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Based on the notes by Konstantin Ardakov, Section 5

1 Useful Remarks

1.1 Definition: G-Stable Subspace

For readability, if ρ is some representation, we denote ρ(g) = ρg.

Let ρ : G → GL(V ) be a representation, and let U be a linear sub-
space of V .
U is G-stable if:

∀u ∈ U,∀g ∈ G, ρg(u) ∈ U

(Definition 1.14, a))

1.2 Definition: Irreducible Representations

The representation
ρ : G→ GL(V )

is irreducible/simple if:

1. V is not the zero vector space

2. if U is a G-stable subspace of V , then either:

• U = {0}
• U = V

(Definition 1.18)

• From now on, we shall call irreducible representations irreps.

• We denote the identity automorphism of V via 1V

• We also restrict ourselves to work over the field of complex numbers, such that the only group rings
we consider will be of the form CG.
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2 Characters

2.1 Definition: Character

Let V be a vector space over C, and let

ρ : G→ GL(V )

be a complex representation of G.

The character of ρ is the function:

χρ : G→ C

where:
χρ(g) = tr(ρ(g))

(Definition 5.1)

2.1.1 Definition: Character Over Group Ring Modules

Since we identify representations of G with kG-modules, we have alternative notation for characters.

If V is a CG-module, we write χV to denote the character of the repre-
sentation afforded by V .

2.1.2 Definition: Degree of a Character

The degree of χρ is the degree of ρ (which is the dimension of V ).

2.1.3 Definition: Linear Character

If χV has degree 1, then it is a linear character.
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2.2 Definition: Class Function

A class function is a function

f : G→ C

which is constant on conjugacy classes of G:

∀g, x ∈ G, f(xgx−1) = f(g)

We denote the space of all class functions on G via C(G).
(Definition 5.2)

2.2.1 Lemma: Characters are Class Functions

Let V be a finite dimensional kG-module. Then, χV ∈ C(G).
(Lemma 5.3)

Proof. Let ρ : G→ GL(V ) be the representation corresponding to the character χV . Then:

χρ(xgx
−1) = tr(ρ(x)ρ(g)ρ(x)−1)

= tr(ρ(g)ρ(x)−1ρ(x))

= tr(ρ(g))

= χρ(g)

where we have used the property that the trace of the product of A,B,C ∈ GL(V ) satisfies:

tr(ABC) = tr(C(AB)) = tr((BC)A)

2.2.2 Lemma: Space of Characters is a Commutative Ring

The vector space C(G) is in fact a commutative ring, whereby ring
multiplication is defined pointwise:

∀g ∈ G, (ϕψ)(g) = ϕ(g)ψ(g) = ψ(g)ϕ(g) = (ψϕ)(g)
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2.3 Definition: Character Tables

Let G be a finite group, and consider:

• a set
{g1, . . . , gs}

of representatives for the conjugacy classes of G

• a collection
V1, . . . , Vr

of representatives for the isomorphism classes of simple
CG-modules (which correspond to the irreps of the representation)

The character table of G is the r×s array whose (i, j)th entry is χVi
(gj).

(Definition 5.4)

• Under what conditions are character tables square?

– recall Corollary 3.16:

Let G be a finite group, with k an algebraically closed field and
|G| ≠ 0 in k. Then:

rk(G) = s(G)

(Corollary 3.16)

where recall that:

∗ s(G) is the number of conjugacy classes in G

∗ for finite groups rk(G) denotes the number of isomorphism classes of irreducible k-
representations of G (which we identify with simple CG-modules.

– hence, in this setting, it follows that we always have that r = s, so the character table is always
square

– as an additional pointer, recall that:
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Let G be a finite group with conjugacy classes:

C1, . . . , C2

Then,
{Ĉ1, . . . , Ĉ2}

is a basis for Z(kG) as a vector space, and thus:

dim(Z(kG)) = s(G)

(Proposition 3.15)

• Are character tables well-defined? That is, do they depend on the choice of representative
Vi or gj?

– the trace is a well-defined mapping, irrespective of basis

– moreover, the character is a class function

– thus, for any choice of representative Vi, gj , the character table is always the same
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3 Properties of Characters

3.1 Lemma: Basic Character Properties

Let
ρ : G→ GL(V )

be a finite dimensional representation. Then:

1. The character of the trivial conjugacy class is the degree of the
irrep:

χV (1) = dim(V )

2.
χV (g) = χV (1) = dim(V ) ⇐⇒ ρ(g) = 1V

3. If
dim(V ) = 1

then χ is a group homomorphism

4. If:

• G is abelian

• V is irreducible

then
dim(V ) = 1

(Lemma 5.6)

Proof.

1 The identity conjugacy class contains as a representative the identity of G. Then, ρ(1) = 1V , which

as a matrix is the identity matrix, and whose trace is the dimension of the vector space.

