is:

VH = V/(H − 1)V

where:
(H − 1)V = k{h · v − v | h ∈ H, v ∈ V }

VH is the largest quotient kH-module of V which is isomorphic to the
trivial module.
(Definition 6.1)
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1.2.2 Lemma: Factoring Through Coinvariants

Let G be a finite group with subgroup H ≤ G.

1. Let W be a kH-module, defined by H acting trivially. If:

φ : V → W

is a kH-module homomorphism, then:

∃!φ : VH → W

such that:

V W

VH

φ

can φ

commutes

2. If
ψ : V → W

is a kH-linear morphism, then it induces a morphism:

ψH : VH → WH

3. Given an external direct sum of kH-modules V ⊕W , the
H-coinvariant distributes:

(V ⊕W )H ∼= VH ⊕WH
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1.2.3 Remark: Isomorphism Between Invariants and Coinvariants

We always have mappings from invariants to coinvariants:

V H ↪→ V ↠ VH

where V H ↪→ V is simply an inclusion (as V H ⊆ V ), and V ↠ VH is the
surjective canonical map defined by taking a quotient.

If Maschke’s Theorem applies (so that char(k) doesn’t divide |G|), then
the composition

V H → VH

is an isomorphism. This is because by Maschke’s Theorem and
complete reducibility either:

• V H , VH are one-dimensional

• V H , VH are both trivial ({0})
In particular, the invariants of a non-trivial irreducible representa-
tion are 0 (otherwise, we’d have a non-trivial map onto the non-trivial
representation, and so the kernel would be non-zero, which contradicts ir-
reducibility, as the kernel is always a G-stable subspace).

1.2.4 Example: Invariants and Coinvariants Differ

• let
H = Z = ⟨g⟩ = {gn | n ∈ Z}

• then, we can view kH as a ring of polynomials, since:

f ∈ kH =⇒ f =
∑
z∈H

kz · z =
∑
n∈Z

kz · gn

so f is a polynomial with coefficients in k, and whose “variable” is g (and g−1):

kG ∼= k[g, g−1]

(
=
⊕
n∈Z

kgn

)

• let V be a free kH module of rank 1 (i.e V is a 1-dimensional module over kH)

• we have that:

V H = {f ∈ kH | ∀n ∈ Z, gn · f = f}
⊆ {f ∈ kH | ∀n ∈ Z, g · f = f}
= {f ∈ kH | ∀n ∈ Z, (g − e) · f = 0}
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• but since Z and k are integral domains, then the polynomial ring k[g, g−1] is itself an integral domain.
Moreover, g − e ∈ k[g, g−1] clearly, so:

∀f ∈ kH, (g − e) · f = 0 ⇐⇒ f = 0

so:
V H ⊆ {0} =⇒ V H = {0}

• now, define:
φ : V → k

via:
φ(gn) = 1k

and φ is trivial on elements of k. Then, there exists some non-trivial morphism

φ : VH → k

by properties of the coinvariant, so in particular:

VH ̸= {0}

• hence, we see than when Mashcke’s Theorem doesn’t apply, we don’t always have an isomorphism
between invariants and coinvariants

1.3 Lemma: Group Actions on kG⊗W

Let G be a finite group, with subgroup H. Let W be a kH-module.
Then:

1. there is a left G-action on kG⊗W , defined on elementary
tensors via:

∀g, x ∈ G,w ∈ W, g · (x⊗ w) = (gx)⊗ w

2. there is a right H-action on kG⊗W , defined on elementary
tensors via:

∀h ∈ H, x ∈ G,w ∈ W, h ∗ (x⊗ w) = (xh−1)⊗ (h · w)

3. the left G-action and the right H-action commute pointwise:

∀g ∈ Gm, h ∈ H, u ∈ kG⊗W, g · (h ∗ u) = h ∗ (g · u)

(Lemma 6.2)
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Proof. These G-actions are defined on the elementary tensors. The crux of the proof is showing that these
G-actions are indeed well-defined. To do this, the principal strategy is to use the Universal Property of the
Tensor Product:

Let V,W,U be vector spaces. Then, for every bilinear map

b : V ×W → U

there is a unique linear map

b̃ : V ⊗W → U

such that:
b = b̃ · ⊗

In other words:
∀v, w ∈ V, b(v, w) = b̃(v ⊗ w)

(Lemma 4.9)

For example, for 1 . Fix g ∈ G, and define:

φg : kG×W → kG⊗W

via:
(x,w) 7→ gx⊗ w

It is straightforward (albeit tedious) to show that φg is bilinear. Then, by the Universal Property, we get a
map:

ρg : kG⊗W → kG⊗W

defined precisely by:
ρG(x⊗ w) = φg(x,w) = gx⊗ w

which is our G-action. Now that we know that the G-action can be seen as a unique linear morphism, it is
sufficient to check that it satisfies the properties of a G-action on the elementary tensors. Indeed:

ρe(x⊗ w) = (ex)⊗ w = x⊗ w

and
ρg(ρh(x⊗ w)) = ρg(hx⊗ w) = (gh)x⊗ w = ρgh(x⊗ w)

so the right G-action is well-defined.

2 can be proven in a similar way.

