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Based on the notes by Konstantin Ardakov, Section 3

1 Recap and Important Theorems/Notation

1.1 Proposition: Simple Modules for Semisimple Rings

Let A be a semisimple ring. Then, A has only finitely many simple
A-modules, up to isomorphism.
(Proposition 2.14)

1.2 Definition: Number of Isomorphism Classes

For finite groups G, rk(G) denotes the number of isomorphism classes
of irreducible k-representations of G.
(Definition 2.16)

1.3 Lemma: Module Endomorphisms

Let A be a ring. Then:

1. for each a ∈ A right multiplication by a defines an A-module
endomorphism:

ra :A A →A A

given by:
b 7→ ba

2. Every A-module endomorphism

ω :A A →A A

is of this form

3. The map:
Aop → EndA(AA)

given by:
a 7→ ra

is an isomorphism of rings

(Lemma 3.4)
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1.4 Remark: Central Elements Give Endomorphisms

Take any z ∈ Z(A), and define an endomorphism:

zV : V → V

via:
v 7→ z · v

We can check that zV is indeed an endomorphism:

zV (a · v) = z · (a · v)
= (za) · v
= (az) · v
= a · zV (v)

1.5 Definition: k-Algebra

We say that A is a k-algebra if it contains k as a central subfield.
Moreover, k-linear ring homomorphisms are homomorphisms of
k-algebras.

If A is a semisimple ring, we say that A is a semisimple k-algebra.
(Definition 3.5)

1.6 Theorem: Schur’s Lemma

Suppose k is algebraically closed. Let V be a simple module over a
finite dimensional k-algebra A.
Then, every A-module endomorphism of V is given by the action of
some scalar λ ∈ K, such that:

EndA(V ) = k1V

(Theorem 3.6)

Page 3



1.7 Definition: Central Character of Modules

Let A be a k-algebra, and V be an A-module where:

EndA(V ) = k1V

By Schur’s Lemma, every z ∈ Z(A) acts on V by scalar multiplica-
tion. Denote this action/endomorphism via zV .

The central character of V is the ring homomorphism:

Z(A) → k

z 7→ zV

2 Notation for these Notes

• A will denote a fixed semisimple ring

• V1, . . . , Vr denotes a complete list of the r representatives for the isomorphism classes of simple
A-modules (Proposition 2.14 above)

• we fix a decomposition of A as a direct sum1 of simple left ideals:

A =

r⊕
i=1

ni⊕
j=1

Li,j

where each left ideal Li,j is such that:

∀i, j, Li,j
∼= Vi

we have that n1, . . . , nr ≥ 1, since each Vi must appear at least once within the decomposition

• each Li,j is not unique in general

• we define left ideals Bi via:

Bi =

ni⊕
j=1

Li,j

Bi is a left ideal because sum of left ideals are left ideals (see this proof)

3 Examples of Semisimple Rings

• any division ring D is semisimple

– in particular, if D is a simple ring, it is semisimple (since it decomposes trivially as a sum of simle
rings - D itself)

1Being a direct sum, each a ∈ A is uniquely expressible as a sum of elements in Li,j .
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– if D isn’t simple, then there exists some non-trivial ideal I; in particular, ∃a ∈ I, where a is
non-zero

– since D is a division ring, ∃a−1 ∈ D, which implies that aa−1 ∈ I, so I contains the identity, and
so, I = D

• any matrix over a division ring Mn(D)

– for example, when n = 2: k k

k k

 =

k k

k k

⊕

0 k

0 k


where you can check that the ddecomposition is given by simple left ideals

• direct product of matrix rings over division rings:

Mn1
(D1)× . . .×Mnr

(Dr)

4 Dimension of the Centre of a Semisimple Ring

4.1 Proposition: Bounding Dimension of the Centre from Above

Let A be a finite dimensional semisimple k-algebra, and suppose
that k is algebraically closed. Then:

dim(Z(A)) ≤ r

(Proposition 3.9)

Proof. By Schur’s Lemma
∀i ∈ [1, r], EndA(Vi) = k1Vi

Define a k-linear map:
ψ : Z(A) → kr ψ(z) = (zV1

, . . . , zVr
)

This is k-linear because each zVi
is just scalar multiplication.

Now, pick any z ∈ Z(A) such that:
ψ(z) = 0 ∈ kr

This is possible if and only if:
∀i ∈ [i, r], zVi

= 0 ∈ k

We claim that in such a case, z = 0 ∈ A.

A is semisimple, so in particular ∃ei,j ∈ Li,j such that for 1 ∈ A:

1 =

r∑
i=1

ni∑
j=1

ei,j
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so in particular:

z = z · 1 =

r∑
i=1

ni∑
j=1

z · ei,j =
r∑

i=1

ni∑
j=1

zVi
ei,j

But we have that zVi = 0, which implies that z = 0. Hence, ker(ψ) = {0} and ψ is injective. That is:

dim(Z(A)) ≤ dim(kr) = r

as required.