2

χV (g) = χV (1)

⇐⇒ tr(ρ(g)) = tr(ρ(1))

⇐⇒ tr(ρ(g)) = dim(V )

Now, notice that ρ(g)|G| = 1V , so ρ(g) is a diagonalisable matrix...
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3

If dim(V ) = 1, then ρ(g) is just a non-zero complex number in C (so that ρ(g) ∈ C×). Thus, this defines
a group homomorphism:

ρ : G→ C× ∼= GL(C)

4

Recall Schur’s Lemma:

Suppose k is algebraically closed. Let V be a simple module over a
finite dimensional k-algebra A.
Then, every A-module endomorphism of V is given by the action of
some scalar λ ∈ K, such that:

EndA(V ) = k1V

(Theorem 3.6)

Let ρ be a representation. We claim that ρ(g) defines an endomorphism (G-module endomorphism) of
V . Then, by irreducibility of V , this implies that:

∃λ ∈ C : ρ(g) = λ ∈ C×

so that ρ is 1-dimensional, so dim(V ) = 1.

To this end, for any g, h ∈ G and v ∈ V , we have that:

ρ(gh)(v) = (gh) · v = g · (h · v) = ρ(g)(h · v)

Since G is abelian, we also have that:

ρ(gh)(v) = (hg) · v = h · (g · v) = h · (ρ(g)(v))

In particular, this shows that:
ρ(g)(h · v) = h · (ρ(g)(v))

so in particular, ρ(g) defines a G-linear module endomorphism of V , as required.

3.1.1 Example: Character Table of C3

• if G = C3 = ⟨x⟩, since G is abelian, each element constitutes its own conjugacy class, so the
character table will be 3× 3

e x x2

1

χ

χ2
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• the trivial representation will always have character 1, and characters on the identity are equal to

dim(V ), for each V (Lemma 5.6 1 above), so we have:

e x x2

1 1 1 1

χ 1

χ2 1

• again by Lemma 5.6 3 , since each dim(V ) = 1, then the characters define a group homomorphism

φ : C3 → C×

Group homomorphisms are defined by where they send generators; in particular, since each element in
G has order 3, each entry in the character table must correspond to a cube root of 1

• since each character represents a distinct homomorphism, we have that:

e x x2

1 1 1 1

χ 1 ω ω2

χ2 1 ω2 ω

where:
ω = e2πi/3

3.2 Proposition: Order of Group from Characters

Let
χ1, . . . , χr

be a complete list of characters of the complex irreps of a finite
gorup G. Then:

|G| =
r∑

i=1

χi(1)
2

(Proposition 5.7)

Proof. Let Vi be the simple kG-module associated to the character χi. Then, using Lemma 5.6, 1 :
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Let
ρ : G→ GL(V )

be a finite dimensional representation. Then:

1. The character of the trivial conjugacy class is the degree of the
irrep:

χV (1) = dim(V )

2.
χV (g) = χV (1) = dim(V ) ⇐⇒ ρ(g) = 1V

3. If
dim(V ) = 1

then χ is a group homomorphism

4. If:

• G is abelian

• V is irreducible

then
dim(V ) = 1

(Lemma 5.6)

we get that:
χi(1) = dim(Vi)

Finally, by Corollary 3.20:

Suppose that k is algebraically closed.
Let G be a finite group such that |G| ≠ 0 in k, and let

V1, . . . , Vr

be a complete list of pairwise nonisomorphic simple kG-modules.
Then:

1. kG (as a kG-module) is such that:

kG ∼= V
dim(V1)
1 ⊕ . . .⊕ V dim(Vr)

r

2.

|G| =
r∑

i=1

dim(Vi)
2

(Corollary 3.20)
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part 2 , the result follows.

3.3 Counting Complex Linear Characters

3.3.1 Definition: Inflated Representation

Let N ◁ G be a normal subgroup of the finite group G. Let:

ρ : G/N → GL(V )

be a representation.

The inflated representation of G is:

ρ̇ : G→ GL(V )

where:
∀g ∈ G, ρ̇(g) = ρ(gN)

(Definition 5.8)

3.3.2 Definition: Derived Subgroup

Let G be a finite group. The derived subgroup G′ of G is the sub-
group generated by the commutators in G:

G′ =
〈
[x, y] = xyx−1y−1 | x, y ∈ G

〉
(Definition 5.9)
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3.3.3 Proposition: Properties of Commutators and the Derived Subgroup

Let G be a group, and G′ its derived subgroup.

1. Inverses and conjugates of commutators are commutators:

[x, y]−1 = [y, x] z[x, y]z−1 = [zxz−1, zyz−1]

2. G′ is a normal subgroup of G:

G′ ◁ G

3. Let N be a subgroup of G. Then:

N ◁ G and G/N is abelian ⇐⇒ G′ ⊆ N

In particular, G′ is the smallest normal subgroup of G such that
G/N is abelian.

4. G is abelian ⇐⇒
G′ = {eG}

Proof. See these notes on Group Theory.

