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Based on the notes by Konstantin Ardakov, Section 4

1 Useful Remarks

1.1 Remark: Representations as Vector Spaces

Let V be a vector space and G a finite group. Recall, we can identify a
representation

ρ : G → GL(V )

with a group action over the vector space

g · v = ρ(g)(v)

In particular, if we can construct new vector spaces from old ones, this
allows us to construct new representations.

1.2 Lemma: Linear G-Actions Induce kG-Modules

Let V be a vector space and let

G× V → V

be a G-action on V .
This action extends to a kG-module structure on V if and only if the
G-action on V is linear:

∀g ∈ G, v, w ∈ V, λ ∈ k, g · (v + λw) = (g · v) + λ(g · w)

(Lemma 4.1)

2 Generating New Representations

2.1 Definition: External Direct Sum Representation

Let V,W be G-representations. The external direct sum is the vec-
tor space

V ⊕W = V ×W

which is again a G-representation via:

∀g ∈ G, v ∈ V,w ∈ W, g · (v, w) = (g · v, g · w)

(Definition 4.2)
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• In what way is this definition consistent with what we’ve met in linear algebra?

– notice, if U = V ⊕W , this typically means that:

1. for any u ∈ U , we can write it as u = v + w for some v ∈ V,w ∈ W

2. V ∩W = {0}
– to this respect, if we think of:

V ′ = {(v, 0) |v ∈ V } ⊆ V ×W

W ′ = {(0, w) |w ∈ V } ⊆ V ×W

then we do indeed see that:
V ′ ⊕W ′ = V ×W

2.2 Definition: Dual Representation

Let V be a G-representation. The dual representation is the space:

V ∗ = {linear f : V → k}

G acts on V ∗ via:

∀g ∈ G, f ∈ V ∗, v ∈ V, (g · f)(v) = f(g−1 · v)

(Definition 4.3)

• Why is there an inverse in the definition of the action?

– if g−1 weren’t present, this wouldn’t define a left G-action

– for example, if we had (g · f)(v) = f(g · v) then:

((gh) · f)(v) = f((gh) · v) = f(g · (h · v))

but:
(g · (h · f))(v) = (h · f)(g · v) = f(h · (g · v)

so
((gh) · f)(v) ̸= (g · (h · f))(v)
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2.2.1 Lemma: Isomorphism of G-Representations from Double Dual

Leet V be a finite dimensional G-representation. The natural iso-
morphism from V to its double dual:

τ : V → V ∗∗

given by
∀f ∈ V ∗, v ∈ V, τ(v)(f) = f(v)

is an isomorphism of G-representations.
(Lemma 4.5)

2.3 Definition: Hom Representation

Let V,W be G-representations. The vector space Hom(V,W ) of all
linear maps

f : V → W

admits a linear G-action via:

∀g ∈ G, f ∈ Hom(V,W ), v ∈ V, (g · f)(v) = gf(g−1 · v)

(Definition 4.4)

2.4 Tensor Products

2.4.1 Definition: Tensor Product

Let V,W be vector spaces, with bases:

V = {v1, . . . , vm} ⊂ V

W = {w1, . . . , wn} ⊂ W

The tensor product V ⊗W of V,W is the free vector space on the set
of formal symbols

{vi ⊗ wj | i ∈ [1,m], j ∈ [1, n]}

(Definition 4.6)
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2.4.2 Definition: Elementary Tensor

Let V,W be vector spaces, with bases:

V = {v1, . . . , vm} ⊂ V

W = {w1, . . . , wn} ⊂ W

If:

v =
m∑
i=1

λivi ∈ V w =
∑
j=1

µjwj ∈ W

the elementary tensor is:

v ⊗ w =
m∑
i=1

∑
j=1

µjλi(vi ⊗ wj) ∈ V ⊗W

(Definition 4.6)

2.4.3 Remark: Properties of Tensor Product

Let V,W be vector spaces. Then:

1.
dim(V ⊗W ) = (dim(V ))(dim(W ))

2. Elementary tensors span V ⊗W )

3. Not every element of V ⊗W is an elementary tensor

2.4.4 Lemma: Bases for Tensor Product

The definition makes it clear that the tensor product is not “natural”: it depends on the choice of basis. This
lemma goes to show that this isn’t really an issue, since such tensor products will be isomorphic.

