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Based on the notes by Konstantin Ardakov, Section 8

1 Recap and Important Theorems/Notation

1.1 Proposition: Simple Modules for Semisimple Rings

Let A be a semisimple ring. Then, A has only finitely many simple

A-modules, up to isomorphism.
(Proposition 2.14)

1.2 Definition: Number of Isomorphism Classes

For finite groups G, r(G) denotes the number of isomorphism classes

of irreducible k-representations of G.
(Definition 2.16)

1.3 Lemma: Module Endomorphisms

Let A be a ring. Then:

1. for each a € A right multiplication by a defines an A-module
endomorphism:

Ta ‘A A—)A A
given by:
b+ ba

2. Every A-module endomorphism
W A A — A A
is of this form

3. The map:
AP — EHdA(AA>

given by:
av>r,

s an tsomorphism of rings

(Lemma 3.4)
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1.4 Remark: Central Elements Give Endomorphisms

Take any z € Z(A), and define an endomorphism:
2y . V-V
va:
Vi zev
We can check that zy s indeed an endomorphism:
zy(a-v)=z-(a-v)

(2a) -
(a2) -

=a-zy(v)

S <

1.5 Definition: k-Algebra

We say that A is a k-algebra if it contains k as a central subfield.
Moreover, k-linear ring homomorphisms are homomorphisms of
k-algebras.

If A is a semisimple ring, we say that A is a semisimple k-algebra.
(Definition 3.5)

1.6 Theorem: Schur’s Lemma

Suppose k is algebraically closed. LetV be a simple module over a
finite dimensional k-algebra A.

Then, every A-module endomorphism of V is given by the action of
some scalar A\ € K, such that:

EndA(V) = klv
(Theorem 3.6)
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1.7 Definition: Central Character of Modules

Let A be a k-algebra, and V' be an A-module where:
EndA(V) = k‘lV

By Schur’s Lemma, every z € Z(A) acts on'V by scalar multiplica-
tion. Denote this action/endomorphism via zy .

The central character of V is the ring homomorphism:

Z(A) — k
Z = 2y

2 Notation for these Notes

e A will denote a fixed semisimple ring

e V1,...,V,. denotes a complete list of the r representatives for the isomorphism classes of simple
A-modules (Proposition 2.14 above)

e we fix a decomposition of A4 as a direct sum! of simple left ideals:
r o n;
- DB
i=1 j=1
where each left ideal L; ; is such that:
Vimja Li,j = ‘/1
we have that nq,...,n, > 1, since each V; must appear at least once within the decomposition
e cach L; ; is not unique in general

e we define left ideals B; via:

B; is a left ideal because sum of left ideals are left ideals (see this proof)

3 Examples of Semisimple Rings

e any division ring D is semisimple

— in particular, if D is a simple ring, it is semisimple (since it decomposes trivially as a sum of simle
rings - D itself)

1Being a direct sum, each a € A is uniquely expressible as a sum of elements in L; ;.
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— if D isn’t simple, then there exists some non-trivial ideal I; in particular, 3a € I, where a is
Nnon-zero

— since D is a division ring, Ja~! € D, which implies that aa=' € I, so I contains the identity, and
so, I =D

e any matrix over a division ring M, (D)

— for example, when n = 2:

k k E k 0 k
S3)
k k E k 0 k

where you can check that the ddecomposition is given by simple left ideals
e direct product of matrix rings over division rings:

M,,(Dy) X ...x M, (D,)

4 Dimension of the Centre of a Semisimple Ring

4.1 Proposition: Bounding Dimension of the Centre from Above

Let A be a finite dimensional semisimple k-algebra, and suppose
that k 1s algebraically closed. Then:

dim(Z(A4)) <r
(Proposition 3.9)

Proof. By Schur’s Lemma
Vi e [l,r], Enda(V;)=kly,

Define a k-linear map:
Vi Z(A) = k" U(z) = (2v,,...,2v.)

This is k-linear because each zy, is just scalar multiplication.

Now, pick any z € Z(A) such that:
Y(z) =0€k”

This is possible if and only if:
Vi€ [i,r], z2v,=0€k

We claim that in such a case, z =0 € A.