3.3.4 Lemma: Number of Complex Linear Characters from Derived Subgroup

Let G be a finite group. Then, G has

|G/G′|

distinct complex linear characters.
(Lemma 5.10)

Proof. Assume that χ : G→ C is a complex linear character. By Lemma 5.6 3
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Let
ρ : G→ GL(V )

be a finite dimensional representation. Then:

1. The character of the trivial conjugacy class is the degree of the
irrep:

χV (1) = dim(V )

2.
χV (g) = χV (1) = dim(V ) ⇐⇒ ρ(g) = 1V

3. If
dim(V ) = 1

then χ is a group homomorphism

4. If:

• G is abelian

• V is irreducible

then
dim(V ) = 1

(Lemma 5.6)

χ is a group homomorphism:
χ : G→ C×

Now, C× is abelian, so im(χ) ≤ C× is abelian. By the First Isomorphism Theorem, it thus follows that:

G/ ker(χ) ∼= im(φ)

so G/ ker(χ) is abelian. Thus, by properties of the derived subgroups, we must have that:

G′ ⊆ ker(χ)

Moreover, since G/G′ is abelian, it has |G/G′| linear characters (using 4 of Lemma 5.6, as G/G′ is abelian).

We claim that each (distinct) linear character χ of G corresponds to a linear character from G/G′. To
do this, consider the Universal Property of Factor Groups where:

• π : G→ G/G′ is the canonical map:
π(g) = gG′

• χ : G→ C× is a 1-dimensional character, viewed as a group homomorphism, which has

G′ ⊆ ker(χ)

Then, the Universal Property tells us that:

∃! φ : G/G′ → C×
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such that:
χ = φ ◦ π : G→ C×

In particular, this implies that for each complex linear character χ of G, there is a (unique) corresponding
character φ of G/G′. In particular, this correspondence is bijective: it is a mapping between a finite set of
characters, and it is injective by definition.

Hence, since there are |G/G′| linear characters in G/G′, it follows that G also has |G/G′| complex linear
characters, as required.

3.3.5 Example 5.5: Character Table of S3

• in Sn the conjugacy classes are given by cycle type; in particular, for S3, we can identify 3 representa-
tives:

ι (1 2) (1 2 3)

• as always, the first row contains 1s (corrsesponding to the trivial representation):

ι (1 2 3) (1 2)

1 1 1 1

χ2

χ3

where we’ve organise the conjugacy representatives in increasing order of conjugacy class size, and the
characters are organised in decreasing order of degree

• now, the derived subgroup of S3 will be A3, since:

S3/A3
∼= C2

which is abelian, so S′
3 ⊆ A3. A3 = ⟨(1 2 3)⟩ is cyclic, and so, simple, so this would force that either

S′
3 = A3 or S′

3 = {ι}. The latter can’t be the case, as S3 isn’t abelian

• now, it follows that by Lemma 5.10, there are |S3/A3| = 2 distinct complex linear characters; we have
already found the trivial one; the second one can be “pulled back” from the inflated representation of
S3/A3

• indeed, the linear representation in S3/A3 → C2 corresponds to a group homomorphism:

C2 → C×

• since A3 = ⟨(1 2 3)⟩, we have that (1 2 3) ∈ A3, (1 2 3)A3 ∈ S3/A3 maps to 1 ∈ C2 under the
isomorphism, so the character of (1 2 3) in S3 will be 1; similarly,, and since C2 → C× must be a
homomorphism, the character of (1 2) will be -1

• hence, we get:

ι (1 2 3) (1 2)

1 1 1 1

χ2 1 1 -1

χ3
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Alternatively, we could’ve identified the existence of the sign character:

χ2 : S3 → {±1}

which maps even permutations to 1, and odd permutations to -1

• from Proposition 5.7, we know that:

|S3| = 6 = 1(1)2 + χ2(1)
2 + χ3(1)

2 =⇒ χ3(1) = 2

ι (1 2 3) (1 2)

1 1 1 1

χ2 1 1 -1

χ3 2

• lastly, in Example 1.20, we looked at the permutation representation of S3. In particular, we let
S3 act on a set X = {e1, e2, e3}. We found a 2-dimensional G-stable subspace of CX via:

W = {a1e1 + a2e2 + a3e3 | a1 + a2 + a3 = 0}

where:
W = ⟨v1 = e1 − e2, v2 = e2 − e3⟩

We also found that, in matrix form, the matrix representation σ of S3 afforded by W was given by:

σ((1 2 3)) =

0 −1

1 −1



σ((1 2 3)) =

−1 1

0 1


• since this is a 2-dimensional representation, this must be the one we are missing, so computing the
traces of σ((1 2 3)), σ((1 2 3)) we obtain the final character table for S3:

ι (1 2 3) (1 2)

1 1 1 1

χ2 1 1 -1

χW 2 -1 0

3.3.6 Example 5.11: Linear Characters in A4

• A4 has a normal subgroup of order 4:

V4 = {ι, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)}

known as the Klein four-group

• notice that:

|A4/V4| =
12

4
= 3 =⇒ A4/V4 ∼= C3
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• since C3 is abelian:
A′

4 ≤ V4 |A′
4| ∈ {1, 2, 4}

• since A4 is not abelian, A′
4 is non-trivial

• the subgroups of order 2 are generated by each non-identity element, but none of these are normal,
since, for example:

(1 4)(2 3)(1 2)(3 4)(1 4)(2 3) = (1 4)(2 3) ̸∈ {ι, (1 2)(3 4}

• thus, the only possibility is that A4 = V4

• this then implies that A4 admits 3 distinct linear characters, which are inflated as characters from
representations of A4/V4 ∼= C3