For 3 , we just apply the definition. If u = x⊗ w:

g · (h ∗ (x⊗ w)) = g · (xh−1 ⊗ h · w)
= gxh1 ⊗ h · w
= h ∗ (gx⊗ w)

= h ∗ (g · (x⊗ w))
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1.4 Corollary: Space of Coinvariants of kG⊗W is kG-Module

Let:

• G be a finite group

• H be a subgroup H ≤ G

• W be a kH-module

Then, the space of H coinvariants of kG⊗W :

(kG⊗W )H

with respect to the right H-action is a kG-module.
(Corollary 6.3)

Proof. When we say “(kG⊗W )H with respect to the right H-action”, we mean that:

(kG⊗W )H = (kG⊗W )/ [(H − 1) ∗ (kG⊗W )]

To show that this is a kG-module, it is sufficient to see that both kG ⊗W and [(H − 1) ∗ (kG⊗W )] are
preserved under the right G-action (i.e they are G-stable).

That kG⊗W is G-stable is immediate from the definition of G-action on kG⊗W .

That [(H − 1) ∗ (kG⊗W )] is G-stable follows from the pointwise commutativity of the left H-action and
the right G-action, since if u ∈ kG⊗W and:

v = h ∗ u− u ∈ (H − 1) ∗ (kg ⊗W )

then:
g · v = g · (h ∗ u− u) = h ∗ (g · u)− (g · u) = (h− 1) ∗ (g · u) ∈ (H − 1) ∗ (kG⊗W )
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1.5 Induced Modules

1.5.1 Definition: The Induced kG-Module

Let:

• G be a finite group

• H be a subgroup H ≤ G

• W be a kH-module

Then:

1. the induced kG-module is:

IndG
H W = (kG⊗W )H

the space of H-coinvariants of kG⊗W under the right H-action

2. we write g⊗w as the image of g ⊗ w ∈ kG⊗W in the quotient
space:

IndG
H W = (kG⊗W )H

(Definition 6.4)

Page 9



1.5.2 Definition: The Induced Representation

Let:

• G be a finite group

• H be a subgroup H ≤ G

• W be a kH-module

Let:
σ : H → GL(W )

be a representation of H afforded by W .
Then, the induced representation is the representation of G afforded
by IndG

H W :
IndG

H σ : G→ GL(IndG
H W )

(Definition 6.4)

1.5.3 Lemma: Actions in the Induced kG-Module

Let:

• G be a finite group

• H be a subgroup H ≤ G

• W be a kH-module

If g ∈ G,w ∈ W , then:

1.
∀h ∈ H, gh⊗w = g⊗h · w

2.
∀x ∈ G, g · (x⊗w) = gx⊗w

(Lemma 6.5)
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Proof. To show that g1 ⊗w1 = g2 ⊗w2, we need to show (by definition) that:

g1 ⊗ w1 − g2 ⊗ w2 ∈ (H − 1) ∗ (kg ⊗W )

1

g ⊗ h · w − gh⊗ w = h ∗ (gh⊗ w)− gh⊗ w

= (h− 1) ∗ (gh⊗ w) ∈ (H − 1) ∗ (kg ⊗W )

so as required:
gh⊗w = g⊗h · w

2

We have that:
g · (x⊗ w) = gx⊗ w

so immediately:
g · (x⊗ w)− gx⊗ w = 0 ∈ (H − 1) ∗ (kg ⊗W )

1.5.4 Lemma: H-Stable Subspaces of kG⊗W

Let:

• G be a finite group

• H be a subgroup H ≤ G

• W be a kH-module

Let x ∈ G. Then:
xkH ⊗W

is an H-stable subspace of kG ⊗ W under the right H-action, and
there is a linear isomorphism:

α : W → (xkH ⊗W )H

defined by:
w 7→ x⊗w

such that:
(xkH ⊗W )H = x⊗W

(Lemma 6.6)
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Proof. For the first part, suppose that we have any element:

(kxh)⊗ w

where h ∈ H, g ∈ G,w ∈W . Then, for any z ∈ H:

z ∗ ((kxh)⊗ w) = kx(hz−1)⊗ z · w

but:

• since H is a subgroup, and h, z ∈ H:
hz−1 ∈ H

• w ∈W , and W is a kH submodule, so z · w ∈W

Thus:
∀z ∈ H, z ∗ ((kxh)⊗ w) ∈ xkH ⊗W

so z ∗ ((kxh) ⊗ w) is a H-stable subspace (that it is a subspace is clear, as we are just identifying a subset
kxH of kG which satisfies the subspace structure).

For the second assertion, define a (bilinear) map

β̃ : xkH ×W →W

via:

β̃

(∑
h∈H

λhxh,w

)
=
∑
h∈H

λh(h · w)

In particular:
(xh,w) 7→ h · w

Now, recalling the Universal Property of the Tensor Product:

Let V,W,U be vector spaces. Then, for every bilinear map

b : V ×W → U

there is a unique linear map

b̃ : V ⊗W → U

such that:
b = b̃ · ⊗

In other words:
∀v, w ∈ V, b(v, w) = b̃(v ⊗ w)

(Lemma 4.9)

this implies that we have a unique linear map:

β : xkH ⊗W →W

which is defined on elementary tensors via:

∀h ∈ H,w ∈W, β(xh⊗ w) = h · w
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In particular, for any y ∈ H:

β(y ∗ (xh⊗ w)) = β(xhy−1 ⊗ y · w)
= (hy−1) · (y · w)
= h · w
= β(xh⊗ w)

This implies that:
β((y − 1) ∗ (xh⊗ w))

so in particular, β is 0 on (H − 1) ∗ (xkH ⊗W ).

