Introduction to Representation Theory - Week 2 - Representations and Modules

Antonio León Villares

October 2023

Contents

1	Rin	ngs and Modules				
	1.1	Definition: Ring				
	1.2	Definition: Module				
	1.3	Group Rings				
		1.3.1 Definition: Group Ring				
2	Representations as Modules (and Viceversa)					
	2.1	Proposition: Bijection Between Representations and Modules				
	2.2	Useful Module Theorems				
		2.2.1 Theorem: First Isomorphism Theorem				
		2.2.2 Theorem: Second Isomorphism Theorem				
		2.2.3 Theorem: Third Isomorphism Theorem				
		2.2.4 Theorem: Correspondence Theorem				
	2.3	Properties in Representations Apply in Modules				
		2.3.1 Definition: Irreducible/Simple Modules				
		2.3.2 Definition: kG -Linear Maps				
		2.3.3 Definition: Completely Reducible Modules				
3	Free Modules					
	3.1	Definition: Free A-Modules				
		3.1.1 Exercise: Simple Free A-Modules				
	3.2	Definition: Left Ideals				
	3.3	Definition: Left Regular Representations				
	3.4	Definition: Semisimple Rings				
	_	3.4.1 Examples: Semisimple Rings				
		r a r a r a r a r a r a r a r a r a r a				
4	$\mathbf{C}\mathbf{y}$	clicity in Modules				
	4.1	Definition: Cyclic Modules				
	4.2	Definition: Annihilators				
		4.2.1 Proposition: Simple Modules are Cyclic				
5	Isoı	morphisms in Modules				
	5.1	Lemma: Isomorphism Between Cyclic Modules and Annihilator Quotients				
	5.2	Lemma: Isomorphic Linear Maps in Simple Modules				
	5.3	Proposition: Simple Modules for Semisimple Rings				
	5.4					

6	Sch	chur's Lemma				
	6.1	Building Definitions				
		6.1.1	Definition: Number of Isomorphism Classes	12		
		6.1.2	Definition: Centre of Rings	13		
		6.1.3	Definition: Endomorphism Ring of Module	13		
		6.1.4	Remark: Central Elements Give Endomorphisms	13		
		6.1.5	Definition: Opposite Ring	14		
		6.1.6	Definition: k-Algebra	14		
	6.2	Lemm	a: Module Endomorphisms	15		
	6.3	Theore	em: Schur's Lemma	15		

1 Rings and Modules

1.1 Definition: Ring

A $ring(R, +, \cdot)$ consists of an **abelian group** (R, +), alongside an **associative multiplication** operation:

$$\cdot: R \times R \to R$$

which satisfies distributivity:

•

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

•

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

and contains an identity element 1_R :

$$1_R \cdot a = a = a \cdot 1_R$$

(Definition 2.1)

1.2 Definition: Module

Let R be a **ring**.

An R-Module (M, \cdot) consists of an abelian group (M, +) alongside a left R-action (i.e scalar multiplication):

$$\cdot: R \times M \to M$$

which satisfies:

•

$$r\cdot (m+n) = (r\cdot m) + (r\cdot n)$$

•

$$(r \cdot s) \cdot m = r \cdot (s \cdot m)$$

•

$$1_R \cdot m = m$$

1.3 Group Rings

Before, for some set X and field k, we defined kX as the free vector space on X. Now, we define a similar concept, but with the underlying set being a group. This helps define a ring from a group.

1.3.1 Definition: Group Ring

Let G be a finite group. The group ring of G is the vector space kG (where k is a field).

Ring addition (and scalar multiplication by elements of k) are formally defined. Multiplication in the ring is defined by:

$$\left(\sum_{x \in G} a_x x\right) \cdot \left(\sum_{x \in G} a_x x\right) = \sum_{g \in G} \left(\sum_{x \in G} (a_x b_{x^{-1}g})\right) g$$

(Definition 2.2)

• How is a group G embedded within kG?

- any $g \in G$ has a natural embedding within kG (it is a linear combination of g with scalar multiple 1)
- G itself is a **subgroup** of the group of units kG^{\times}

2 Representations as Modules (and Viceversa)

2.1 Proposition: Bijection Between Representations and Modules

Let V be a vector space and G be a group.

