Introduction to Representation Theory - Week 2 - Representations
and Modules

Antonio Leén Villares

October 2023

Contents
1 Rings and Modules 3
1.1 Definition: Ring . . . . . . . . . 3
1.2 Definition: Module . . . . . . . . L 3
1.3 Group Rings . . . . . . . e 4
1.3.1 Definition: Group Ring . . . . . . . . .. L e 4
2 Representations as Modules (and Viceversa) 5
2.1 Proposition: Bijection Between Representations and Modules . . . . . . ... ... ... ... 5
2.2 Useful Module Theorems . . . . . . . . . . . . . e e 5
2.2.1 Theorem: First Isomorphism Theorem . . . . . . . . ... ... ... ... ....... 5
2.2.2  Theorem: Second Isomorphism Theorem . . . . . . . ... .. ... ... ... ..... 6
2.2.3 Theorem: Third Isomorphism Theorem . . . . ... ... ... .. ... ........ 6
2.2.4 Theorem: Correspondence Theorem . . . . . . . .. ... ... ... .. ........ 6
2.3 Properties in Representations Apply in Modules . . . . . . ... .. ... ... ... .. 6
2.3.1 Definition: Irreducible/Simple Modules . . . . . . . ... ... ... L. 6
2.3.2  Definition: kG-Linear Maps . . . . . . . . . . . L 6
2.3.3 Definition: Completely Reducible Modules . . . . . . .. ... ... ... ... ..... 7
3 Free Modules 7
3.1 Definition: Free A-Modules . . . . . . . . . .. 7
3.1.1 Exercise: Simple Free A-Modules . . . . . . . . .. ... 7
3.2 Definition: Left Ideals . . . . . . . . . . e 8
3.3 Definition: Left Regular Representations . . . . . . . . . . .. .. .. ... ... .. ...... 8
3.4 Definition: Semisimple Rings . . . . . . . . . o 8
3.4.1 Examples: Semisimple Rings . . . . . . .. .. . oo 8
4 Cyclicity in Modules 9
4.1 Definition: Cyclic Modules . . . . . . . . . .. 9
4.2 Definition: Annihilators . . . . . . ... 9
4.2.1 Proposition: Simple Modules are Cyclic . . . . .. .. ... ... .. ... ... . 9
5 Isomorphisms in Modules 9
5.1 Lemma: Isomorphism Between Cyclic Modules and Annihilator Quotients . . . . . . . . ... 9
5.2 Lemma: Isomorphic Linear Maps in Simple Modules . . . . . . .. ... .. ... ... .... 10
5.3 Proposition: Simple Modules for Semisimple Rings . . . . . . . .. ... ... ... ...... 10
5.4 Theorem: Irreducible Representations of Finite Groups . . . . . . . . . . ... ... ... ... 11



6 Schur’s Lemma 12

6.1 Building Definitions . . . . . . .. .o 12
6.1.1 Definition: Number of Isomorphism Classes . . . . . . . .. ... . ... ... ..... 12
6.1.2 Definition: Centre of Rings . . . . . . . . . . . .. L 13
6.1.3 Definition: Endomorphism Ring of Module . . . . ... ... ... ... ... ..... 13
6.1.4 Remark: Central Elements Give Endomorphisms . . . . . .. ... ... ... ..... 13
6.1.5 Definition: Opposite Ring . . . . . . . . . . . ... 14
6.1.6 Definition: k-Algebra. . . . . . . . .. L e 14

6.2 Lemma: Module Endomorphisms . . . . . . . . .. ... 15

6.3 Theorem: Schur’s Lemma . . . . . . . .. ... 15

Page 2



Based on the notes by Konstantin Ardakov, Section 2

1 Rings and Modules

1.1 Definition: Ring

A ring (R, +, ) consists of an abelian group (R, +), alongside an as-
sociative multiplication operation:

-:RxR— R

which satisfies distributivity:

a-(b+c)=a-b+a-c
(a+b)-c=a-c+b-c

and contains an identity element 1g:

lpra=a=a-1g

(Definition 2.1)

1.2 Definition: Module

Let R be a ring.
An R-Module (M, -) consists of an abelian group (M, +) alongside a
left R-action (i.e scalar multiplication):

- RxM— M

which satisfies:

r-(m+n)=(r-m)+(r-n)

(r-s)-m=r-(s-m)

lg-m=m
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1.3 Group Rings

Before, for some set X and field k, we defined kX as the free vector space on X. Now, we define a similar
concept, but with the underlying set being a group. This helps define a Ting from a group.

