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Based on the notes by Konstantin Ardakov, Section /

1 Useful Remarks

1.1 Remark: Representations as Vector Spaces

Let V' be a vector space and G a finite group. Recall, we can identify a
representation
p:G— GL(V)

with a group action over the vector space
g-v=p(g)(v)

In particular, if we can construct new vector spaces from old ones, this
allows us to construct new representations.

1.2 Lemma: Linear G-Actions Induce kG-Modules

Let V' be a vector space and let
GxV =V

be a G-action onV .
This action extends to a kG-module structure on'V if and only if the
G-action on'V is linear:

Vg e G,v,w eV, \ €k, g-(v+Iw)=(g-v)+ A(g-w)
(Lemma 4.1)

2 Generating New Representations

2.1 Definition: External Direct Sum Representation

Let V. W be G-representations. The external direct sum is the vec-
tor space
VeW=VxW

which is again a G-representation via:
VgeGuveViweW, g-(v,w)=(9-v,9 w)
(Definition 4.2)
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e In what way is this definition consistent with what we’ve met in linear algebra?

— notice, if U =V @ W, this typically means that:
1. for any u € U, we can write it as u = v + w for some v € V,w € W
2. Vnw ={0}
— to this respect, if we think of:
V' ={(v,0) peV}CVxW

W' ={0,w) lweV}CVxW

then we do indeed see that:
ViegW =V xW

2.2 Definition: Dual Representation

Let V' be a G-representation. The dual representation is the space:
V* = {linear f : V — k}
G acts on V* wia:
VgeG, feEViveV, (g9 f)v)=flg7" )
(Definition 4.3)

e Why is there an inverse in the definition of the action?

1

— if g7+ weren’t present, this wouldn’t define a left G-action

— for example, if we had (g f)(v) = f(g-v) then:
((gh) - F)(w) = f((gh) -v) = f(g- (h-v))

but:
(g-(h-f))w)=(h-f)(g-v)=Ff(h-(g-v)

SO

((gh) - F)(w) # (g (k- 1)) (v)
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2.2.1 Lemma: Isomorphism of G-Representations from Double Dual

Leet V' be a finite dimensional G-representation. The natural iso-
morphism from V to its double dual:

TV =V

given by
VieViueV,  1()(f)=f(v)

15 an tsomorphism of G-representations.

(Lemma 4.5)

2.3 Definition: Hom Representation

Let V,W be G-representations. The vector space Hom(V, W) of all
linear maps
f:V-w

admits a linear G-action via:
Vg € G, f € Hom(V,W),v eV,  (g-f)(v)=gf(g""v)
(Definition 4.4)

2.4 Tensor Products

2.4.1 Definition: Tensor Product

Let V. W be vector spaces, with bases:
V=A{v,...,o} CV

W=Aw,...,w,} CW

The tensor product V@ W of V. W is the free vector space on the set
of formal symbols

{’Ui®’w]‘ | 7 € [Lm],] S [Ln]}
(Definition 4.6)
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2.4.2 Definition: Elementary Tensor

Let V. W be vector spaces, with bases:
V={v,...,om} CV
W= {wy,...,w,} CW
If: .
v:Z)\iviEV w:ZujijW
i=1

=1

the elementary tensor is:

v®w:ZZuj)\i(vi®wj)€V®W

i=1 j=1

(Definition 4.6)

2.4.3 Remark: Properties of Tensor Product

Let V,W be vector spaces. Then:

1.
dim(V @ W) = (dim(V))(dim(W))

2. Elementary tensors spanV @ W)

3. Not every element of V@ W is an elementary tensor

2.4.4 Lemma: Bases for Tensor Product

The definition makes it clear that the tensor product is not “natural”: it depends on the choice of basis. This
lemma goes to show that this isn’t really an issue, since such tensor products will be isomorphic.

Let
Vi={v,...,otcV  W={w,...,u,} CW

be other bases for V,W. Then:
X' ={v;i®w;|iec[l,m],je€[l,n]}

is a basis for Vo W.
(Lemma 4.8)
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Proof. We can distribute elementary tensors in V ® W:
Yo, € V,w,w' € W, w+)@(w+w)=@veow) +@veuw)+ (¥ @w)+ (v @w)

Yo e V,w e W)\ €k, M) @w=Avew)=vQ (A\w)

In particular, in V, W, we can write each v; as a linear combination in V', and each w; as a linear combination
in W’. Hence, each of the original basis vectors v; ® w; will lie in the span of X'. Hence, since X’ spans

V@ W, and |X’| = mn, it follows that X’ is a linearly independent spanning set, and thus, defines a basis.
O

In particular, this is saying that if we have bases:
V=A{vy,...,om}CV W={wy,...,w,} CW
Vi={vj,...,v,}cV W =A{uw],...,w,} CW

and we define:
V @ W = free vector space on symbols v; @ v

then there is an isomorphism:
Vo' W2VeW

given by:
/ I / /
v, & v = U @ vy

so in fact the two tensor products are isomorphic.