4 Class Function Orthogonality

4.1 Definition: Inner Product on Class Functions

Let G be a finite group. The inner product on class functions is
the map:

⟨−,−⟩ : C(G)× C(G) → C
defined by:

⟨φ, ψ⟩ = 1

|G|
∑
g∈G

φ(g)ψ(g)

In particular, this mapping satisfies, for φ, ψ ∈ C(G), λ ∈ C:

• sesquilinearity
⟨λφ, ψ⟩ = λ ⟨φ, ψ⟩
⟨φ, λψ⟩ = λ ⟨φ, ψ⟩

• additivity in both variables

• antisymmetry
⟨φ, ψ⟩ = ⟨ψ, φ⟩

• positivity
⟨φ, φ⟩ ≥ 0

with equality if and only if

φ = 0

(Definition 5.12)
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4.2 Notation for Conjugacy Classes

4.2.1 Definition: Conjugacy Class and Centralisers

Let G be a finite group and let g ∈ G. Then:

1. We denote the conjugacy class of g ∈ G via:

gG = {gx = x−1gx | x ∈ G}

2. We denote the centraliser of g ∈ G via:

CG(g) = {x ∈ G | gx = xg}

where the centraliser of g is the set of all x ∈ G which commute
with g.

(Definition 5.16)

4.2.2 Lemma: Order of Group from Centraliser

∀g ∈ G, |G| = |gG||CG(g)|
(Lemma 5.17)

Proof. Apply the Orbit-Stabiliser Theorem to the action of G on itself defined by conjugation. Then, the
orbit of g ∈ G is its conjugacy class, and the stabiliser of g is its centraliser.

4.3 Towards Class Function Orthogonality

4.3.1 Definition: Invariant Submodules

Let V be a CG-module. The invariant submodule of V is:

V G = {v ∈ V | ∀g ∈ G, g · v = v}

V G is the largest subspace of V which is fixed by G.
(Definition 5.19)
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4.3.2 Proposition: Fixed Point Formula

Let G be a finite group and let V be a finite dimensional CG-module.
Then:

dim(V G) = ⟨1, χV ⟩ =
1

|G|
∑
g∈G

χV (g)

(Proposition 5.20)

Proof. Define the principal idempotent of CG to be:

e =
1

|G|
∑
g∈G

g ∈ CG

To see it is an idempotent, notice that:

ge =
1

|G|
∑
g′∈G

gg′ =
1

|G|
∑
h∈G

h = e

and similarly:
ge = eg

Here we have used the uniqueness of products in groups. e is also idempotent, since:

e2 =
1

|G|
∑
g∈G

ge =

 1

|G|
∑
g∈G

1

 e =
|G|
|G|

e = e

By

Recall, A decomposes into left ideals:

A = B1 ⊕ . . .⊕Br

In fact, each Bi is a two-sided ideal of A.
(Lemma 3.11)

we decompose V by using the idempotent e, whereby {e, 1− e} defines an orthogonal set of idempotents,
and thus generate two-sided ideals e · V, (1− e) · V such that:

V = e · V ⊕ (1− e) · V

We now claim that:
e · V = V G

Firstly, assume that g ∈ G. Then:

g · (e · v) = (ge) · v = e · v =⇒ e · V ≤ V G
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On the other hand, if v ∈ V G, by definition:

∀g ∈ G, g · v = v

so in particular:

(|G|e) · v =

∑
g∈G

g

 · v =
∑
g∈G

(g · v) = |G|v =⇒ e · v = v

so v ∈ e · V and V G ≤ e · V . Thus, as required:

e · V = V G

Lastly, we can identiy the action of e ∈ CG on V with a linear map:

eV : V → V

via:
v 7→ e · v

It is clear that:
im(eV ) = e · V

Now, here’s a useful fact:

Let P be an idempotent linear map. Then, P has eigenvalues 0 and 1,
and the algebraic multiplicity of 1 is:

tr(P )

Proof. If v is an eigenvector with eigenvalue λ, then:

λv = Pv = P 2v = P (λv) = λ(Pv) = λ2v

so:
λ2 − λ = 0 =⇒ λ ∈ {0, 1}

Moreover, since P is idempotent, it has a minimal polynomial:

p(t) = t2 − t = t(t− 1)

so it is diagonalisable:
P = AΛA−1

where Λ is a diagonal matrix containing eigenvalues. Then:

tr(P ) = tr(AΛA−1) = tr(A−1AΛ) = tr(Λ)

But tr(Λ) counts the number of times 1 appears as an eigenvalue of P : it is the algebraic multiplicity.
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In particular, since eV is idempotent, it follows that it has tr(eV ) non-zero eigenvalues. These correspond
to a set of tr(eV ) linearly independent eigenvectors which will span the image of eV . In other words:

dim(e · V ) = tr(eV )

Hence:

dim(V G) = dim(e · V )

= tr(eV )

= tr

 1

|G|
∑
g∈G

ρ(g)