1.3.1 Definition: Group Ring

Let G be a finite group. The group ring of G is the vector space kG
(where k is a field).

Ring addition (and scalar multiplication by elements of k) are formally
defined. Multiplication in the ring is defined by:

Zaxa; : Zamx :Z Z(ambx_lg g

zeCG zeG geG \zeG

(Definition 2.2)

e How is a group G embedded within k£G?

— any g € G has a natural embedding within kG (it is a linear combination of g with scalar multiple
1)

— @ itself is a subgroup of the group of units kG*
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2 Representations as Modules (and Viceversa)

2.1 Proposition: Bijection Between Representations and Modules

Let' V' be a vector space and G be a group.

1
p:G— GL(V)

is a representation, then V is a left kG-module, where left
multiplication of kG on elements of V' is given by:

Va, € k,v eV, (Z axx> v = Zaxpx(v)
zeG zeG

where p, == p(x)
2. If V 1s a left kG-module, there is a representation
p:G— GL(V)

defined by:
VgeGveV, pyv)=g-v

3. 1) & 2) define a bijection between representations
p: G — GL(V) and left multiplication in kG-modules kG x V — V

2.2 Useful Module Theorems

The bijection above gives us that we can think about G-representations and kG-modules interchangeably. In
particular, theorems from modules translate to theorems for representations.

2.2.1 Theorem: First Isomorphism Theorem

Let
p: VW

be a kG-module homomorphism. Then:

im(p) = V/ker(y)
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2.2.2 Theorem: Second Isomorphism Theorem

Suppose U W <V are kG-submodules. Then:
U+W)/U=W/ (UnW)

2.2.3 Theorem: Third Isomorphism Theorem

IfU < W <V are kG-submodules, then:

W7k

WU =V/W

2.2.4 Theorem: Correspondence Theorem

Let W <V be kG-modules. Then, there is a canonical bijection:
{submodules U <V containing W} — {submodules of V/W'}

given by:
U—U/W

2.3 Properties in Representations Apply in Modules

2.3.1 Definition: Irreducible/Simple Modules

An A-module M is irreducible/simple if M # {0} and if N < M is
an A-submodule:

.« N= {0}
e or N=M

2.3.2 Definition: kG-Linear Maps

A kG-linear map is a homomorphism of representations.

Recall:
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Consider 2 representations:
p:G— GL(V) o:G— GL(W)
A homomorphism or intertwining operator is a linear map:
p: VW

such that:
Vg € G, a(g) op =op(g)

If ¢ is bijective, then it is an isomorphism.
(Definition 1.12)

2.3.3 Definition: Completely Reducible Modules

An A-module M is completely reducible if either:
. M={0)

o M is a direct sum of finitely many stmple submodules:

M=N&...6 Ny,

3 Free Modules

3.1 Definition: Free A-Modules

Let A be a ring.

The free A-module of rank 1, denote oA, is the abelian group A
equipped with left multiplication by A:

Va,be A, a-b=ab
(Example 2.7)

3.1.1 Exercise: Simple Free A-Modules

1. Show that 4A is a simple module if and only if A is a division ring (that is, if A is a ring
in which ever element has a multiplicative inverse).
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3.2 Definition: Left Ideals

Let 4 A be the free A-module. An A-submodule of 4 A is a left ideal.

3.3 Definition: Left Regular Representations

Let A = kG be the free group. The representation
p:G— GL(kG)

(which corresponds to the free kG-module of rank 1) is called the left

regular representation.
(Definition 2.8)

3.4 Definition: Semisimple Rings

Let A be a ring. A is semisimple if 4 A is completely reducible.

That is, if 4A “factors” as a direct sum of simple submodules.

(Definition 2.9)

3.4.1 Examples: Semisimple Rings
e if k is a field, k is semisimple
e if A is a division ring, A is semisimple

e if G is a finite group with |G| # 0 in k, the group ring kG is semisimple (this is a corollary of
Maschke’s Theorem)

— in particular, Maschke’s Theorem translated to kG states that if M is a two-sided, simple ideal,
then there exists some other two-sided, simple ideal N such that:

kG=M@N

— translated to the language of modules, if kG (as a free module) has a simple kG-submodule M,
then there exists some other simple kG-submodule N such that:

kG=M®&N

— that is, kG is semisimple
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4 Cyclicity in Modules

4.1 Definition: Cyclic Modules

LetV be an A-module. V is cyclic if it is generated by a single element
veV:
V={a-v|aec A} =Av

(Definition 2.11)

4.2 Definition: Annihilators

LetV be an A-module. The annthilator of v € V is the submodule:
anny(v) = {a € A| av =0}
(Definition 2.11)

4.2.1 Proposition: Simple Modules are Cyclic

Every stmple module is cyclic.