2.4.5 Remark: Canonical Map in Tensor Product

Let V,W be vector spaces. Then, there is a canonical map:
R:VXW VW

defined by: o)
V,W) — VR W

which s bilinear
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2.4.6 Lemma: Universal Property of Tensor Product

Let V., W, U be vector spaces. Then, for every bilinear map
b:VxW—=U

there is a unique linear map

b: VW —-U
such that: ~
b=b-®

In other words: ~
Yo, w eV, b(v,w) = b(v @ w)

(Lemma 4.9)

Proof. We begin by proving existence.

Fix bases for V, W:
V={v1,...,0;m} CV W=A{wq,...,w,} CW

Let b: V x W — U be a bilinear map. Define a map:

b: VoW —=U
via: ~
b(v; @ w;) = b(vs, wy)
Now, if:
v:ZAivieV w:Zuij-eW
i=1 j=1
Then:

i=1j=1

= Z Z,uj)\ib(vi ® wj)

i=1 j=1

=D uidib(vi, wy)

i=1 j=1

=b (Z /\ﬂ}i, Z /,ij]‘)
i=1 j=1

= b(v,w)

blv@w) =b (Z Z,Uj/\i(vi ® w7)>
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Hence, b = b-® on each of the basis elements of V ® W, so we have shown existence.
Now, assume there exists some different linear map:
c: VoW —=U

such that:
b(v, w) = c(v & w)

Then, in particular:
c(v; ® wy) = b(v;, wy)

since ¢ must send basis elements to basis elements. But then:
c(vi ® wj) = b(vi, wj) = b(v; @ wy)

so in fact ¢ = b, since they agree on the basis elements.

2.4.7 Definition: Tensor Product Representation

Let V,W be finite dimensional kG-modules (where for finite groups
kG-modules are just G vector spaces).
Define a G-action on the tensor product V @ W via:

e Does the above define a G-representation?

— using Lemma 4.1 above:

Let' V' be a vector space and let
GxV =V

be a G-action onV .
This action extends to a kG -module structure on V' if and only if the
G-action on'V is linear:

Vg € G,v,w € V,\ € k, g-(v+dw)=(g-v) +Ag-w)
(Lemma 4.1)

alongside the properties of tensor products, this shows that the above defines a G-representation
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3 Working with Tensor Products

3.1 Lemma: Isomorphism Between Tensor Product and Homs

Let V. W be finite dimensional kG-modules. Then, there is an iso-
morphism of kG-modules

V*®@ W = Hom(V, W)
(Lemma 4.11)

Proof. Notice, we can define a map:
VieV* weW, b(f,w): VW

via:

Yv eV, b(f,w)(v) = f(v)w
Since f(v) € k and f is linear, this map is linear. Hence, we have defined a map:
b:V* x W — Hom(V, W)
Moreover, b is bilinear:

b(Af1 + fo, pwr +w2)(v) = (Af1 + f2) (v) (pwr + w2)
= (Mf1(v) + f2(v)) (pw1 + w2)
= Apfi(v)wr + Afi(v)wz + pfe(v)wr + f2(v)w2

as required. Thus, by the Universal Property of Tensor Products

Let V., W, U be vector spaces. Then, for every bilinear map
b:VxW—=U

there is a unique linear map
b: VoW U

such that: ~
b=b-®
In other words: ~
Yo, w eV, b(v, w) = bv R w)
(Lemma 4.9)
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we have that there exists a unique linear map:
a:V*@W — Hom(V,W)
such that:
VieViweWuvel, alf @w)(v) = f(v)w

Now, we claim that « defines an isomorphism of kG-modules. Firstly, we show that it is a kG-module

homomorphism. To this end, let:
V=A{v,...,o,} CV

Vo ={v],...,vp} CV*
W={wy,...,wn} CW

be bases for V, V* W respectively. It is sufficient to verify that « is a kG-module homomorphism when
acting on elementary tensors (since any element of V* ®@ W will be a linear combination of these elementary
tensors, so linearity of the homomorphism will be preserved). Since « is linear:

a(fi@w + fo @ws) = a(fi ®wi) + a(fo ® ws)

It remains to show that it is kG linear. To this end, let

p= Zagg € kG
geG

and consider for some v € V:

alp-(fow)w) =al D ag| (few)| (@)

geG

=a| Y ag-fow) |

geG

=Y agal(g- f)® (g-w)](v)

geG

=Y aglg- fl(v)[g - w]

geG

= agflg™" - )lg - ul

geG

= agg-[flg" v)w]

geG

= g9+ la(f O w)g ")

geG

=[p- la(f @ w)]](v)
Hence, a defines a kG-module homomorphism.