1. If

$$\rho: G \to GL(V)$$

is a **representation**, then V is a **left** kG-module, where left multiplication of kG on elements of V is given by:

$$\forall a_x \in k, v \in V, \quad \left(\sum_{x \in G} a_x x\right) \cdot v = \sum_{x \in G} a_x \rho_x(v)$$

where $\rho_x := \rho(x)$

2. If V is a **left** kG**-module**, there is a representation

$$\rho: G \to GL(V)$$

defined by:

$$\forall g \in G, v \in V, \quad \rho_g(v) = g \cdot v$$

3. 1) & 2) define a **bijection** between **representations** $\rho: G \to GL(V)$ and left multiplication in kG-modules $kG \times V \to V$

2.2 Useful Module Theorems

The bijection above gives us that we can think about G-representations and kG-modules interchangeably. In particular, theorems from modules translate to theorems for representations.

2.2.1 Theorem: First Isomorphism Theorem

Let

$$\varphi: V \to W$$

be a kG-module homomorphism. Then:

$$\operatorname{im}(\varphi) \cong V/\ker(\varphi)$$

2.2.2 Theorem: Second Isomorphism Theorem

Suppose $U, W \leq V$ are kG-submodules. Then:

$$(U+W)/U \cong W/(U\cap W)$$

2.2.3 Theorem: Third Isomorphism Theorem

If $U \le W \le V$ are kG-submodules, then:

$$\frac{V/U}{W/U}\cong V/W$$

2.2.4 Theorem: Correspondence Theorem

Let $W \leq V$ be kG-modules. Then, there is a canonical bijection:

 $\{submodules\ U \leq V\ containing\ W\} \rightarrow \{submodules\ of\ V/W\}$

given by:

$$U \mapsto U/W$$

- 2.3 Properties in Representations Apply in Modules
- 2.3.1 Definition: Irreducible/Simple Modules

An A-module M is irreducible/simple if $M \neq \{0\}$ and if $N \leq M$ is an A-submodule:

- $N = \{0\}$
- or N = M
- 2.3.2 Definition: kG-Linear Maps

A kG-linear map is a homomorphism of representations.

Recall:

Consider 2 representations:

$$\rho: G \to GL(V)$$
 $\sigma: G \to GL(W)$

A homomorphism or intertwining operator is a linear map:

$$\varphi:V\to W$$

such that:

$$\forall g \in G, \ \sigma(g) \circ \varphi = \varphi \circ \rho(g)$$

If φ is **bijective**, then it is an isomorphism. (Definition 1.12)

2.3.3 Definition: Completely Reducible Modules

An A-module M is completely reducible if either:

- $M = \{0\}$
- M is a direct sum of finitely many simple submodules:

$$M = N_1 \oplus \ldots \oplus N_m$$

3 Free Modules

3.1 Definition: Free A-Modules

Let A be a ring.

The free A-module of rank 1, denote ${}_{A}A$, is the abelian group A equipped with left multiplication by A:

$$\forall a, b \in A, \quad a \cdot b = ab$$

(Example 2.7)

3.1.1 Exercise: Simple Free A-Modules

1. Show that ${}_{A}A$ is a simple module *if and only if* A is a division ring (that is, if A is a ring in which ever element has a multiplicative inverse).

3.2 Definition: Left Ideals

Let AA be the free A-module. An A-submodule of AA is a left ideal.

3.3 Definition: Left Regular Representations

Let A = kG be the **free group**. The **representation**

$$\rho: G \to GL(kG)$$

(which corresponds to the **free** kG**-module of rank 1**) is called the **left** regular representation.
(Definition 2.8)

3.4 Definition: Semisimple Rings

Let A be a ring. A is semisimple if AA is completely reducible.

That is, if ${}_{A}A$ "factors" as a direct sum of **simple** submodules. (Definition 2.9)

3.4.1 Examples: Semisimple Rings

- if k is a field, k is semisimple
- \bullet if A is a division ring, A is semisimple
- if G is a finite group with $|G| \neq 0$ in k, the group ring kG is semisimple (this is a corollary of Maschke's Theorem)
 - in particular, Maschke's Theorem translated to kG states that if M is a two-sided, simple ideal, then there exists some other two-sided, simple ideal N such that:

$$kG=M\oplus N$$

- translated to the language of modules, if kG (as a free module) has a simple kG-submodule M, then there exists some other simple kG-submodule N such that:

$$kG=M\oplus N$$

- that is, kG is **semisimple**

4 Cyclicity in Modules

4.1 Definition: Cyclic Modules

Let V be an A-module. V is cyclic if it is generated by a single element $v \in V$:

$$V = \{a \cdot v \mid a \in A\} = Av$$

(Definition 2.11)

4.2 Definition: Annihilators

Let V be an A-module. The annihilator of $v \in V$ is the submodule:

$$\operatorname{ann}_A(v) = \{ a \in A \mid av = 0 \}$$

(Definition 2.11)

4.2.1 Proposition: Simple Modules are Cyclic

Every simple module is cyclic.