Let
V ′ = {v′1, . . . , v′m} ⊂ V W ′ = {w′

1, . . . , w
′
n} ⊂ W

be other bases for V,W . Then:

X ′ = {v′i ⊗ w′
j | i ∈ [1,m], j ∈ [1, n]}

is a basis for V ⊗W .
(Lemma 4.8)
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Proof. We can distribute elementary tensors in V ⊗W :

∀v, v′ ∈ V,w,w′ ∈ W, (v + v′)⊗ (w + w′) = (v ⊗ w) + (v ⊗ w′) + (v′ ⊗ w) + (v′ ⊗ w′)

∀v ∈ V,w ∈ W,λ ∈ k, (λv)⊗ w = λ(v ⊗ w) = v ⊗ (λw)

In particular, in V,W , we can write each vi as a linear combination in V ′, and each wi as a linear combination
in W ′. Hence, each of the original basis vectors vi ⊗ wj will lie in the span of X ′. Hence, since X ′ spans
V ⊗W , and |X ′| = mn, it follows that X ′ is a linearly independent spanning set, and thus, defines a basis.

In particular, this is saying that if we have bases:

V = {v1, . . . , vm} ⊂ V W = {w1, . . . , wn} ⊂ W

V ′ = {v′1, . . . , v′m} ⊂ V W ′ = {w′
1, . . . , w

′
n} ⊂ W

and we define:
V ⊗′ W = free vector space on symbols v′i ⊗′ v′j

then there is an isomorphism:
V ⊗′ W ∼= V ⊗W

given by:
v′i ⊗′ v′j 7→ v′i ⊗ v′j

so in fact the two tensor products are isomorphic.

2.4.5 Remark: Canonical Map in Tensor Product

Let V,W be vector spaces. Then, there is a canonical map:

⊗ : V ×W → V ⊗W

defined by:
(v, w) 7→ v ⊗ w

which is bilinear
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2.4.6 Lemma: Universal Property of Tensor Product

Let V,W,U be vector spaces. Then, for every bilinear map

b : V ×W → U

there is a unique linear map

b̃ : V ⊗W → U

such that:
b = b̃ · ⊗

In other words:
∀v, w ∈ V, b(v, w) = b̃(v ⊗ w)

(Lemma 4.9)

Proof. We begin by proving existence.

Fix bases for V,W :
V = {v1, . . . , vm} ⊂ V W = {w1, . . . , wn} ⊂ W

Let b : V ×W → U be a bilinear map. Define a map:

b̃ : V ⊗W → U

via:
b̃(vi ⊗ wj) = b(vi, wj)

Now, if:

v =

m∑
i=1

λivi ∈ V w =
∑
j=1

µjwj ∈ W

Then:

b̃(v ⊗ w) = b̃

 m∑
i=1

∑
j=1

µjλi(vi ⊗ wj)


=

m∑
i=1

∑
j=1

µjλib(vi ⊗ wj)

=

m∑
i=1

∑
j=1

µjλib(vi, wj)

= b

 m∑
i=1

λivi,
∑
j=1

µjwj


= b(v, w)
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Hence, b = b̃ · ⊗ on each of the basis elements of V ⊗W , so we have shown existence.

Now, assume there exists some different linear map:

c : V ⊗W → U

such that:
b(v, w) = c(v ⊗ w)

Then, in particular:
c(vi ⊗ wj) = b(vi, wj)

since c must send basis elements to basis elements. But then:

c(vi ⊗ wj) = b(vi, wj) = b̃(vi ⊗ wj)

so in fact c = b̃, since they agree on the basis elements.

2.4.7 Definition: Tensor Product Representation

Let V,W be finite dimensional kG-modules (where for finite groups
kG-modules are just G vector spaces).
Define a G-action on the tensor product V ⊗W via:

∀g ∈ G, v ∈ V,w ∈ W, g · (v ⊗ w) = (g · v)⊗ (g · w)

• Does the above define a G-representation?

– using Lemma 4.1 above:

Let V be a vector space and let

G× V → V

be a G-action on V .
This action extends to a kG-module structure on V if and only if the
G-action on V is linear:

∀g ∈ G, v, w ∈ V, λ ∈ k, g · (v + λw) = (g · v) + λ(g · w)

(Lemma 4.1)

alongside the properties of tensor products, this shows that the above defines a G-representation
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3 Working with Tensor Products

3.1 Lemma: Isomorphism Between Tensor Product and Homs

Let V,W be finite dimensional kG-modules. Then, there is an iso-
morphism of kG-modules

V ∗ ⊗W ∼= Hom(V,W )

(Lemma 4.11)

Proof. Notice, we can define a map:

∀f ∈ V ∗, w ∈ W, b(f, w) : V → W

via:
∀v ∈ V, b(f, w)(v) = f(v)w

Since f(v) ∈ k and f is linear, this map is linear. Hence, we have defined a map:

b : V ∗ ×W → Hom(V,W )