Proof. Let M be an A-module. If A is simple, then any submodule B is either {0} or N = M. For any
m € M, Am is a submodule of M, so either Am = {0} or Am = M. If its the latter, we are done. It can
never be the former, since 14 € A — m € Am. O

5 Isomorphisms in Modules

5.1 Lemma: Isomorphism Between Cyclic Modules and Annihilator Quotients

LetV be a cyclic A-module, such that forv eV, Av =V . Then:
Av = A/ anny(v)
(Lemma 2.12)
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Proof. Define an A-module homomorphism:
p: A=V

via:
ar>a-v

@ is surjective, as V is cyclic. Moreover, by definition:

ker(¢) = anna(v)
Thus, by the Frist Isomorphism Theorem for Modules:

Av = A/ ann g (v)

5.2 Lemma: Isomorphic Linear Maps in Simple Modules

Let V. W be simple A-modules. Then, every non-zero, A-linear
map
p: VW

s an tsomorphism.
(Lemma 2.13)

Proof. By properties of modules:
ker(p) <V im(p) <W

© is non-zero, so Jv € V' : ¢(v) # 0, so in particular:
ker(p) <V

For the same reason, im(¢) # {0}. But now, by assumption V, W are simple, which forces:

ker(p) = {0} im(p) =W

Thus, ¢ is injective and surjective, and thus defines a module isomorphism.

5.3 Proposition: Simple Modules for Semisimple Rings

Let A be a semisimple ring. Then, A has only finitely many simple

A-modules, up to isomorphism.
(Proposition 2.14)
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Proof. Since A is semisimple, it can be decomposed into simple A-submodules V; < A:
AA=Vie...eV,
Now, let V be any (simple) A-module, and pick some non-zero v € V.

Define an A-module map:

p: A=V
via:
a—a-v
Further define:
i Vi—=>V

as @ restricted to V;. Notice, since V;,V are simple, by

Let V. W be simple A-modules. Then, every non-zero, A-linear
map
p: VW

18 an tsomorphism.
(Lemma 2.13)

it follows that, if at least one ; is non-zero, then V will be isomorphic to at least one of the V;.
Thus, assume for contradiction that Vi, ; = 0. In particular, if a € A, then we can decompose it as:
a=ay+...+an

where a; € V;. Moreover:
pla) = p1(ar1) +... +¢r(a,) =0

which implies that ¢ is the 0 map. But this is impossible, since:

(la) =v#0
by assumption. Hence, at least one of the ¢; is non-zero, and so, any A-module V which is simple is
isomorphic to one of the simple submodules Vi, ..., V.

O

5.4 Theorem: Irreducible Representations of Finite Groups

Let G be a finite group, such that |G| # 0in k. Then, G has only

finitely many irreducible representations ,up to isomorphism.
(Theorem 2.15)
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Proof. By Maschke’s Theorem, kG always has some irreducible G-stable complement, so kG is semisimple
(as |G| # 0). By the Proposition above:

Let A be a semisimple ring. Then, A has only finitely many simple

A-modules, up to isomorphism.
(Proposition 2.14)

kG has finitely many simple modules up to isomorphism, and by:

Let' V' be a vector space and G be a group.

1 If
p:G— GL(V)

is a representation, then V is a left kG-module, where left
multiplication of kG on elements of V' is given by:

VYa, € k,v eV, (Z ax:v> = Zaxpx(v)

z€G zeq
where p, == p(x)
2. If V 1s a left kG-module, there is a representation
p:G— GL(V)

defined by:
VgeGiveV, ps(v)=g-v

3. 1) & 2) define a bijection between representations
p: G — GL(V) and left multiplication in kG-modules kG x V — V

there is a bijective mapping between kG-modules and representations of G.