4.2 Bounding Dimension of the Centre from Below

4.2.1 Lemma: A Decomposes into Two-Side Ideals

Recall, A decomposes into left ideals:

A = B1 ⊕ . . .⊕Br

In fact, each Bi is a two-sided ideal of A.
(Lemma 3.11)

Proof. Fix a ∈ A. By definition, Li,j ⊆ Bi. Now, consider the projection:

φ : A→ Lα,β , α ̸= i, 1 ≤ β ≤ nα

such that:

φ(a) = φ

 r∑
i=1

ni∑
j=1

ℓi,j

 = ℓα,β

Now, let ra denote right multiplication by a in A. Then, we have that:

φ ◦ ra : A→ Lα,β

If we restrict φ ◦ ra to act on Li,j we thus have an A-module homomorphism:

φ ◦ ra|Li,j
: Li,j → Lα,β

Since i ̸= α, and Li,j
∼= Vi, Li,j , Lα,β aren’t isomorphic. Hence, by

Let V,W be simple A-modules. Then, every non-zero, A-linear
map

φ : V → W

is an isomorphism.
(Lemma 2.13)
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it follows that

φ ◦ ra|Li,j
: Li,j → Lα,β

is the zero map. In particular, ∀α ̸= i, the projection:

Li,ja→ Bα

must be zero. In particular, since Li,ja ⊆ A, it must be the case that:

Li,ja ⊆ Bi

But Bi is a direct sum of Li,j for varying j, so:

∀a ∈ A, Bia ⊆ Bi

Closure of Bi under subtraction follows from the fact that Bi is already a left ideal. Hence, Bi is both a left
and a right ideal, as required.

4.2.2 Lemma: Bounding Dimension of the Centre from Below

Let R be a k-algebra and suppose that for some non-zero, two-sided
ideals S1, . . . , Sr, we have that:

R = S1 ⊕ . . .⊕ Sr

Then,
dim(Z(R)) ≥ r

(Lemma 3.12)

Proof. We can write:

R ∋ 1 =

r∑
i=1

ei

Now, let a ∈ R., Since Si is a left ideal:
aei ∈ Si

However, it is also a right ideal, so:
eia ∈ S1

Hence, decompoosing a we get that:

a =

r∑
i=1

aei =

r∑
i=1

eia

Since this decomposition is unique, and each term belongs to each of the Si, we must have that:

∀i ∈ [1, r],∀a ∈ R, aei = eia =⇒ ei ∈ Z(A)

Now, we also have:
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• if i ̸= j, then using the fact that Si are two-sided ideals:

eiej ∈ Si ∩ Sj = {0} =⇒ eiej = 0

• hence:

ei = ei · 1 = ei

r∑
j=1

= e2i

In other words, {ei}i∈[1,r] forms a set of pairwise orthogonal idempotent elements of R.

We claim that this set is linearly independent. To this end, assume that:

∃λi ∈ k :

r∑
i=1

λiei = 0 ∈ R

Multiplying this expression by ej , and using the properties of each ei:

0 = ej

r∑
i=1

λiei = λjej

If ej = 0, then ∀a ∈ Sj , a = aej = 0 which contradicts the fact that the Sj are non-zero ideals. Hence, we
must have that

∀j ∈ [1, r], ej ̸= 0 =⇒ λ = 0

so the set is indeed linearly independent over k. In particular, a basis is a minimal linearly independent
spanning set, so:

r ≤ dim(Z(R))

as required.

4.3 Theorem: Dimension of Centre from Semisimple Ring Decomposition

Let A be a finite dimensional semisimple k-algebra, and suppose
that k is algebraically closed. Then:

r = dim(Z(A))

(Theorem 3.13)

Proof. Combine Proposition 3.9 and Lemma 3.11 ++ Proposition 3.12.

In other words, the number of isomorphism classes of simple modules over some semisimble k-algebra is
precisely the dimension fo the centre of A.

Page 8



5 Conjugacy Classes

5.1 Definition: Number of Conjugacy Classes of a Group

For a finite group G we denote with s(G) the number of conjugacy
classes of G.
(Definition 3.14)

5.2 Conjugacy Class Sums

5.2.1 Definition: Conjugacy Class Sums

Let G be a finite group with conjugacy classes:

C1, . . . , C2

Define the conjugacy class sum of Ci via:

Ĉi =
∑
x∈Ci

x ∈ kG

That is, Ĉi is the formal sum in kG containing all elements of the conju-
gacy class Ci.
(Proposition 3.15)

5.2.2 Proposition: Conjugacy Class Sums Define Basis for Centre of Group Ring

Let G be a finite group with conjugacy classes:

C1, . . . , C2

Then,
{Ĉ1, . . . , Ĉ2}

is a basis for Z(kG) as a vector space, and thus:

dim(Z(kG)) = s(G)

(Proposition 3.15)

Proof.