 (since eV a linear map is equivalent to the action of e on v ∈ V via ρ(g))

=
1

|G|
∑
g∈G

tr(ρ(g)) (by linearity of the trace)

=
1

|G|
∑
g∈G

χV (g)

4.3.3 Proposition: Equalities in Class Functions

Here we consider how the character acts on the vector space constructions we saw last week:

• the dual vector space:
V ∗ = {linear f : V → k}

• the external direct sum:
V ⊕W = V ×W

• the tensor product:
V ⊗W

• the hom vector space:
Hom(V,W )

• the symmetric square:

S2V =

〈
vw =

1

2
(v ⊗ w + w ⊗ v) | v, w ∈ V

〉
• the alternating square:

Λ2V =

〈
v ∧ w =

1

2
(v ⊗ w − w ⊗ v) | v, w ∈ V

〉
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Let G be a finite group, with V,W as finite dimensional CG-
modules. Then:

1.
χV ∗ = χV

2.
χV⊕W = χV + χW

3.
χV⊗W = χV χW

4.
χHom(V,W ) = χV χW

5.

χS2V (g) =
1

2

(
χV (g)

2 + χV (g
2)
)

6.

χΛ2V (g) =
1

2

(
χV (g)

2 − χV (g
2)
)

(Proposition 5.21)

4.3.4 Proposition: Properties of Homomorphisms over CG-Modules

Let V,W be finite diemnsional CG-modules. Then:

1.
HomCG(V,W ) = Hom(V,W )G

2.
⟨χV , χW ⟩ = dim (HomCG(V,W ))

(Proposition 5.22)

Proof.

1

Page 22



Let f ∈ Hom(V,W ). Then, f is fixed by the G-action iff:

∀g ∈ G, v ∈ V (g · f)(v) = g · f(g−1 · v) = f(v)

If we denote with gV ∈ GL(V ), gW ∈ GL(W ) the action of g on V,W respectively, then the above is
equivalent to having:

∀g ∈ G, v ∈ V gW (f(g−1
V (v)) = f(v)

or equivalently:
gW ◦ f ◦ g−1

V = f =⇒ gW ◦ f = f ◦ gV
But now using Definition 1.12:

Consider 2 representations:

ρ : G→ GL(V ) σ : G→ GL(W )

A homomorphism or intertwining operator is a linear map:

φ : V → W

such that:
∀g ∈ G, σ(g) ◦ φ = φ ◦ ρ(g)

If φ is bijective, then it is an isomorphism.
(Definition 1.12)

it follows that f is a CG-homomorphism:

f ∈ HomCG(V,W )

as required.

2

We apply definitions. Using:

Let G be a finite group and let V be a finite dimensional CG-module.
Then:

dim(V G) = ⟨1, χV ⟩ =
1

|G|
∑
g∈G

χV (g)

(Proposition 5.20)

and part 4 of Proposition 5.21:

χHom(V,W ) = χV χW
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it follows that:

dim (Hom(V,W ))
G
=

1

|G|
∑
g∈G

χHom(V,W )(g)

=
1

|G|
∑
g∈G

χV (g)χW (g)

= ⟨χV , χW ⟩

4.4 Row Orthogonality

4.4.1 Theorem: Row Orthogonality in Character Table

One extremely useful fact about character tables is that their rows are orthogonal, according to the character
inner product.

Let φ, ψ be irreducible characters of the finite group G. Then:

⟨φ, ψ⟩ =

{
1, φ = ψ

0, φ ̸= ψ

(Theorem 5.13)

Proof. Let V,W be simple CG-modules, whose characters are:

φ = χV ψ = χW

(these are irreducible characters, since V,W are simple/irreducible).

By Schur’s Lemma

Suppose k is algebraically closed. Let V be a simple module over a
finite dimensional k-algebra A.
Then, every A-module endomorphism of V is given by the action of
some scalar λ ∈ K, such that:

EndA(V ) = k1V

(Theorem 3.6)

alongside
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Let V,W be simple A-modules. Then, every non-zero, A-linear
map

φ : V → W

is an isomorphism.
(Lemma 2.13)

it follows that we must have:

dim (HomCG(V,W )) =

{
1, V ∼=W

0, V ̸∼=W

since:

• if V ̸∼=W , by Lemma 2.13 any map V,W must be the 0 map

• if V ∼= W , by Schur’s Lemma, any CG-isomorphism V → W must respect the fact that the endomor-
phisms in V,W are given by scalars, so HomCG(V,W ) itself must be a space spanned by the identity
map (and is thus 1 dimensional)

Then, by

Let V,W be finite dimensional CG-modules. Then:

1.
HomCG(V,W ) = Hom(V,W )G

2.
⟨χV , χW ⟩ = dim (HomCG(V,W ))

(Proposition 5.22)

we have that:
⟨φ,ψ⟩ = ⟨χV , χW ⟩ = dim (HomCG(V,W )) ∈ {0, 1}

Now, suppose that χV = χW . Then:

⟨χV , χW ⟩ = ∥χV ∥2

=
1

|G|
∑
g∈G

|χV (g)|2

≥ (dim(V ))2

|G|
> 0

where in the penultimate step, we have used that when the character is evaluated at the identity group
element we get back the vector space dimension (Lemma 5.6, 1)). In particular, if χV = χW this forces:

⟨χV , χW ⟩ = 1

On the other hand, if χV ̸= χW , V ̸∼=W (as isomorphic representations have the same character), so:

⟨φ,ψ⟩ = dim (HomCG(V,W )) = 0

as required.
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4.4.2 Corollary: Module Isomorphism from Character Equality

Let V,W be finite dimensional kG-modules. Then:

V ∼= W ⇐⇒ χV = χW

(Corollary 5.14)

Proof. Let
χ1, . . . , χr

be the complete list of characters of the complex irreps of G, and let Vi be the simple kG-module with
character χi.