It remains to show it is bijective. Since « is a homomorphism of finite dimensional kG-modules, it is
sufficient to show that « is injective, from which surjectivity follows. Indeed:

foweker(a) <= WweVa(fow)(v)=fv)w=0 < f=0andw=0

so the kernel is trivial, and so, « is injective.
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Alternatively, one can construct a direct inverse
B :Hom(V,W) =V oW
via:

B =D v @ f(w)
=1

We verify that this indeed defines an inverse for f € Hom(V,W),v € V we have that:

I
<
S %
—~
<
=
-
—
<
&
N

since by definition v} (v) will be the coefficients in the linear expansion of v in terms of basis elements v;.
Similarly:
(Boa)(f@w)=pla(f®w)]
=S ur @ la(f @ w)(v,)]
i=1

= va ® [f (vi)w]

I
]
=
S
=,
®
g

I
VO
(]
=
&
=,
~_—
®
g

since the f(v;) are the constants defining f as a linear combination of the v

7+, and using the bilinearity of
the tensor product.

O
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3.2 Decomposing Tensor Products

3.2.1 Definition: Symmetric Square

Let V' be a finite dimensional vector space and assume that
char(k) # 2. Then:

1
Yo,w €V, vw := §(v®w+w®v)€V®V

The symmetric square of V is the subspace of V & V' generated by all
such vw:

S?V = (vw | v,w € V)

Notice that:
Yo,w €V, vw = wv
(Definition 4.12)

3.2.2 Definition: Alternating Square

Let'V be a finite dimensional vector space and assume that
char(k) # 2. Then:

1
Yo,w eV, v Aw:= §(v®w—w®v)€V®V

The alternating square of V is the subspace of V ® V' generated by all
suchv Aw:

AV = (wAw|v,w e V)

Notice that:
Yo,weV, vAw=—wAv

(Definition 4.12)
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3.2.3 Lemma: Decomposing Tensor Squares

Let
dim(V) =n char(k) # 2
Then:
1.
VeV ==5VeaeAV
2 ) )
dim(S?V) = @ dim(A2V) = %

3. IfV is a G-representation, then so are S?V, A*V wvia:
VgeGo,weV,  g-(vw)=(gv)(gw) g-(vAw)=(g-v)A(g-w)

(Lemma 4.13)

Proof.

@

Let So = (o) be the cyclic group or order 2. Since char(k) # 2, we admit division by 2, so define:

L+0o L— 0
€y =
2 2 2

where ¢ is the identity permutation, and e, es € kS;. Notice:

ey =

s P4+ 2i0+0% 20+0)

61: 4 = 4 :el
L270'2
€162 = D) =0
22 2 20—
e%:L w+o (¢ 0):62
2 4

so {e1, ea} forms an orthogonal, idempotent set.

Now, from Lemma 3.11:

Recall, A decomposes into left ideals:
A=B&...8 B,

In fact, each B; is a two-sided ideal of A.
(Lemma 3.11)
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and the proof of:

Let A be a finite dimensional semisimple k-algebra, and suppose
that k 1s algebraically closed. Then:

dim(Z(A)) <r
(Proposition 3.9)

we have an ideal decomposition of kS5 using the orthogonal idempotent set, via:
kSQ = kel D k@g
In particular, this allows us to decompose any kSs-module M into even and odd elements:
M=eeM@&esM={meM|om=m}®d{meM]|om=-—m}
Now, S, will act on V ® V via:
Yo, w €V, oc-8URW)=wv
Thus, we have that:
e1-(VaV)=5V  e-(VaV)=AV
Hence:
VeV=5VaeAV

as required.

®

Let:
{vi,..., v}
be a basis for V. Then:
{viov; |1<4,j<n}

spans V ® V, so

{e1-(vi®v;) |1<4i,j<n}spanse;-(V@V) = S%V

{ea - (v; ®v;) | 1<i,j<n}spanses- (VaV)=AV
But now we have that:
(3 ® ’Uj + ’Uj ® Vs

e1- (v; ®vj) = 5

= U,;’L)j = vjvi
SO
{viv; | 1 <i<j<n} spans S*V
This set has % (think of each v;v; as an element of a matrix; the set contains all elements in the upper
triangular part of the matrix, including the main diagonal, by symmetry), which implies that:

1
dim($2V) < @
Similarly: 5 “
(3 Vi — V5 Vi
er- (v, ®@vj) = —L =" =9, Av;

2
Thus, since e; - (v; ® v;) = 0 when ¢ = j, it follows that

{viAvj | 1 <i<j<n}spans A’V
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and
nin—1)

2
But now, dim(V ® V) = n? and since V ® V = S2V & A2V this forces equality, which is the desired result.

®

G, S5 act on V@V via:

dim(S?V) <

o (g-(vew)=0c(g-veg- w)
=g -w®g-v
=g (w®w)
=g (0-(vOwW)
Thus, the two actions commute pointwise. In particular, the G-action will preserve every Ss-submodule
of V ® V, which means that S?V, A2V are G-stable, and thus, inherit a linear G-action from V ® V, as

required.
O
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