A is semisimple, so in particular Jde; ; € L; j such that for 1 € A:

T ng
1=2_2 e

i=1j=1

Page 5



so in particular:

r 74 TNy
z:z~1:E E z~ei,j:§ E 2y, €

i=1 j=1 i=1 j=1
But we have that zy, = 0, which implies that z = 0. Hence, ker(y)) = {0} and ¢ is injective. That is:

dim(Z(A)) < dim(k") =r

as required.

4.2 Bounding Dimension of the Centre from Below

4.2.1 Lemma: A Decomposes into Two-Side Ideals

Recall, A decomposes into left ideals:
A — Bl @ . e @ Br

In fact, each B; is a two-sided ideal of A.
(Lemma 3.11)

Proof. Fix a € A. By definition, L; ; C B;. Now, consider the projection:
p:A—=Lyg, a#i,1<8<n,
such that:

pla)=p > me‘ = la,p

i=1 j=1

Now, let r, denote right multiplication by a in A. Then, we have that:
pory: A— Lyg
If we restrict ¢ o r, to act on L; ; we thus have an A-module homomorphism:
pOTqL, Lij — Lag

Since ¢ # «, and L; j =2 V;, L; j, Lo g aren’t isomorphic. Hence, by

Let V. W be simple A-modules. Then, every non-zero, A-linear
map
p: VW

s an tsomorphism.
(Lemma 2.13)
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it follows that
porer,, : Lij = Lag
is the zero map. In particular, Vo # 4, the projection:
L; ja — B,
must be zero. In particular, since L; ja C A, it must be the case that:
L; ja C B;
But B; is a direct sum of L; ; for varying j, so:
Va € A, B;aC B;

Closure of B; under subtraction follows from the fact that B; is already a left ideal. Hence, B; is both a left
and a right ideal, as required.
O

4.2.2 Lemma: Bounding Dimension of the Centre from Below

Let R be a k-algebra and suppose that for some non-zero, two-sided
ideals Sy, ..., S,, we have that:

R=5&...8¢5

Then,
dim(Z(R)) > r

(Lemma 3.12)

Proof. We can write:
T
R>1= Z €;
i=1

Now, let a € R., Since S; is a left ideal:
ae; € 5;

However, it is also a right ideal, so:
e;a € 51

Hence, decompoosing a we get that:
I s
a = Z ae; = Z €;a
i=1 i=1
Since this decomposition is unique, and each term belongs to each of the .S;, we must have that:
Vie[l,r],Ya € R, ae;=ea = e; € Z(A)

Now, we also have:
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e if i # j, then using the fact that S; are two-sided ideals:
e;e; € S; ﬁSj = {0} = eie; = 0

e hence:
r

ei:ei-lzeig = e’

j=1
In other words, {e;};c[1,r) forms a set of pairwise orthogonal idempotent elements of R.

We claim that this set is linearly independent. To this end, assume that:
ks
ek > Ne;=0€R
i=1
Multiplying this expression by e;, and using the properties of each e;:

0= € Z)\Zel = )\jej
i=1

If e; = 0, then Va € S;,a = ae; = 0 which contradicts the fact that the S; are non-zero ideals. Hence, we
must have that
Vie[l,r], e#0 = A=0

so the set is indeed linearly independent over k. In particular, a basis is a minimal linearly independent
spanning set, so:
r < dim(Z(R))

as required.

O
4.3 Theorem: Dimension of Centre from Semisimple Ring Decomposition
Let A be a finite dimensional semisimple k-algebra, and suppose
that k is algebraically closed. Then:
r=dim(Z(A))
(Theorem 3.13)
Proof. Combine Proposition 3.9 and Lemma 3.11 ++ Proposition 3.12. O

In other words, the number of isomorphism classes of simple modules over some semisimble k-algebra is
precisely the dimension fo the centre of A.
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5 Conjugacy Classes

5.1 Definition: Number of Conjugacy Classes of a Group

For a finite group G we denote with s(G) the number of conjugacy

classes of G.
(Definition 3.14)

5.2 Conjugacy Class Sums

5.2.1 Definition: Conjugacy Class Sums

Let G be a finite group with conjugacy classes:
Ci,...,Cy

Define the conjugacy class sum of C; via:

Ci=) zekG
zeC;
That is, C; is the formal sum in kG containing all elements of the conju-

gacy class C;.
(Proposition 3.15)