By Mashcke’s Theorem

Let
ρ : G→ GL(V )

be a representation, and let U be a G-stable subspace.
A G-stable complement for U in G is a G-stable subspace W such
that:

V = U ⊕W

where recall, this means that:

• U +W = V

• U ∩W = {0}
(Definition 1.19)

V can be written as a direct sum of simple kG-modules. Since, up to isomorphism, V1, . . . , Vr are the
only such simple kG-modules:

∃ai ∈ Z+ : V ∼= V a1
1 ⊕ . . .⊕ V ar

r

We call ai the multiplicity of Vi in V .

By the correspondence between simple modules and irreps, we get that:

χV =

r∑
i=1

aiχi

By
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Let φ, ψ be irreducible characters of the finite group G. Then:

⟨φ, ψ⟩ =

{
1, φ = ψ

0, φ ̸= ψ

(Theorem 5.13)

we then get that:

⟨χi, χV ⟩ =

〈
χi,

r∑
i=1

aiχi

〉
=

r∑
i=1

aiδij = ai

Then, if χV = χW we must have that:

∃bi ∈ Z+ : W ∼= V b1
1 ⊕ . . .⊕ V br

r

as kG-modules. But then:
ai = ⟨χi, χV ⟩ = ⟨χi, χW ⟩ = bi

so in fact:
V ∼=W

Conversely, if V ∼=W , we trivially have that:

χV = χW

as required.

4.4.3 Corollary: Orthonormal Basis for Class Functions

The irreducible characters of G form an orthonormal basis for
C(G).
(Corollary 5.15)

Proof. By orthonormality of rows in the character table, we know that

⟨χi, χj⟩ = δi,j

Thus, the chracters χi are pairwise orthogonal elements of the inner product space C(G) (since characters
are class functions). Now:

dim(C(G)) = s(G) = rC(G) = r

so {χi}i∈[1,r] forms a linearly independent set of r elements, which are orthonormal. Thus, its an orthonormal
basis.
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4.4.4 Example: Character Table of A4

• consider G = A4

• we first look for conjugacy classes (which aren’t as simple as for Sn). In An, conjugacy classes from
Sn either stay the same, or they split into 2 separate conjugacy classes (if lengths of the cycle type are
distinct odd numbers - see this link)

• in particular, this implies that A4 has 4 conjugacy classes, with representatives:

ι g2 = (1 2)(3 4) g3 = (1 2 3) g4 = (1 3 2)

• we also need to compute the number of elements in each conjugacy class. Indeed:

– ι yields the trivial conjugacy class, so:
|ιG| = 1

– the conjugacy class of g2 is identical to that of S4. It have:

1

2

(
4× 3

2
× 2× 1

2

)
= 3

elements, so:
|gG2 | = 3

– the conjugacy class of g3 contains half the elements in A4 as it did in S4. In S4 the cycles of shape
3 had:

4× 3× 2

3
= 8

elements, so:
|gG3 | = |gG4 | = 4

– the last precomputation we make is in figuring out the linear characters. For this, we need to
find the derived subgroup of A4. But we already saw in the example above (Example 5.11)
that:

A′
4 = V4

and so A4 has 3 linear characters, inflated from characters C3 → C×

– in fact, since V4 is generated by g2, then the inflation of characters from C3 means that we can
“copy” the character table for C3 into that for A4, where we identify

C3
∼= {ιV4 = g2V4 ∼= e, g3V4 ∼= x, g4V4 ∼= x2}

e x x2

1 1 1 1

χ 1 ω ω2

χ2 1 ω2 ω

Thus, we have most of the character table done:

ι g2 g3 g4

1 1 1 1 1

χ2 1 1 ω ω2

χ3 1 1 ω2 ω

χ4 d a b c
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– Proposition 5.7

Let
χ1, . . . , χr

be a complete list of characters of the complex irreps of a finite
gorup G. Then:

|G| =
r∑

i=1

χi(1)
2

(Proposition 5.7)

tells us that:
12 = 12 + 12 + 12 + d2 =⇒ d = 3

so:

ι g2 g3 g4

1 1 1 1 1

χ2 1 1 ω ω2

χ3 1 1 ω2 ω

χ4 d a b c

– we can complete the table by exploiting row orthogonalityñ, which tells us that:

0 = ⟨χ1, χ4⟩ = |ιG|(1 · 1) + |gG2 |(1 · a) + |gG3 |(1 · b) + +|gG4 |(1 · c) = 3(1 + a) + 4(b+ c)

0 = ⟨χ1, χ4⟩ = |ιG|(1 · 1) + |gG2 |(1 · a) + |gG3 |(ω · b) + +|gG4 |(ω2 · c) = 3(1 + a) + 4ω(b+ cω)

0 = ⟨χ1, χ4⟩ = |ιG|(1 · 1) + |gG2 |(1 · a) + |gG3 |(ω2 · b) + +|gG4 |(ω · c) = 3(1 + a) + 4ω(bω + c)

This yields:
b+ c = ω(b+ cω) b+ c = ω(bω + c)

which in turn implies that:

bω + c = b+ cω ∴ (ω − 1)(b− c) = 0

Since ω = e2π/3 ̸= 1, we must have that b = c. Moreover, from the first equality:

3 + 3a+ 8b = 0

implies that b, c must be real. Thus, if we return to:

b+ c = ω(b+ cω) =⇒ 2b = ωb(1 + ω)

we see that the LHS is real, and the RHS is complex, which implies that b = 0 = c. This then
forces a = −1.
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– thus, the finalised character table is:

ι g2 g3 g4

1 1 1 1 1

χ2 1 1 ω ω2

χ3 1 1 ω2 ω

χ4 3 -1 0 0

4.5 Theorem: Column Orthogonality in Character Table

As a consequence of row orthogonality, we also have column orthogonality.

Let G be a finite group, and let

χ1, . . . , χR

be irreducible characters of G.

If g, h ∈ G, then:

R∑
i=1

χi(g)χi(h) =

{
|CG(g)|, gG = hG

0, otherwise

In other words, taking the dot product of columns in the character
table will alwyas be 0.
(Theorem 5.23)

Proof. Let
{g1, . . . , gr}

be a complete list of representatives of the conjugacy classes.

Now, define the following:

xi,j = χi(gj)cj cj =

√
|gGj |
|G|

Page 30



Notice, xi,j is the (i, j)th entry of the character table for G, scaled by a factor cj . Now, if we compute the
(complex) inner product of the scaled rows of the character table

r∑
j=1

xi,jxk,j =

r∑
j=1

χi(gj)cjχk(gj)cj

=

r∑
j=1

c2jχi(gj)χk(gj)

=
1

|G|

r∑
j=1

|gGj |χi(gj)χk(gj)

=
1

|G|
∑
g∈G

χi(g)χk(g)

= ⟨χi, χk⟩
= δi,k

But now, if we define the r × r matrix:
X = (xi,j)

the above says that X is a unitary matrix, since:

δi,k =

r∑
j=1

xi,jxk,j = (XXT )ik

In particular:

XXT = I =⇒ X
T
X = I

But then:

∀j, k ∈ [1, r], (X
T
X)j,k =

r∑
i=1

xi,jxi,k =⇒ cjck

r∑
i=1

χi(gj)χi(gk) = δj,k

In particular, if j ̸= k, this column product is 0; otherwise, when j = k, we have that:

r∑
i=1

χi(gj)χi(gk) =
1

c2j
=

|G|
|gGj |

= |CG(gj)|

by the Orbit-Stabilizer Theorem.

4.5.1 Example: Character Table for S4

• let G = S4

• the conjugacy classes are defined by cycle type, so we have representatives

g1 = ι g2 = (1 2)(3 4) g3 = (1 2 3) g4 = (1 2) g5 = (1 2 3 4)

• to compute the order of the conjugacy classes:

–

|gG1 | = 1 =⇒ |CG(g1)| =
24

1
= 24

–

|gG2 | =
1

2

(
4× 3

2
× 2× 1

2

)
= 3 =⇒ |CG(g2)| =

24

3
= 8
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–

|gG3 | =
4× 3× 2

3
= 8 =⇒ |CG(g3)| =

24

8
= 3

–

|gG4 | =
4× 3

2
= 6 =⇒ |CG(g4)| =

24

6
= 4

–

|gG5 | =
4× 3× 2× 1

4
= 6 =⇒ |CG(g5)| =

24

6
= 4

• now, we have the following chain of normal subgroups:

V4 ◁ A4 ◁ S4

where it is also the case that V4 ◁ S4. Moreover, we have that

S4/V4 ∼= S3

Moreover, if:
f : S3 ↪→ S4 g : S4 ↠ S4/V4

we know that f (the inclusion) is injective, and g (the canonical map) is surjective, so their compo-
sition:

g ◦ f : S3 → S4/V4

is injective. Since it is an injective morphism between 2 groups of order 6 (finite), the two groups
must be isomorphic.