Page 9



5.2.3 Corollary: Conjugacy Classes and Simple Submodules

Let G be a finite group, with k an algebraically closed field and
|G| ≠ 0 in k. Then:

rk(G) = s(G)

(Corollary 3.16)

Proof. By repeatedly applying Maschke’s Theorem:

Let
ρ : G → GL(V )

be a representation, and let U be a G-stable subspace.
A G-stable complement for U in G is a G-stable subspace W such
that:

V = U ⊕W

where recall, this means that:

• U +W = V

• U ∩W = {0}
(Definition 1.19)

we see that we can write kG as a direct sum of simple subalgebras, and so, kG is semisimple. Then, by:

Let G be a finite group with conjugacy classes:

C1, . . . , C2

Then,
{Ĉ1, . . . , Ĉ2}

is a basis for Z(kG) as a vector space, and thus:

dim(Z(kG)) = s(G)

(Proposition 3.15)

we have that Z(kG) = s(G). Finally by:
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Let A be a finite dimensional semisimple k-algebra, and suppose
that k is algebraically closed. Then:

r = dim(Z(A))

(Theorem 3.13)

we have that rk(G) = s(G) as required.

5.3 Lemma: Decomposing Modules as Product of Rings

1. Each Bi is a ring with identity element ei

2. A is isomorphic to the product of rings (Bi, ei):

A ∼= B1 × . . . Br

3. Each Bi is itself a semisimple ring, with unique simple module Vi

(Lemma 3.17)

Proof.

1

By

Recall, A decomposes into left ideals:

A = B1 ⊕ . . .⊕Br

In fact, each Bi is a two-sided ideal of A.
(Lemma 3.11)

we can think of Bi as a subgroup of the additive group defining the ring A, and which is stable under
multiplication by elements of A (since Bi is a two-sided ideal). Hence, in particular, it is a subset of A which
is closed under addition and multiplication, and contains inverses. We are just missing the identity element.
In the proof of
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Let R be a k-algebra and suppose that for some non-zero, two-sided
ideals S1, . . . , Sr, we have that:

R = S1 ⊕ . . .⊕ Sr

Then,
dim(Z(R)) ≥ r

(Lemma 3.12)

we found an orthogonal idempotent basis for a k-algebra R via:

R ∋ 1 =

r∑
i=1

ei

We also saw that:
∀a ∈ A, aei = eia

and that aei corresponds to the Bi component of a along the decomposition:

A = B1 ⊕ . . .⊕Br

In particular, for any a ∈ Bi, we must have that:

aei = eia = a

which implies that ei must be the multiplicative identity element in Bi.

2

We can define the isomorphism via:

∀a ∈ A, a 7→ (ae1, . . . , aer) ∈ B1 × . . .×Br

3

We want to show that Li,j is a simple Bi module. To this end, suppose that U is a Bi-submodule of Li,ℓ.
Then, for some jneqi consider:

BjU ⊆ BjBi = (Bjej)(eiBi) = Bj(ejei)Bi = 0 =⇒ BjU = 0

where we’ve used the fact that ei forms an orthogonal set. Moreover, since U is aBi-submodule (as Li,j ⊆ Bi),
we have that:

BiU ≤ U

Thus:

AU =

 r⊕
j=1

Bj

U ≤ U

which implies that U is an A-submodule of Li,ℓ. But since Li,ℓ is simple by definition:

U = Li,ℓ or U = {0}

so Li,ℓ is indeed a simple Bi-module aswell, and thus, Bi is semisimple. In particular, since Li,j
∼= Vi, it

follows that Vi is the only simple Bi-module, up to isomorphism by:
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Let A be a semisimple ring. Then, A has only finitely many simple
A-modules, up to isomorphism.
(Proposition 2.14)

5.4 Proposition: Ring Isomorphism Between Left Modules and Matrices

Let B be a semisimple ring with exactly one simple module V , up to
isomorphism. Suppose that:

B ∼= V ⊕ . . .⊕ V︸ ︷︷ ︸
n times

is a left B-module, and let:

D = EndB(V )

Then there is a ring isomorphism:

B ∼= Mn(D
op)

(Proposition 3.18)

Proof. Firstly, notice that if we think of B as a B-module, it follows that:

BB ∼= V n

By part 3) of
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Let A be a ring. Then:

1. for each a ∈ A right multiplication by a defines an A-module
endomorphism:

ra :A A →A A

given by:
b 7→ ba

2. Every A-module endomorphism

ω :A A →A A

is of this form

3. The map:
Aop → EndA(AA)

given by:
a 7→ ra

is an isomorphism of rings

(Lemma 3.4)

we have that
B ∼= EndB(BB)op ∼= EndB(V

n)op ∼=Mn(D)op ∼=Mn(D
op)

(since the opposite is a self-inverse, and the endomorphisms of a vector space are isomorphic to the matrix
ring).