5.2.2 Proposition: Conjugacy Class Sums Define Basis for Centre of Group Ring

Let G be a finite group with conjugacy classes:

Ci,...,C0%
Then, X X
{C,...,Cs}

is a basis for Z(kG) as a vector space, and thus:
dim(Z(kG)) = s(Q)
(Proposition 3.15)

Proof.
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5.2.3 Corollary: Conjugacy Classes and Simple Submodules

Let G be a finite group, with k an algebraically closed field and
|G| # 0 in k. Then:

(Corollary 3.16)

Proof. By repeatedly applying Maschke’s Theorem:

Let
p:G— GL(V)

be a representation, and let U be a GG-stable subspace.
A G-stable complement for U in G is a G-stable subspace W such

that:
V=UseW
where recall, this means that:
o U+W=V
o UNW = {0}

(Definition 1.19)

we see that we can write kG as a direct sum of simple subalgebras, and so, kG is semisimple. Then, by:

Let G be a finite group with conjugacy classes:
Ci,...,C4

Then, X X
{C4,...,Cy}

is a basts for Z(kG) as a vector space, and thus:
dim(Z(kG)) = s(G)
(Proposition 3.15)

we have that Z(kG) = s(G). Finally by:
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Let A be a finite dimensional semisimple k-algebra, and suppose
that k 1s algebraically closed. Then:

r=dim(Z(A))
(Theorem 3.13)

we have that r(G) = s(G) as required.

5.3 Lemma: Decomposing Modules as Product of Rings

1. Each B; 1s a ring with identity element ¢;
2. A is isomorphic to the product of rings (B, e;):
A= Bl X oo, Br

3. Each B; is itself a semisimple ring, with unique simple module V;

(Lemma 3.17)

Proof.

Recall, A decomposes into left ideals:
A=B&...8 B,

In fact, each B; is a two-sided ideal of A.
(Lemma 3.11)

we can think of B; as a subgroup of the additive group defining the ring A, and which is stable under
multiplication by elements of A (since B; is a two-sided ideal). Hence, in particular, it is a subset of A which
is closed under addition and multiplication, and contains inverses. We are just missing the identity element.
In the proof of
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Let R be a k-algebra and suppose that for some non-zero, two-sided
ideals S, ..., S,, we have that:

R=5®&..05,

Then,
dim(Z(R)) > r

(Lemma 3.12)

we found an orthogonal idempotent basis for a k-algebra R via:

RBlziei
i=1

We also saw that:
VYa € A, ae; = e;a

and that ae; corresponds to the B; component of a along the decomposition:
A=B1®...® B,
In particular, for any a € B;, we must have that:
ae; =ea=a
which implies that e; must be the multiplicative identity element in B;.
©
We can define the isomorphism via:

VYa € A,a — (aeq,...,ae.) € By X ... X B,

®

We want to show that L; ; is a simple B; module. To this end, suppose that U is a B;-submodule of L; ,.
Then, for some jneqi consider:

BjU - BJBZ = (Bjej)(eiBi) = Bj(ejei)Bi =0 = B]U =0

where we've used the fact that e; forms an orthogonal set. Moreover, since U is a B;-submodule (as L; ; C B;),
we have that:
B,U<U

Thus:

AU = | P B; |U<U
j=1

which implies that U is an A-submodule of L; .. But since L; ¢ is simple by definition:
U=L,,orU={0}

so L;, is indeed a simple B;-module aswell, and thus, B; is semisimple. In particular, since L; ; = V;, it
follows that V; is the only simple B;-module, up to isomorphism by:
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Let A be a semisimple ring. Then, A has only finitely many simple

A-modules, up to isomorphism.
(Proposition 2.14)

5.4 Proposition: Ring Isomorphism Between Left Modules and Matrices

Let B be a semisimple ring with exactly one simple module V', up to
tsomorphism. Suppose that:

B=Vo..oV
——

n times
is a left B-module, and let:
D = Endg(V)
Then there is a ring tsomorphism.:
B = M, (D)

(Proposition 3.18)

Proof. Firstly, notice that if we think of B as a B-module, it follows that:
pB=V"

By part 3) of
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Let A be a ring. Then:

1. for each a € A right multiplication by a defines an A-module
endomorphism:

T A A—4 A
given by:
b+ ba
2. Every A-module endomorphism
wigA—4 A
is of this form

3. The map:
AP — EIldA(AA)

given by:
av—r,

s an tsomorphism of rings

(Lemma 3.4)

we have that
B = Endp(pB)® =2 Endp (V™) = M, (D)? = M, (D)

(since the opposite is a self-inverse, and the endomorphisms of a vector space are isomorphic to the matrix
ring).

e How is this isomorphism defined?