Hence, using

Let W be a kH-module, defined by H acting trivially. If:

φ : V → W

is a kH-module homomorphism, then:

∃!φ : VH → W

such that:

V W

VH

φ

can φ

commutes

implies there exists a well-defined lienar map:

β : (xkH ⊗W )H →W

defined by:
xh⊗w 7→ h · w

We claim that β defines an inverse to:

α :W → (xkH ⊗W )H

defined by:
w 7→ x⊗w

Indeed, for any h ∈ H,w ∈W :

α(β(xh⊗w)) = α(h · w) = x⊗h · w = xh⊗w

where we have used:
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Let:

• G be a finite group

• H be a subgroup H ≤ G

• W be a kH-module

If g ∈ G,w ∈ W , then:

1.
∀h ∈ H, gh⊗w = g⊗h · w

2.
∀x ∈ G, g · (x⊗w) = gx⊗w

(Lemma 6.5)

Thus,
α ◦ β = 1(xkH⊗W )H

Similarly:
β(α(w)) = β(x⊗w) = 1H · w = w

so:
β ◦ α = 1W

Hence, α is an isomorphism, as required.
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1.5.5 Proposition: Decomposing the Induced kG-Module

Let:

• G be a finite group

• H be a subgroup H ≤ G

• W be a kH-module

Let
{x1, . . . , xm}

be a complete set of left coset representatives for H in G, such that:

G = x1H ⊔ x2H ⊔ . . . ⊔ xmH

Then:

1. there is a vector space decomposition for the induced
kG-module defined by the cosets:

IndG
H W =

m⊕
i=1

xi ⊗W

2.
dim

(
IndG

H W
)
= |G/H| dim(W )

(Proposition 6.7)

Proof. By Lemma 6.6 above:
∀i ∈ [1,m], xkH ⊗W

are H-stable subspaces of kG⊗W under the right H-action. Since G is a disjoint union of cosets xiH, we
can write:

kG⊗W =

(
m⊕
i=1

xikH

)
⊗W =

m⊕
i=1

(xikH ⊗W )

Now, using:
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Given an external direct sum of kH-modules V ⊕ W , the H-
coinvariant distributes:

(V ⊕W )H ∼= VH ⊕WH

alongside Lemma 6.6:

Let:

• G be a finite group

• H be a subgroup H ≤ G

• W be a kH-module

Let x ∈ G. Then:
xkH ⊗W

is an H-stable subspace of kG ⊗ W under the right H-action, and
there is a linear isomorphism:

α : W → (xkH ⊗W )H

defined by:
w 7→ x⊗w

such that:
(xkH ⊗W )H = x⊗W

(Lemma 6.6)

we get that:

IndGH W = (kG⊗W )H ∼=
m⊕
i=1

(xikH ⊗W )H =

m⊕
i=1

(xi ⊗W )

Now, since xi ∈ G, in particular:

dim(xi ⊗W ) = dim(xi) dim(W ) = dim(W )

Then, computing the dimension over a direct sum yields that since we have |G/H| representatives xi ∈ G:

dim
(
IndGH W

)
= |G/H|dim(W )

as required.

1.5.5.1 Example: Induced Module for the Trivial Representation

• let G be some finite group with subgroup H
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• let 1 be a kH-module under the trivial action of H (so that W = k{1})

• then, by the above Proposition:

dim(IndGH 1) = |G/H| = dim(k(G/H))

• moreover, a basis for IndGH 1 is given by:

{x1 ⊗ 1, . . . , xm ⊗ 1}

• the action of G on this basis is given by:

g · (xi ⊗ 1) = gxi ⊗ 1

• if σ(g) is some permutation of [1,m], we can then write:

gxi = xσ(g)(i)h

where:
h = x−1

σ(g)(i)gxi

In particular, we thus have that

g · (xi ⊗ 1) = xσ(g)(i)h⊗ 1 = xσ(g)(i) ⊗h · 1 = xσ(g)(i) ⊗ 1

by using:

Let:

– G be a finite group

– H be a subgroup H ≤ G

– W be a kH-module

If g ∈ G,w ∈ W , then:

1.
∀h ∈ H, gh⊗w = g⊗h · w

2.
∀x ∈ G, g · (x⊗w) = gx⊗w

(Lemma 6.5)

• this tells us that the action of G is thus determined by its effect on the representatives xi

• in particular, since σ(g) is a bijection, this defines an isomorphism of kG-modules:

ρ : k(G/H) → IndGH

via:
gH 7→ g⊗ 1
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2 Characters of Induced Representations

2.1 Restriction Module

2.1.1 Definition: Restriction Module

• G be a finite group

• H be a subgroup H ≤ G

• V be a kG-module

Then, define
ResGH V

to be the kH-module resulting from restricting the action of kG on V to
the action of the subring kH.
(Definition 6.9)

2.1.2 Definition: Induced and Restricted Characters

Let H ≤ G be a subgroup of the finite group G. Then:

• if ψ is the character of G afforded by the CG-module V , then

ResGH ψ

is the restricted character of the CH-module ResGH V

• if φ is the character of H afforded by the CH-module W , then

IndG
H φ

is the induced character of the CG-module IndG
H W

(Definition 6.11)
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2.1.3 Proposition: Induction is the Left Adjoint of Restriction

Let:

• G be a finite group

• H be a subgroup H ≤ G

• U be a kG-module

• W be a kH-module

Then, there exists a linear isomorphism

Φ : HomkG(Ind
G
H W,U) → HomkH(W,Res

G
H U)

defined by:

∀α ∈ IndG
H W,w ∈ W, Φ(α)(w) = α(1⊗w)

(Proposition 6.10)

Proof. First, we need to show that Ψ is well-defined, as it is mapping between homomorphism which go
between cosets. To do this, we show that Φ can be realised as a composition of well-defined mappings. In
particular, suppose we are given a kG-linear map:

α : IndGH W → U

Then, we obtain a well-defined kH-linear mapping via restriction:

ResGH α : ResGH IndGH W → ResGH U

Now, define a map:
γ :W → ResGH IndGH W

via:
w 7→ 1⊗w

This will be kH-linear, since if we use:
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Let:

• G be a finite group

• H be a subgroup H ≤ G

• W be a kH-module

If g ∈ G,w ∈ W , then:

1.
∀h ∈ H, gh⊗w = g⊗h · w

2.
∀x ∈ G, g · (x⊗w) = gx⊗w

(Lemma 6.5)

we get that:
γ(h · w) = 1⊗(h · w) = h⊗w = h · (1⊗w) = h · γ(w)

Then, if we precompose γ and ResGH α, we obtain a map:

γ ◦ ResGH α :W → ResGH U

which defines out kH-linear map Φ(α). Thus, since Φ is defined by well-defined operations (like kH-linear
maps), Φ is well-defined.

To show that there is a bijection, we construct a map:

Ψ : HomkH(W,ResGH U) → HomkG(Ind
G
H W,U)

For this, given some:
β :W → ResGH U

define:
Ψ(β)(g⊗w) = g · β(w)

We again need to show that Ψ is well-defined. To this end, we need to show that

∀g ∈ G, h ∈ H,w ∈W, (gh) · β(w) = g · β(h · w)

since this ensures that the action of gh on β(w) is compatible with the action on induced representations.
However, this is immediate from the fact that β is, by definition, a kH-linear map. Thus, it remains to shwo
that Ψ(β) indeed defines a kG-linear mapping. Taking any g, x ∈ G,w ∈W , we have that:

Ψ(β)(g · (x⊗w)) = ψ(β)(gx⊗w)

= (gx) · β(w)
= g · (x · β(w))
= g ·Ψ(β()(x⊗w)
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so it is indeed a kG-linear map. In particular, this shows that indeed Ψ defines the desired linear map:

Ψ : HomkH(W,ResGH U) → HomkG(Ind
G
H W,U)

Finally, we show that Φ,Ψ are mutual inverses, and thus, define the desired isomorphism. Firstly, suppose
that we have a kG-linear map:

α : IndGH W → U

Then, for any g ∈ G,w ∈W :

Ψ(Φ(α))(g⊗w) = g · Φ(α)(w) = g · α(1⊗w)

By kG-linearity of α, we then have that:

Ψ(Φ(α))(g⊗w) = α(g⊗w)

which shows that as required:
Ψ(Φ(α)) = α

Secondly, suppose that we have a kH-linear map:

β :W → ResGH U

Then ∀w ∈W :
Φ(Ψ(β))(w) = Ψ(β)(1⊗w) = 1 · β(w) = β(w)

so as required:
Φ(Ψ(β)) = β

2.1.4 Corollary: Frobenius Reciprocity

Let G be a finite group, and H ≤ G a subgroup. Then, if:

• φ is a character of H

• ψ is a character of G

it follows that: 〈
IndG

H φ, ψ
〉
G
=
〈
φ,ResGH ψ

〉
H

For any group K, ⟨⟩K denotes the inner product on the class func-
tions of K:

⟨−,−⟩K : C(K)× C(K) → C
(Corollary 6.12)
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Proof. Identifying representations with modules, let:

• ψ correspond to the character associated to a CG-module U

• φ correspond to the character associated to a CH-module W

Then, using:

Let V,W be finite diemnsional CG-modules. Then:

1.
HomCG(V,W ) = Hom(V,W )G

2.
⟨χV , χW ⟩ = dim (HomCG(V,W ))

(Proposition 5.22)

it follows that:〈
IndGH φ, ψ

〉
G
= dim

(
HomCG(Ind

G
H W, U)

) 〈
φ, ResGH ψ

〉
H

= dim
(
HomCH(W, ResGH U)

)
But by Proposition 6.10 above, we have an isomorphism:

HomCG(Ind
G
H W,U) ∼= HomCH(W,ResGH U)

so it follows that: 〈
IndGH φ,ψ

〉
G
=
〈
φ,ResGH ψ

〉
H

as required.

2.1.5 Example: Counting Simple Modules

• suppose that U is a simple CG-module

• let 1 denotes the trivial character (which is 1 for each group element)

• finally, let H = {e} be the trivial subgroup of some finite group G

• we saw in an example above that:

C(G/H) ∼= IndGH 1 =⇒ CG ∼= IndG{e} 1

For this particular example, this is simple to see, since the induced representation will have as basis
elements of the form xi ⊗ 1, whereby xi are representatives of the left cosets of {e}, so in fact G forms
a basis and thus we must have that IndG{e} 1

∼= CG

• thus, by Frobenius Reciprocity:

⟨CG,χU ⟩G =
〈
1,ResGH χU

〉
{ e} = χU (e) = dim(U)

where we have used the fact that since H is trivial, the dot product is a sum over the single term {e};
then we’ve just applied the fact that characters on trivial group elements yield the dimension (when
U is simple)

Page 22



• but how can we interpret ⟨CG,χU ⟩G?