• How is this isomorphism defined?

– consider the isomorphism:

EndB(V
n) ∼=Mn(D) =Mn(EndB(V ))

– let φij be B-module endomorphisms of V , arranged as a n× n matrix

– then, thinking of the elements of V n as column vectors, we can map:

(φij) 7→



v1
...

vn

 7→ (φij)


v1
...

vn



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5.5 Artin-Weddernburn Theorem

5.5.1 Theorem: Artin-Weddernburn

Suppose that k is an algebraically closed field and that A is a finite
dimensional semisimple k-algebra.
Then there exist positive integers n1, . . . , nr and a k-algebra isomor-
phism:

A ∼= Mn1(k)× . . .×Mnr(k)

(Theorem 3.19)

Proof. By

1. Each Bi is a ring with identity element ei

2. A is isomorphic to the product of rings (Bi, ei):

A ∼= B1 × . . . Br

3. Each Bi is itself a semisimple ring, with unique simple module Vi

(Lemma 3.17)

we can decompose A intor a product of semisimple rings Bi, with unique simple module Vi (up to
isomorphism). Moreover, by

Let B be a semisimple ring with exactly one simple module V , up to
isomorphism. Suppose that:

B ∼= V ⊕ . . .⊕ V︸ ︷︷ ︸
n times

is a left B-module, and let:

D = EndB(V )

Then there is a ring isomorphism:

B ∼= Mn(D
op)

(Proposition 3.18)
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it follows that each Bi
∼=Mn(D

op) where D = EndBi(Vi) is a division ring. But by Schur’s Lemma:

Suppose k is algebraically closed. Let V be a simple module over a
finite dimensional k-algebra A.
Then, every A-module endomorphism of V is given by the action of
some scalar λ ∈ K, such that:

EndA(V ) = k1V

(Theorem 3.6)

we have that:
Dop ∼= k

so the result follows.

5.5.2 Corollary: Decomposing Group Ring

Suppose that k is algebraically closed.
Let G be a finite group such that |G| ≠ 0 in k, and let

V1, . . . , Vr

be a complete list of pairwise nonisomorphic simple kG-modules.
Then:

1. kG (as a kG-module) is such that:

kG ∼= V
dim(V1)
1 ⊕ . . .⊕ V dim(Vr)

r

2.

|G| =
r∑

i=1

dim(Vi)
2

(Corollary 3.20)

Proof. By the Corollary to Mascheke’s Theorem, since |G| isn’t 0 in k, kG is a semisimple module, so by the
Artin-Weddernburn Theorem above, there exists an isomorphism:

kG ∼=Mn1
(k)× . . .×Mnr

(k)

Now, by problem sheet 1, kn is a simple Mn(k) module:
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Let V = kn, and A = Mn(k). Let v ∈ V be any non-zero column vector,
and consider the A-submodule generated by v:

u = Av

Let e1, . . . , en denote the n standard basis vectors of V (such that (ei)j =
δij). Now, since v is non-zero, there is some component vj which is non-
zero. Thus, define matrices Aℓ ∈ Mn(k) via:

(Aℓ)ab = v−1
j δℓiδjb

Then, it follows that:
Aℓv = eℓ

In other words, all of the standard basis vectors of V are within the sub-
space U , which implies that U = V whenever U is generated by a single
non-zero vector in V .
For more general subspaces U ≤ V , if U is non-zero, it must contain at
least one non-zero vector vU , and so:

AvU ≤ U ∧ AvU = V =⇒ U = V

Hence, V is a simple A-module.

Moreover, Mn(k) is isomorphic to the direct sum of n of these modules:

Let Lℓ be the ideal generated by the set:

{Zℓb | b ∈ [1, n}

where Zℓb is an elementary matrix, with a 1 at entry ℓ, b and 0s elsewhere.
Notice, Lℓ contains all matrices which have at least one non-zero element
in their ℓth row, and 0s in every other row.
Each Lℓ is simple (since they are in 1-1 correspondence with the A-module
kn which is simple), and certainly:

A = L1 ⊕ . . .⊕ Ln

(since by definition
⋂

ℓ∈[1,n] Lℓ = {0} and any matrix in Mn(k) can be ex-

pressed as a sum of matrices who only contain entries in certain rows).

Thus, we have that ni = dim(Vi).

The second statement follows from the fact that |G| = dim(kG).
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