Moreover, b is bilinear:

b(λf1 + f2, µw1 + w2)(v) = (λf1 + f2)(v)(µw1 + w2)

= (λf1(v) + f2(v))(µw1 + w2)

= λµf1(v)w1 + λf1(v)w2 + µf2(v)w1 + f2(v)w2

as required. Thus, by the Universal Property of Tensor Products

Let V,W,U be vector spaces. Then, for every bilinear map

b : V ×W → U

there is a unique linear map

b̃ : V ⊗W → U

such that:
b = b̃ · ⊗

In other words:
∀v, w ∈ V, b(v, w) = b̃(v ⊗ w)

(Lemma 4.9)
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we have that there exists a unique linear map:

α : V ∗ ⊗W → Hom(V,W )

such that:
∀f ∈ V ∗, w ∈ W, v ∈ V, α(f ⊗ w)(v) = f(v)w

Now, we claim that α defines an isomorphism of kG-modules. Firstly, we show that it is a kG-module
homomorphism. To this end, let:

V = {v1, . . . , vn} ⊂ V

V∗ = {v∗1 , . . . , v∗n} ⊂ V ∗

W = {w1, . . . , wm} ⊂ W

be bases for V, V ∗,W respectively. It is sufficient to verify that α is a kG-module homomorphism when
acting on elementary tensors (since any element of V ∗ ⊗W will be a linear combination of these elementary
tensors, so linearity of the homomorphism will be preserved). Since α is linear:

α(f1 ⊗ w1 + f2 ⊗ w2) = α(f1 ⊗ w1) + α(f2 ⊗ w2)

It remains to show that it is kG linear. To this end, let

ρ =
∑
g∈G

agg ∈ kG

and consider for some v ∈ V :

α(ρ · (f ⊗ w))(v) = α

∑
g∈G

agg

 · (f ⊗ w)

 (v)

= α

∑
g∈G

ag(g · f ⊗ w)

 (v)

=
∑
g∈G

agα[(g · f)⊗ (g · w)](v)

=
∑
g∈G

ag[g · f ](v)[g · w]

=
∑
g∈G

agf(g
−1 · v)[g · w]

=
∑
g∈G

agg · [f(g−1 · v)w]

=
∑
g∈G

agg · [α(f ⊗ w)(g−1 · v)]

= [ρ · [α(f ⊗ w)]](v)

Hence, α defines a kG-module homomorphism.

It remains to show it is bijective. Since α is a homomorphism of finite dimensional kG-modules, it is
sufficient to show that α is injective, from which surjectivity follows. Indeed:

f ⊗ w ∈ ker(α) ⇐⇒ ∀v ∈ V α(f ⊗ w)(v) = f(v)w = 0 ⇐⇒ f = 0 and w = 0

so the kernel is trivial, and so, α is injective.
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Alternatively, one can construct a direct inverse

β : Hom(V,W ) → V ∗ ⊗W

via:

β(f) =

n∑
i=1

v∗i ⊗ f(vi)

We verify that this indeed defines an inverse for f ∈ Hom(V,W ), v ∈ V we have that:

(α ◦ β)(f)(v) = α[β(f)](v)

=
∑
i=1

.α[v∗i ⊗ f(vi)](v)

=
∑
i=1

.v∗i (v)f(vi)

= f

(∑
i=1

.v∗i (v)vi

)
= f(v)

since by definition v∗i (v) will be the coefficients in the linear expansion of v in terms of basis elements vi.

Similarly:

(β ◦ α)(f ⊗ w) = β[α(f ⊗ w)]

=

n∑
i=1

v∗i ⊗ [α(f ⊗ w)(vi)]

=

n∑
i=1

v∗i ⊗ [f(vi)w]

=

n∑
i=1

[f(vi)v
∗
i ]⊗ w

=

(
n∑

i=1

f(vi)v
∗
i

)
⊗ w

= f ⊗ w

since the f(vi) are the constants defining f as a linear combination of the v∗i , and using the bilinearity of
the tensor product.
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3.2 Decomposing Tensor Products

3.2.1 Definition: Symmetric Square

Let V be a finite dimensional vector space and assume that
char(k) ̸= 2. Then:

∀v, w ∈ V, vw :=
1

2
(v ⊗ w + w ⊗ v) ∈ V ⊗ V

The symmetric square of V is the subspace of V ⊗ V generated by all
such vw:

S2V = ⟨vw | v, w ∈ V ⟩

Notice that:
∀v, w ∈ V, vw = wv

(Definition 4.12)