• if we think of CG as a direct sum of simple modules:

⟨CG,χU ⟩G =
〈⊕

χVi
, χU

〉
G
=
∑

⟨χVi
, χU ⟩

That is, ⟨CG,χU ⟩G will count the number of times that U appears in the decomposition of CG, which
by the above work will be dim(U)!

• this is what we’d expect based on

Suppose that k is algebraically closed.
Let G be a finite group such that |G| ≠ 0 in k, and let

V1, . . . , Vr

be a complete list of pairwise nonisomorphic simple kG-modules.
Then:

1. kG (as a kG-module) is such that:

kG ∼= V
dim(V1)
1 ⊕ . . .⊕ V dim(Vr)

r

2.

|G| =
r∑

i=1

dim(Vi)
2

(Corollary 3.20)
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2.2 From Characters to Induced Characters

2.2.1 Lemma: Computing Induced Characters

Let H ≤ G be a subgroup of the finite group G. Let

{x1, . . . , xm}

be a complete set of left coset representatives for H, such that:

G = x1H ⊔ . . . ⊔ xmH

Suppose that g ∈ G acts on [1,m] via a permutation such that

∀i ∈ [1,m], gxiH = xg·iH

and define:
Fix(g) = {i ∈ [1,m] | g · i = i}

Then, for every finite dimensional CH-module W , we have that:

1.
∀i ∈ [1,m], g · (xi ⊗W ) ⊆ xg·i ⊗W

2. (
IndG

H χW

)
(g) =

∑
i∈Fix(g)

χW (x−1
i gxi)

(Lemma 6.14)

Proof.

1

Using
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Let:

• G be a finite group

• H be a subgroup H ≤ G

• W be a kH-module

If g ∈ G,w ∈ W , then:

1.
∀h ∈ H, gh⊗w = g⊗h · w

2.
∀x ∈ G, g · (x⊗w) = gx⊗w

(Lemma 6.5)

alongside the fact that:

gxiH = xg·iH ⇐⇒ x−1
g·igxiH = H ⇐⇒ x−1

g·igxi ∈ H

it follows that:

g · (xi ⊗w) = gxi ⊗w

= (xg·i(x
−1
g·i )gxi ⊗w

= xg·i((x
−1
g·igxi)⊗w

= xg·i ⊗((x−1
g·igxi) · w

∈ xg·i ⊗W

W is a CH-module, so ((x−1
g·igxi) · w ∈W

2 Suppose that the representation afforded by the CG-module IndGH W is

ρ : G→ GL(IndGH W )

By

Page 25



Let:

• G be a finite group

• H be a subgroup H ≤ G

• W be a kH-module

Let
{x1, . . . , xm}

be a complete set of left coset representatives for H in G, such that:

G = x1H ⊔ x2H ⊔ . . . ⊔ xmH

Then:

1. there is a vector space decomposition for the induced
kG-module defined by the cosets:

IndG
H W =

m⊕
i=1

xi ⊗W

2.
dim

(
IndG

H W
)
= |G/H| dim(W )

(Proposition 6.7)

we can write:

IndGH W =

m⊕
i=1

xi ⊗W

for a given choice of representatives. Moreover, by 1 , ρ(g) acts on these summands by permutation of the

representatives via g.

If we consider the matrix ρ(g), this will be a block matrix, with the block diagonal matrices corresponding
to the matrix representation of ρ(g) when restricted to act on each of the xi ⊗W . In particular, a block
matrix contributes to the trace of ρ(g) if and only if g fixes xi ⊗W . The trace of the restriction of ρ(g) to
xi ⊗W (when g · i = i) is then given by the trace of the H-action given by x−1

g·igxi = x−1
i gxi on W , from

which the result follows: (
IndGH χW

)
(g) =

∑
i∈Fix(g)

χW (x−1
i gxi)
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2.2.2 Theorem: Computing Induced Characters Invariantly

The above definition of the induced character depends on a choice of representative for each of the left coset.
We can make the induced character invariant to this by defining an extension by zero of the character.

Let H ≤ G be a subgroup of the finite grouop G. Given a morphism:

φ : H → C

we define its extension by zero to G as the morphism

φ0 : G→ C

defined by:

φ0(x) =

{
φ(x), x ∈ H

0, x ∈ G \H

Then, if W is a finite dimensional CH-module, for any g ∈ G we have
that: (

IndG
H χW

)
(g) =

1

|H|
∑
x∈G

χ0
W (x−1gx)

(Theorem 6.16)

Proof. First note that for any g ∈ G:

i ∈ Fix(g) ⇐⇒ gxiH = xiH ⇐⇒ x−1
i gxiH = H ⇐⇒ x−1

i gxi ∈ H

In particular, given m representatives {x1, . . . , xm}, this means that we can rewrite:

(
IndGH χW

)
(g) =

∑
i∈Fix(g)

χW (x−1
i gxi) =

m∑
i=1

χ0
W (x−1

i gxi)

since if i ̸∈ Fix(g), x−1
i gxi ∈ G \H, so χ0

W (x−1
i gxi) = 0.