Proof. Let M be an A-module. If A is simple, then any submodule B is either $\{0\}$ or N=M. For any $m \in M$, Am is a submodule of M, so either $Am = \{0\}$ or Am = M. If its the latter, we are done. It can never be the former, since $1_A \in A \implies m \in Am$.

5 Isomorphisms in Modules

5.1 Lemma: Isomorphism Between Cyclic Modules and Annihilator Quotients

Let V be a cyclic A-module, such that for $v \in V$, Av = V. Then:

$$Av \cong A/\operatorname{ann}_A(v)$$

(Lemma 2.12)

Proof. Define an A-module homomorphism:

$$\varphi:A\to V$$

via:

$$a\mapsto a\cdot v$$

 φ is surjective, as V is cyclic. Moreover, by definition:

$$\ker(\varphi) = \operatorname{ann}_A(v)$$

Thus, by the Frist Isomorphism Theorem for Modules:

$$Av \cong A/\operatorname{ann}_A(v)$$

5.2 Lemma: Isomorphic Linear Maps in Simple Modules

Let V, W be simple A-modules. Then, every non-zero, A-linear map

$$\varphi:V\to W$$

is an **isomorphism**. (Lemma 2.13)

 ${\it Proof.}$ By properties of modules:

$$\ker(\varphi) \le V \qquad \operatorname{im}(\varphi) \le W$$

 φ is non-zero, so $\exists v \in V : \varphi(v) \neq 0$, so in particular:

$$\ker(\varphi) < V$$

For the same reason, $\operatorname{im}(\varphi) \neq \{0\}$. But now, by assumption V, W are simple, which forces:

$$\ker(\varphi) = \{0\} \qquad \operatorname{im}(\varphi) = W$$

Thus, φ is injective and surjective, and thus defines a module isomorphism.

5.3 Proposition: Simple Modules for Semisimple Rings

Let A be a **semisimple ring**. Then, A has only **finitely** many **simple** A-modules, up to **isomorphism**. (Proposition 2.14)

Proof. Since A is semisimple, it can be decomposed into simple A-submodules $V_i \leq A$:

$$_{A}A = V_{1} \oplus \ldots \oplus V_{r}$$

Now, let V be any (simple) A-module, and pick some non-zero $v \in V$.

Define an A-module map:

$$\varphi:A\to V$$

via:

$$a\mapsto a\cdot v$$

Further define:

$$\varphi_i: V_i \to V$$

as φ restricted to V_i . Notice, since V_i , V are simple, by

Let V, W be simple A-modules. Then, every non-zero, A-linear map

$$\varphi:V\to W$$

is an **isomorphism**. (Lemma 2.13)

it follows that, if at least one φ_i is non-zero, then V will be isomorphic to at least one of the V_i .

Thus, assume for contradiction that $\forall i, \varphi_i = 0$. In particular, if $a \in A$, then we can decompose it as:

$$a = a_1 + \ldots + a_m$$

where $a_i \in V_i$. Moreover:

$$\varphi(a) = \varphi_1(a_1) + \ldots + \varphi_r(a_r) = 0$$

which implies that φ is the 0 map. But this is impossible, since:

$$\varphi(1_A) = v \neq 0$$

by assumption. Hence, at least one of the φ_i is non-zero, and so, any A-module V which is simple is isomorphic to one of the simple submodules V_1, \ldots, V_r .

5.4 Theorem: Irreducible Representations of Finite Groups

Let G be a **finite group**, such that $|G| \neq 0$ in k. Then, G has only **finitely** many **irreducible representations**, up to isomorphism. (Theorem 2.15)

Proof. By Maschke's Theorem, kG always has some irreducible G-stable complement, so kG is semisimple (as $|G| \neq 0$). By the Proposition above:

Let A be a **semisimple ring**. Then, A has only **finitely** many **simple** A**-modules**, up to **isomorphism**. (Proposition 2.14)

kG has finitely many simple modules up to isomorphism, and by:

Let V be a vector space and G be a group.

1. If

$$\rho: G \to GL(V)$$

is a **representation**, then V is a **left** kG-module, where left multiplication of kG on elements of V is given by:

$$\forall a_x \in k, v \in V, \quad \left(\sum_{x \in G} a_x x\right) \cdot v = \sum_{x \in G} a_x \rho_x(v)$$

where $\rho_x := \rho(x)$

2. If V is a **left** kG-module, there is a representation

$$\rho: G \to GL(V)$$

defined by:

$$\forall g \in G, v \in V, \quad \rho_q(v) = g \cdot v$$

3. 1) & 2) define a **bijection** between **representations** $\rho: G \to GL(V)$ and left multiplication in kG-modules $kG \times V \to V$

there is a bijective mapping between kG-modules and representations of G.