• in particular, we can inflate the character table for S4, by using that of S3:

ι (1 2 3) (1 2)

1 1 1 1

χ2 1 1 -1

χW 2 -1 0

• to this end, recall that
V4 = {ι, (1 2)(3 4), (1 4)(2 3), (1 3)(2 4)}

so in particular:
ιV4 = g2V4 ∼= ι ∈ S3

and thus we inflate to get:

g ι g2 g3 g4 g5

|gG| 1 3 8 6 6

|CG(g)| 24 8 3 4 4

1 1 1 1 1 1

χ2 1 1

χ3 2 2

χ4

χ5
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• moreover, since:
S4/A4

∼= C2

and A4 contains the even permutations, in particular:

ιA4 = g2A4 = g3A4
∼= 1 ∈ C2

and since characters in C2 will be homomorphisms (by dimension 1), we must have that:

g4A4 = g5A5
∼= −1 ∈ C2

so

g ι g2 g3 g4 g5

|gG| 1 3 8 6 6

|CG(g)| 24 8 3 4 4

1 1 1 1 1 1

χ2 1 1 1 -1 -1

χ3 2 2

χ4

χ5

• then, comparing entries with the character table of S3, it follows that:

g ι g2 g3 g4 g5

|gG| 1 3 8 6 6

|CG(g)| 24 8 3 4 4

1 1 1 1 1 1

χ2 1 1 1 -1 -1

χ3 2 2 -1 0 0

χ4

χ5

In fact, this tells us that g3 forms its own conjugacy class in S4/V4 (3-cycles), and g4, g5 are in the
same conjugacy class in S4/V4 (2-cycles)

• this is all we need to fill in the rest of the table: we can now use column orthogonality!
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g ι g2 g3 g4 g5

|gG| 1 3 8 6 6

|CG(g)| 24 8 3 4 4

1 1 1 1 1 1

χ2 1 1 1 -1 -1

χ3 2 2 -1 0 0

χ4 d4 w4 x4 y4 z4

χ5 d5 w5 x5 y5 z5

• firstly (by Proposition 5.7):

|G| = 24 = 12 + 12 + 22 + d24 + d25 ⇐⇒ d4 = d5 = 3

g ι g2 g3 g4 g5

|gG| 1 3 8 6 6

|CG(g)| 24 8 3 4 4

1 1 1 1 1 1

χ2 1 1 1 -1 -1

χ3 2 2 -1 0 0

χ4 3 w4 x4 y4 z4

χ5 3 w5 x5 y5 z5

• then using Column Orthogonality with the first 2 columns:

1 + 2 + 4 + 3w4 + 3w5 = 0

and column orthogonality of the second column with itself:

1 + 1 + 4 + |w4|2 + |w5|2 = |GG(g2)| = 8

Together, these imply that:
w4 + w5 = −2 |w4|2 + |w5|2 = 2

This can be shown to be the case if and only if:

w4 = w5 = −1

• applying column orthogonality to the third column yields:

1 + 1 + 1 + |x4|2 + |x5|2 = 3 =⇒ |x4|2 + |x5|2 = 0

But since these terms are non-negative, this is only possible if:

x4 = x5 = 0

Updating the character table:
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g ι g2 g3 g4 g5

|gG| 1 3 8 6 6

|CG(g)| 24 8 3 4 4

1 1 1 1 1 1

χ2 1 1 1 -1 -1

χ3 2 2 -1 0 0

χ4 3 -1 0 y4 z4

χ5 3 -1 0 y5 z5

• applying column orthogonality to the last 2 columsn individually yields:

1 + 1 + |y4|2 + |y5|2 = 4 = 1 + 1 + |z4|2 + |z5|2

so in particular:
|y4|2 + |y5|2 = 2 = |z4|2 + |z5|2

• then, by column orthogonality of the first and fourth columns:

1 +−1 + 3y4 + 3y5 = 0 =⇒ 3(y4 + y5) = 0

which is true if and only if:
y4 = −y5

which in particular implies that:

|y4|2 + |y5|2 = 2 =⇒ 2|y4|2 = 2 =⇒ |y4| = |y5| = 1

• similarly, by column ofrthogonality of the first and fifth columns:

• then, by column orthogonality of the first and fourth columns:

1 +−1 + 3z4 + 3z5 = 0 =⇒ 3(z4 + z5) = 0

so again:
z4 = −z5 |z4| = |z5| = 1

• now, we know that χ4(g4) and χ5(g4) are traces of matrices. Moreover, since g4 = (1 2), for any
representation:

ρ : S4 → GL(V )

Γ = ρ(g4) will be a morphism of order 2. In particular, if v ∈ V is some eigenvector:

Γv = λv =⇒ (Γ2)v = λ2v

so in fact we have that:
v = λ2v ⇐⇒ λ2 = 1

Thus, since the trace is the sum of eigenvalues, and the eigenvalues must be ±1 in particular we know
that:

χ4(g4), χ5(g4) ∈ R

which in turn forces:
y4 ∈ {1,−1} y5 ∈ {1,−1}
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WLOG, we may pick y4 = 1,m which forces y5 = −1. Moreover, since the characters must be different
(i.e two rows/columns can’t be identical), this in turn forces z4 = −1, z5 = 1, so the finalised table is:

g ι g2 g3 g4 g5

|gG| 1 3 8 6 6

|CG(g)| 24 8 3 4 4

1 1 1 1 1 1

χ2 1 1 1 -1 -1

χ3 2 2 -1 0 0

χ4 3 -1 0 1 -1

χ5 3 -1 0 -1 1
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