3.2.2 Definition: Alternating Square

Let V be a finite dimensional vector space and assume that
char(k) ̸= 2. Then:

∀v, w ∈ V, v ∧ w :=
1

2
(v ⊗ w − w ⊗ v) ∈ V ⊗ V

The alternating square of V is the subspace of V ⊗ V generated by all
such v ∧ w:

Λ2V = ⟨v ∧ w | v, w ∈ V ⟩

Notice that:
∀v, w ∈ V, v ∧ w = −w ∧ v

(Definition 4.12)
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3.2.3 Lemma: Decomposing Tensor Squares

Let
dim(V ) = n char(k) ̸= 2

Then:

1.
V ⊗ V = S2V ⊕ Λ2V

2.

dim(S2V ) =
n(n+ 1)

2
dim(Λ2V ) =

n(n− 1)

2

3. If V is a G-representation, then so are S2V,Λ2V via:

∀g ∈ G, v, w ∈ V, g·(vw) = (g·v)(g·w) g·(v∧w) = (g·v)∧(g·w)

(Lemma 4.13)

Proof.

1

Let S2 = ⟨σ⟩ be the cyclic group or order 2. Since char(k) ̸= 2, we admit division by 2, so define:

e1 =
ι+ σ

2
e2 =

ι− σ

2

where ι is the identity permutation, and e1, e2 ∈ kS2. Notice:

e21 =
ι2 + 2ισ + σ2

4
=

2(ι+ σ)

4
= e1

e1e2 =
ι2 − σ2

2
= 0

e22 =
ι2 − 2ισ + σ2

2
=

2(ι− σ)

4
= e2

so {e1, e2} forms an orthogonal, idempotent set.

Now, from Lemma 3.11:

Recall, A decomposes into left ideals:

A = B1 ⊕ . . .⊕Br

In fact, each Bi is a two-sided ideal of A.
(Lemma 3.11)
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and the proof of:

Let A be a finite dimensional semisimple k-algebra, and suppose
that k is algebraically closed. Then:

dim(Z(A)) ≤ r

(Proposition 3.9)

we have an ideal decomposition of kS2 using the orthogonal idempotent set, via:

kS2 = ke1 ⊕ ke2

In particular, this allows us to decompose any kS2-module M into even and odd elements:

M = e1M ⊕ e2M = {m ∈ M | σm = m} ⊕ {m ∈ M | σm = −m}

Now, S2 will act on V ⊗ V via:
∀v, w ∈ V, σ · 8v ⊗ w) = w ⊗ v

Thus, we have that:
e1 · (V ⊗ V ) = S2V e2 · (V ⊗ V ) = Λ2V

Hence:
V ⊗ V = S2V ⊕ Λ2V

as required.

2

Let:
{v1, . . . , vn}

be a basis for V . Then:
{vi ⊗ vj | 1 ≤ i, j ≤ n}

spans V ⊗ V , so
{e1 · (vi ⊗ vj) | 1 ≤ i, j ≤ n} spans e1 · (V ⊗ V ) = S2V

{e2 · (vi ⊗ vj) | 1 ≤ i, j ≤ n} spans e2 · (V ⊗ V ) = Λ2V

But now we have that:

e1 · (vi ⊗ vj) =
vi ⊗ vj + vj ⊗ vi

2
= vivj = vjvi

so
{vivj | 1 ≤ i ≤ j ≤ n} spans S2V

This set has n(n+1)
2 (think of each vivj as an element of a matrix; the set contains all elements in the upper

triangular part of the matrix, including the main diagonal, by symmetry), which implies that:

dim(S2V ) ≤ n(n+ 1)

2

Similarly:

e2 · (vi ⊗ vj) =
vi ⊗ vj − vj ⊗ vi

2
= vi ∧ vj

Thus, since e2 · (vi ⊗ vj) = 0 when i = j, it follows that

{vi ∧ vj | 1 ≤ i < j ≤ n} spans Λ2V
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and

dim(S2V ) ≤ n(n− 1)

2

But now, dim(V ⊗ V ) = n2 and since V ⊗ V = S2V ⊕ Λ2V this forces equality, which is the desired result.

3

G,S2 act on V ⊗ V via:

σ · (g · (v ⊗ w)) = σ(g · v ⊗ g · w)
= g · w ⊗ g · v
= g · (w ⊗ v)

= g · (σ · (v ⊗ w))

Thus, the two actions commute pointwise. In particular, the G-action will preserve every S2-submodule
of V ⊗ V , which means that S2V,Λ2V are G-stable, and thus, inherit a linear G-action from V ⊗ V , as
required.
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