6 Schur's Lemma

6.1 Building Definitions

6.1.1 Definition: Number of Isomorphism Classes

For finite groups G, $r_k(G)$ denotes the number of **isomorphism classes** of **irreducible** k-representations of G. (Definition 2.16)

6.1.2 Definition: Centre of Rings

Let A be a **ring**. Its **centre** is a **commutative unital subring** of A, defined by:

$$Z(A) = \{ z \in A \mid \forall a \in A, az = za \}$$

(Definition 3.1)

6.1.3 Definition: Endomorphism Ring of Module

Let A be a ring, and V an A-module.

The endomorphism ring of V, denoted $\operatorname{End}_A(V)$, is the ring consisting of A-module endomorphisms

$$\varphi:V\to V$$

where:

- ring addition is pointwise addition of homomorphisms
- ring multiplication is composition

6.1.4 Remark: Central Elements Give Endomorphisms

Take any $z \in Z(A)$, and define an **endomorphism**:

$$z_V:V\to V$$

via:

$$v\mapsto z\cdot v$$

We can check that z_V is indeed an **endomorphism**:

$$z_V(a \cdot v) = z \cdot (a \cdot v)$$

$$= (za) \cdot v$$

$$= (az) \cdot v$$

$$= a \cdot z_V(v)$$

6.1.5 Definition: Opposite Ring

Let A be a ring. The opposite ring to A (denoted A^{op}) has the same underlying abelian group as A, but it has a new multiplication:

$$a * b = b \cdot a$$

(Definition 3.3)

6.1.6 Definition: k-Algebra

We say that A is a k-algebra if it contains k as a **central subfield**. Moreover, k-linear ring homomorphisms are homomorphisms of k-algebras.

If A is a **semisimple ring**, we say that A is a **semisimple** k-algebra. (Definition 3.5)

• Is it possible to have a commutative subfield which isn't central?

- consider the **quaternions** \mathbb{H} (which are a non-commutative division ring)
- the complex numbers $\mathbb C$ are a subfield of $\mathbb H$
- however, they aren't central (since ℍ itself isn't commutative
- thus, \mathbb{H} is **not** a \mathbb{C} -algebra
- in other words: non-commutative division rings can contain subfields which aren't central, so **centrality** is key int he definition

6.2 Lemma: Module Endomorphisms

Let A be a **ring**. Then:

1. for each $a \in A$ right multiplication by a defines an A-module endomorphism:

$$r_a:_A A \to_A A$$

given by:

$$b \mapsto ba$$

2. Every A-module endomorphism

$$\omega:_A A \to_A A$$

is of this form

3. The map:

$$A^{op} \to \operatorname{End}_A({}_AA)$$

given by:

$$a \mapsto r_a$$

is an **isomorphism** of rings

(Lemma 3.4)

6.3 Theorem: Schur's Lemma

Suppose k is algebraically closed. Let V be a simple module over a finite dimensional k-algebra A.

Then, every A-module endomorphism of V is given by the action of some scalar $\lambda \in K$, such that:

$$\operatorname{End}_A(V) = k1_V$$

(Theorem 3.6)

Proof. By

Let V be a cyclic A-module, such that for $v \in V$, Av = V. Then:

$$Av \cong A/\operatorname{ann}_A(v)$$

(Lemma 2.12)

since V is simple it is isomorphic to a quotient module of A, so in particular V is also a finite dimensional k-vector space.

Let $\varphi: V \to V$ be an A-module endomorphism. Then, φ has at least one eigenvalue $\lambda \in k$ (by algebraic closure of k, the roots of the characteristic polynomial lie in k).

Now, consider the mapping:

$$\varphi - \lambda 1_V : V \to V$$

This has non-zero kernel (if v is the eigenvector associated with λ , then $v \in \ker(\varphi - \lambda 1_V)$), so it can't be injective, and thus, isn't an isomorphism. Hence, by the contrapositive of:

Let V, W be simple A-modules. Then, every non-zero, A-linear map

$$\varphi:V\to W$$

is an **isomorphism**. (Lemma 2.13)

since $\varphi - \lambda 1_V$ is not an isomorphism it must be the zero map, which implies that:

$$\varphi = \lambda 1_V$$

as required.