Moreover, suppose that y ∈ G and h ∈ H. Then, hyh−1 ∈ H if y ∈ H, and hyh−1 ∈ G \H if y ∈ G \H
(otherwise we’d have the contradiction that y ∈ H). In particular, and since χ0

W will be a class function on
H, we have that:

χ0
W (hyh−1) = χ0

W (y)

Lastly, notice that since the cosets of H partition G:

∀x ∈ G,∃!xi ∈ G,∃!h ∈ H : x = x = xih
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Putting all this together: ∑
x∈G

χ0
W (x−1gx) =

m∑
i=1

∑
h∈H

χ0
W ((xih)

−1g(xih))

=

m∑
i=1

∑
h∈H

χ0
W (h−1(xigxi)h))

=

m∑
i=1

∑
h∈H

χ0
W (xigxi))

= |H|
m∑
i=1

χ0
W (xigxi))

= |H|
(
IndGH χW

)
(g)

• Under what conditions does the above guarantee that
(
IndGH χW

)
(g)?

– suppose that
gG ∩H = ∅

– then
∀x ∈ G, xgx−1 ̸∈ H

so we’d have that:
∀x ∈ G, χ0

W (xgx−1) = 0

2.2.3 Corollary: Induction of Class Function is Left Adjoint to Restriction of Class Functions

Let H ≤ G be a subgroup of the finite group G. For any class function
of H φ ∈ C(H), define:(

IndG
H φ
)
(g) =

1

H

∑
x∈G

φ0(x−1gx)

Then:
IndG

H : C(H) → C(G) ⊣ ResGH : C(G) → C(H)

where ResGH sends ψ ∈ C(G) to its restriction on H:

ψ|H : H → C

The adjunction is defined in the sense that:

∀φ ∈ C(G), ψ ∈ C(H)
〈
IndG

H φ, ψ
〉
G
=
〈
φ,ResGH ψ

〉
G

(Corollary 6.18)
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Proof. If φ,ψ are characters of the representations of H,G, by Theorem 6.16 above, we know that we can
write: (

IndGH φ
)
(g) =

1

|H|
∑
x∈G

φ0
W (x−1gx)

Moreover, by Frobenius Reciprocity, we have that:〈
IndGH φ,ψ

〉
G
=
〈
φ,ResGH ψ

〉
H

Lastly, by

The irreducible characters of G form an orthonormal basis for
C(G).
(Corollary 5.15)

we have that by properties of the inner product, the result must follow for any class function φ ∈ C(G), ψ ∈
C(H).

2.2.4 Corollary: Reformulation of Induced Character

We can reformulate Theorem 6.16 in a way which makes it more practical for calculations.

Let H ≤ G be a subgroup of the finite group G. For any g ∈ G, con-
sider the intersection:

gG ∩H
Define h1, . . . , hℓ ∈ H to be a complete set of representatives of the
conjugacy classes of H contained in gG ∩H, such that:

gG ∩H =
ℓ⊔

i=1

hHi

Then, if W is a finite dimensional CH-module:

χIndGH W (g) =
|G|
|H|

ℓ∑
i=1

|hHi |
|gG|

χW (hi)

(Corollary 6.19)

Notice here we are using a slight change in notation for the induced character, but we have that:

χIndG
H W (g) =

(
IndGH χW

)
(g)
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Proof. For any g ∈ G, define the set:

S = {x ∈ G | xgx−1 ∈ gG ∩H}
= {x ∈ G | xgx−1 ∈ H}

=
⋃

y∈gG∩H

{x ∈ G | x−1gx = y}

Now, if we fix:
y = x−1

0 gx0 ∈ gG ∩H

we can define a mapping:
τy : CG(g) → {x ∈ G | x−1gx = y}

via:
τy(z) = zx0

since indeed:
(zx0)

−1g(zx0) = x0z
−1gzx0 = x−1

0 z−1zgx0 = x−1
0 gx0 = y

so clearly zx0 ∈ {x ∈ G | x−1gx = y}. We claim that τ defines a bijection:

ax0 ∈ {x ∈ G | x−1gx = y}
⇐⇒ x−1

0 a−1gax0 = y = x−1
0 gx0

⇐⇒ a−1ga = g

⇐⇒ ga = ag

⇐⇒ a ∈ CG(g)

Now, by Theorem 6.16, we can write:

|H|χIndG
H W (g) =

∑
x∈G

χ0
W (x−1gx)

In particular, notice that:

x ∈ S =⇒ xgx−1 ∈ H =⇒ χ0
W (x−1gx) = χW (x−1gx)

Thus, we can rewrite the summand to run over S:

|H|χIndG
H W (g) =

∑
x∈S

χW (x−1gx)

Now, applying the definition of S:

S =
⋃

y∈gG∩H

{x ∈ G | x−1gx = y}

since each element of x ∈ S is defined by some y ∈ gG ∩H, and gG ∩H is a disjoint union of hHi , we can
write:

|H|χIndG
H W (g) =

ℓ∑
i=1

∑
y∈hH

i

∑
x∈τ−1

y (CG(g))

χW (x−1gx)
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But by definition, if x ∈ τ−1
y (CG(g)) then x

−1gx = y, so:

|H|χIndG
H W (g) =

ℓ∑
i=1

∑
y∈hH

i

|CG(g)|χW (y)

Similarly, since χW is a class function, χW (y) is invariant under conjugation, so without loss of generality,
we may assume that:

∀y ∈ hHi , χW (y) = χW (hi)

so:

|H|χIndG
H W (g) = |CG(g)|

ℓ∑
i=1

|hHi |χW (hi)

Finally, since:

∀g ∈ G, |G| = |gG||CG(g)|
(Lemma 5.17)

we get that:

χIndG
H W (g) =

|G|
|H|

ℓ∑
i=1

|hHi |
|gG|

χW (hi)

as required.
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3 Characters for Normal Subgroups

3.1 x-Twists

3.1.1 Motivating x-Twists

Suppose that we consider induced representations over normal sub-
groups.
Recall, when computing the induced character(

IndG
H χW

)
(g)

we decomposed IndG
H χW according to the decomposition of G into left

cosets of H:

G =
m⊔
i=1

xiH

Then, the action of g on each xi⊗W could be thought of as a permuta-
tion of the block matrices which composed the block diagonal matrix
representation of g.
Now, if H ◁ G, the permutation action of g ∈ H on G/H is trivial, since:

g(xiH) = xi(x
−1
i gxi)H = xiH

where we’ve used the fact that H is normal, so x−1
i gxi ∈ H. This implies

that the action of g ∈ H on IndG
H W will preserve the block diagonals,

since:

g · (xi ⊗w) = xi(x
−1
i gxi︸ ︷︷ ︸
∈H

)⊗w = xi ⊗(x−1
i gxi)w ∈ xi ⊗W

We call the construction x−1gx an x-twist.
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3.1.2 Definition: x-Twist

Let N ◁G be a normal subgroup of the finite group G. Consider some
morphism:

φ : N → C
Then, for any x ∈ G, the x-twist of φ is the function:

φx : N → C

defined by conjugation with x:

φx(h) = φ(x−1hx)

(Definition 6.20)

3.1.3 Proposition: Properties of the x-Twist

Let N ◁ G be a normal subgroup of the finite group G. If φx is an x-
twist, then:

1. If φ ∈ C(N), then φx ∈ C(N)

2. If φ ∈ C(N), there is a permutation action of G/N on C(N) via:

xN · φ = φx

Proof.

1

By definition of a normal subgroup N , conjugation of elements in N by some x ∈ G defines an automor-
phism of N . Thus, if φ is a class function:

φx(g−1hg) = φ((x−1g−1)h(gx)) = φ(h)

φx(h) = φ(x−1hx) = φ(h)

so indeed:
φx(g−1hg) = φx(h)

and φx is a class function on N .

2

As we saw above, φx depends on the choice of coset xN ∈ G/N , so in particular it defines the permutation
action of G/N on C(N) defined above.
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3.2 Proposition: x-Twists as Characters

Let N ◁G be a normal subgroup of the finite group G. If φ is a char-
acter of N (so that for some CN module W , we have that φ = χW ), then:

1. φx is a character of N

2. if
{x1, . . . , xm}

defines a complete set of left coset representatives for N in G,
then:

ResGN IndG
N φ =

m∑
i=1

φxi

(Proposition 6.21)

Proof.

1

Consider W as a C vector space, and define an N -linear action via:

n ∗x w = (x−1nx)w

This action corresponds to the representation W x, and thus φx defines a character of N too (the represen-
tation associated to φ just acting directly n · w = nw).

Here, suppose that ρ is the representation associated to χW . Then, the
representation associated to χx

W = φx is ρx, which we can define via:

ρx(g) = ρ(x−1gx)

and since x−1gx ∈ N (as conjugation is an automorphism), ρx gives a
well-defined representation ρx : N → GL(W ), and thus, φx = χx

W is a
well-defined character.

2

As we saw in the motivation, the N -action on xi ⊗W preserves the space, so xi ⊗W defines a CN -
module. In particular, we can then decompose ResGN IndGN χW as a direct sum of CN modules, based on
the representatives xi (here is is important to apply the restriction, as otherwise we wouldn’t be considering
N -actions). In particular, this yields that:

ResGN IndGN φ = ResGN IndGN χW =

m∑
i=1

χxi ⊗W
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But in the motivation we saw that if h ∈ N , then:

h · xi ⊗w = xi ⊗(x−1
i hxi)w

which is equivalent to applying ρxi , since:

ρxi(h) · (xi ⊗w) = (x−1
i hxi) · (xi ⊗w) = xi ⊗(x−1

i hxi)w

so:
χxi ⊗W = χxi

W = φxi

so as required:

ResGN IndGN φ =

m∑
i=1

φxi

Alternatively, recall that by the proof of Lemma 6.14, we have that ρ(g)
preserves xi⊗W , and restriction to the subspace will have trace equal to
the trace of the action x−1

i gxi ∈ H on W . In other words:

χxi ⊗W = φxi

3.2.1 Corollary: Constructing Irreducible Characters of Normal Subgroups

Let N ◁ G be a normal subgroup of the finite group G. Suppose that φ
is an irreducible character of N , such that:

∀x ∈ G \N, φx ̸= φ

Then, the induced character

IndG
N φ

is irreducible.
(Corollary 6.22)

Proof. By Frobenius Reciprocity:

∥ IndN Gφ∥2 = ⟨IndN Gφ⟩G =
〈
ResGN IndN Gφ,φ

〉
N

Then, using Proposition 6.21 above, we know that if xi are representatives of the left cosets of N in G:

ResGN IndN Gφ =

m∑
i=1

φxi
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In particular, since xi are representatives, we may assume that at least one pf the xi are elements of N ; in
particular, WLOG let x1 = eG. Then, since by assumption

∀x ∈ G \N, φx ̸= φ

we have that:
∀i ≥ 2, φxi ̸= φ

Using row orthogonality:

Let φ, ψ be irreducible characters of the finite group G. Then:

⟨φ, ψ⟩ =

{
1, φ = ψ

0, φ ̸= ψ

(Theorem 5.13)

and since φ,φxi are irreducible characters, it follows that:

⟨φxi , φ⟩N =

{
1, i = 1

0, i ≥ 2

since when xi = eG, φ
eG(h) = φ(e−1

G heG) = φ(h). In particular, it follows that by the linearity of the dot
product:

∥ IndGN φ∥2 = 1

Now, let χ = IndGN φ. Using

The irreducible characters of G form an orthonormal basis for
C(G).
(Corollary 5.15)

if χi, i ∈ [1, r] are the irreducible characters of N which span C(N), then we have that:

χ =

n∑
i=1

miχi

(notice here that each χi corresponds to the character obtained by restricting the representation to xi ⊗W ,
and mi is nothing but the multiplicity of xi ⊗W in the decomposition of IndGN W ).

Thus, we have that:

∥χ∥2 =

n∑
i=1

m2
i |χi|2 = 1

In particular, since mi ∈ N, this is possible if and only if there is a unique non-zero mi which is non-zero,
and equal to 1. This forces that ∃i ∈ [1, r] such that:

χ = χi

and so χ = IndGN φ is irreducible, as required.
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Here is a nice StackExchange post regarding the inner product of characters.

3.3 Example: Characters of Dihedral Groups

We now how that if:
G = D2m+1

for m ≥ 1, then G has:

• m irreducible characters of degree 2

• 2 linear characters (which are automatically irreducible)

In particular, we can define: 〈
r, s | r2m+1 = eG = s2, s−1rs = r−1

〉
whereby:

• s corresponds to a rotation

• r corresponds to a rotation by 2π
2m+1

Now, let
N = ⟨r⟩

N is normal, since |G/N | = 2. Moreover, N corresponds to the group of rotations, and it is abelian (since
it is cyclic and generated by r); in particular

N ∼= C2m+1

Now, since N is abelian, N ′ = {eG}, so by:

Let G be a finite group. Then, G has

|G/G′|

distinct complex linear characters.
(Lemma 5.10)

N has 2m + 1 (linear) characters. In particular, for each rk ∈ N, k ∈ [0, 2m], we can identify a corre-
sponding linear character φk. In particular, each φk must send r to a (2m+ 1)th root of unity (since r has
order 2m+ 1 in N , and by Lemma 5.6 linear characters correspond to homomorphisms φ : N → C×).
In particular, defining:

ω = e
2iπ

2m+1

we have that:
φk(r) = ωk

Now, we want to use the theory we have developed when using induced characters. For this, we would like
to be able to use Corollary 6.22:
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Let N ◁ G be a normal subgroup of the finite group G. Suppose that φ
is an irreducible character of N , such that:

∀x ∈ G \N, φx ̸= φ

Then, the induced character

IndG
N φ

is irreducible.
(Corollary 6.22)

Suppose that x ∈ G \N . Then, for some j ∈ [0, 2m], we have that x = srj so:

(srj)−1rk(srj) = r−js−1rksrj = r−jr−kr−j = r−k

which implies that:
(φi)x(rk) = φi(r−k) = ω−ik = φ−i(rk) = φ2m+1−i(rk)

Thus, for any x ∈ G \N , we have that that:

(φi)x ̸= φi

(except for the trivial homomorphism φ0 = 1). In particular, {φ1, . . . , φm} define m irreducible characters
of N (via the induction IndGN φi). To this end, define:

χi = IndGN φi

Now, N partitions G into 2 cosets via:
G = sN ⊔ rN

since:

• sN contains all the reflections:

• rN contains all the rotations (trivially):

if we use:

Let N ◁G be a normal subgroup of the finite group G. If φ is a char-
acter of N (so that for some CN module W , we have that φ = χW ), then:

1. φx is a character of N

2. if
{x1, . . . , xm}

defines a complete set of left coset representatives for N in G,
then:

ResGN IndG
N φ =

m∑
i=1

φxi

(Proposition 6.21)
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which in particular implies that we have the decomposition:

ResGN IndGN (φi) = (φi)s + (φi)r = φi + φ−i

where we have used the work above where we showed that:

(φi)s(rk) = φ−i(rk)

alongside the (trivial) fact that:
(φi)r(rk) = φi(r−1rkrk) = φi(rk)

In particular, since the restricted character takes characters in G, and restricts them to N , it follows that
each χi must be a degree 2 character in G (since it decomposes into 2 irreducibles in G, and we have that
φi ̸= φ−i).

Lastly, we have that:
G/N ∼= C2

Again, since C2 is abelian, it has 2 linear representations, and these correspond to homomorphisms:

χ : C2 → C×

of which there are only 2:
α(1) = 1 α(−1) = −1

and
α(1) = −1 α(−1) = 1

In particular, we can inflate these into linear characters of G (and these won’t be equal to any of the χi,
since χi has degree 2, whereas the inflated cahracters are linear).

Using:

Let
χ1, . . . , χr

be a complete list of characters of the complex irreps of a finite
gorup G. Then:

|G| =
r∑

i=1

χi(1)
2

(Proposition 5.7)

we see that:
m∑
i=1

χi(1)
2 + 12 + 12 = 4m+ 2 = |G|

so these must be all the irreducible characters of G.
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