— consider the isomorphism:
Endp (V") = M, (D) = M, (Endg(V))

— let ¢;; be B-module endomorphisms of V', arranged as a n x n matrix

— then, thinking of the elements of V" as column vectors, we can map:

U1 (%1
(pij) — e (wi)

Un Un
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5.5 Artin-Weddernburn Theorem

5.5.1 Theorem: Artin-Weddernburn

Suppose that k is an algebraically closed field and that A is a finite
dimensional semisimple k-algebra.
Then there exist positive integers n,,...,n, and a k-algebra isomor-
phism:

A= M, (k) x...x M, (k)
(Theorem 3.19)

Proof. By

1. Each B; is a ring with tdentity element ¢;
2. A is isomorphic to the product of rings (B;, e;):
A= Bl X oo, Br

3. Each B; is itself a semisimple ring, with unique simple module V;
(Lemma 3.17)

we can decompose A intor a product of semisimple rings B;, with unique simple module V; (up to
isomorphism). Moreover, by

Let B be a semisimple ring with exactly one simple module V', up to
isomorphism. Suppose that:

B=Veoe..oV
—_——

n times

1s a left B-module, and let:

D = Endg(V)
Then there is a ring tsomorphism:

B = M, (D)
(Proposition 3.18)
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it follows that each B; = M,,(D°P) where D = Endpg, (V;) is a division ring. But by Schur’s Lemma:

Suppose k is algebraically closed. LetV be a stimple module over a
finite dimensional k-algebra A.

Then, every A-module endomorphism of V is given by the action of
some scalar A\ € K, such that:

EndA(V) = klv
(Theorem 3.6)

we have that:
D°P = L

so the result follows.

5.5.2 Corollary: Decomposing Group Ring

Suppose that k is algebraically closed.
Let G be a finite group such that |G| # 0 in k, and let

Vi,..., Ve

be a complete list of pairwise nonisomorphic simple kG-modules.
Then:

1. kG (as a kG-module) is such that:

kG Vvldim(Vl) D...D ‘/Tdim(VT)

G = 3 dim(V})?
=1

(Corollary 3.20)

Proof. By the Corollary to Mascheke’s Theorem, since |G| isn’t 0 in k, kG is a semisimple module, so by the
Artin-Weddernburn Theorem above, there exists an isomorphism:

kG = M,, (k) x ... % M, (k)

Now, by problem sheet 1, k™ is a simple M, (k) module:
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LetV = k™, and A = M, (k). Letv € V be any non-zero column vector,
and consider the A-submodule generated by v:

u = Av

Letey, ..., e, denote the n standard basis vectors of V' (such that (e;); =
d;j). Now, since v is non-zero, there is some component v; which is non-
zero. Thus, define matrices Ay € M, (k) via:

(Ap)ap = Uj_15ei5jb
Then, it follows that:
AgU = €&

In other words, all of the standard basis vectors of V' are within the sub-
space U, which implies that U = V whenever U is generated by a single
non-zero vector in 'V .

For more general subspaces U < V', if U is non-zero, it must contain at
least one non-zero vector vy, and so:

Avy KU NAy =V = U=V

Hence, V is a simple A-module.

Moreover, M, (k) is isomorphic to the direct sum of n of these modules:

Let Ly be the ideal generated by the set:
{Zgb | be [1,TL}

where Zg, is an elementary matrix, with a 1 at entry £,b and Os elsewhere.

Notice, Ly contains all matrices which have at least one non-zero element

in their (th row, and Os in every other row.

Fach Ly is simple (since they are in 1-1 correspondence with the A-module
k™ which is simple), and certainly:

(since by definition ey y Le = {0} and any matriz in M, (k) can be ez-
pressed as a sum of matrices who only contain entries in certain rows).

Thus, we have that n, = dim(V;).

The second statement follows from the fact that |G| = dim(kG).
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