6 Schur’s Lemma

6.1 Building Definitions

6.1.1 Definition: Number of Isomorphism Classes

For finite groups G, r,(G) denotes the number of isomorphism classes

of irreducible k-representations of G.
(Definition 2.16)
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6.1.2 Definition: Centre of Rings

Let A be a ring. Its centre is a commutative unital subring of A,
defined by:
Z(A)={z€ A|Va€ A az = za}

(Definition 3.1)

6.1.3 Definition: Endomorphism Ring of Module

Let A be a ring, and V' an A-module.
The endomorphism ring of V, denoted End 4(V'), is the ring consisting
of A-module endomorphisms

p: V>V
where:
e ring addition is pointwise addition of homomorphisms

e ring multiplication is composition

6.1.4 Remark: Central Elements Give Endomorphisms

Take any z € Z(A), and define an endomorphism:
zv V=V
va:
Vi zev
We can check that zy s indeed an endomorphism:
zy(a-v)=z-(a-v)

(za) - v
(az)-v

=a-zy(v)
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6.1.5 Definition: Opposite Ring

Let A be a ring. The opposite ring to A (denoted A°?) has the same
underlying abelian group as A, but it has a new multiplication:

axb=0>b-a

(Definition 3.3)

6.1.6 Definition: k-Algebra

We say that A is a k-algebra if it contains k as a central subfield.
Moreover, k-linear ring homomorphisms are homomorphisms of
k-algebras.

If A is a semisimple ring, we say that A is a semisimple k-algebra.
(Definition 3.5)

e Is it possible to have a commutative subfield which isn’t central?

— consider the quaternions H (which are a non-commutative division ring)
— the complex numbers C are a subfield of H
— however, they aren’t central (since H itself isn’t commutative

— thus, H is not a C-algebra
— in other words: non-commutative division rings can contain subfields which aren’t central, so
centrality is key int he definition
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6.2 Lemma: Module Endomorphisms

Let A be a ring. Then:

1. for each a € A right multiplication by a defines an A-module

endomorphism:
Ta ‘A A — A A
given by:
b+ ba

2. Every A-module endomorphism

W A A — A A
is of this form
3. The map:
AP — EHdA(AA>
given by:
av> T,
s an tsomorphism of rings

(Lemma 3.4)

6.3 Theorem: Schur’s Lemma

Suppose k is algebraically closed. LetV be a stimple module over a

finite dimensional k-algebra A.

Then, every A-module endomorphism of V is given by the action of

some scalar A\ € K, such that:

EIldA(V> = ]{31\/
(Theorem 3.6)

Proof. By
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Let V be a cyclic A-module, such that forv € V., Av = V. Then:
Av = A/ anny(v)
(Lemma 2.12)

since V' is simple it is isomorphic to a quotient module of A, so in particular V is also a finite dimensional
k-vector space.

Let ¢ : V — V be an A-module endomorphism. Then, ¢ has at least one eigenvalue A € k (by algebraic
closure of k, the roots of the characteristic polynomial lie in k).

Now, consider the mapping:
p—Aly V>V

This has non-zero kernel (if v is the eigenvector associated with A, then v € ker(p — Aly)), so it can’t be
injective, and thus, isn’t an isomorphism. Hence, by the contrapositive of:

Let V. W be simple A-modules. Then, every non-zero, A-linear
map
p: VW

1 an tsomorphism.
(Lemma 2.13)

since ¢ — Aly is not an isomorphism ,it must be the zero map, which implies that:
o= Ay

as required.

Page 16



	Rings and Modules
	Definition: Ring
	Definition: Module
	Group Rings
	Definition: Group Ring


	Representations as Modules (and Viceversa)
	Proposition: Bijection Between Representations and Modules
	Useful Module Theorems
	Theorem: First Isomorphism Theorem
	Theorem: Second Isomorphism Theorem
	Theorem: Third Isomorphism Theorem
	Theorem: Correspondence Theorem

	Properties in Representations Apply in Modules
	Definition: Irreducible/Simple Modules
	Definition: kG-Linear Maps
	Definition: Completely Reducible Modules


	Free Modules
	Definition: Free A-Modules
	Exercise: Simple Free A-Modules

	Definition: Left Ideals
	Definition: Left Regular Representations
	Definition: Semisimple Rings
	Examples: Semisimple Rings


	Cyclicity in Modules
	Definition: Cyclic Modules
	Definition: Annihilators
	Proposition: Simple Modules are Cyclic


	Isomorphisms in Modules
	Lemma: Isomorphism Between Cyclic Modules and Annihilator Quotients
	Lemma: Isomorphic Linear Maps in Simple Modules
	Proposition: Simple Modules for Semisimple Rings
	Theorem: Irreducible Representations of Finite Groups

	Schur's Lemma
	Building Definitions
	Definition: Number of Isomorphism Classes
	Definition: Centre of Rings
	Definition: Endomorphism Ring of Module
	Remark: Central Elements Give Endomorphisms
	Definition: Opposite Ring
	Definition: k-Algebra

	Lemma: Module Endomorphisms
	Theorem: Schur's Lemma


