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Based on the notes by Konstantin Ardakov, Section 1

1 Introduction to Representations

1.1 Definition: General Linear Group of Vector Space

Let V be a vector space over a field k. The general linear group of V
is the group of automorphisms of V :

GL(V ) = {φ : V → V | φ is an invertible k-linear map}

(Notation 1.1)

1.2 Definition: Finite Group Representations

Let G be a finite group with V a finite dimensional vector space over
k.
A representation of G on V is a group homomorphism:

ρ : G → GL(V )

The degree of ρ is dim(V ).
(Definition 1.2)

1.3 Definition: Trivial Representation

The trivial representation of a group G on V is the identity auto-
morphism:

1 : G → GL(V )

whereby:
∀g ∈ G,∀v ∈ V, 1(g)(v) = v

(Definition 1.16)

1.4 Examples of Representations

1.4.1 Representations from Geometry

• let G = {e, g} = ⟨g⟩ act on V = k via negation, such that ρ(e) = 1, ρ(g) = −1. This yields a
representation of order 1.

• let G = D3 = {e, g, g2, h, gh, g2h} and let k = R. G acts on V = R2 as the symmetries of a triangle;
this induces a representation

ρ : D3 → GL(R2)
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where:

– ρ(g) is a rotation by
2π

3
about the origin

– ρ(h) is a reflection in the y-axis

• for a regular n-gon, ρ : Dn → GL(R2) is a degree 2 representation

• let X ⊂ R3 be the set of vertices of a cube centered at the origin. Let:

G = StabSO3(R)(X)

(so G contains all 3-dimensional rotations about the origin which map the cube to itself). It can be
shown that G ∼= S4, which induces a representation:

ρ : S4 → GL(R3)

of degree 3.

1.4.2 Permutation Representations of Sets

1.4.2.1 Definition: Free Vector Space on a Set

Let X be a finite set. The free vector sapce on X is a vector space
with basis X, and whose underlying set is:

kX =

{∑
x∈X

axx |ax ∈ k

}

(here this is just a formal linear combination; as such, the sum is just
notation, and addition may not even be defined amongst elements of X)
Addition and scalar multiplication is as would be expected.
(Definition 1.4)
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1.4.2.2 Definition: The Permutation Representation of a Set

Let G be a finite group acting on a finite set X. Each g ∈ G defines a
permutation of X:

ρg : X → X

via:
ρg(x) = g · x

This extends (uniquely) to an invertible (since g is invertible) linear
map:

ρg ∈ GL(kX)

via:

ρg

(∑
x∈X

axx

)
=
∑
x∈X

ax(g · x)

In particular, by properties of group actions:

ρ : G → GL(kX) g 7→ ρg

is a representation, called the permutation representation associ-
ated with X.

One can check that ρg is indeed a group homomorphism. For any x ∈ X, consider g, h ∈ G. Then:

ρgh(x) = (gh) · x = g · (h · x) = ρg(ρh(x)) =⇒ ρgh = ρg ◦ ρh

1.4.3 Representations from Galois Theory

• let F be a finite field extension of Q, such that [F : Q] < ∞

• from Galois Theory, G = Gal(F : Q) (the group of all automorphisms of F over Q) is a finite group

• the inclusion G ↪→ GL(F ) thus gives a Q-linear representation of G of degree degQ(F )

• for example, if F = SFQ(t
3 − 2) = Q( 3

√
2, e2π/3), then G ∼= S3 and this gives a degree 6 representation

ρ : S3 → GL(Q( 3
√
2, e2π/3))

1.5 Definition: Faithful Representations

A representation
ρ : G → GL(V )

is faithful if
ker(ρ) = {eG}

(Definition 1.7)
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1.5.1 Remark: Why are representations interesting for group theorists?

• let ρ : G → GL(V )

• by the First Isomorphism Theorem for groups:

G/ ker(ρ) ∼= im(ρ)

• if ρ is faithful, then its kernel is trivial, so:

G ∼= im(ρ) ≤ GL(V ) ∼= GLn(k)

As we will see, working with G will involve using matrix representations, which are easy to work with.

• if ρ isn’t faithful, then ker(ρ) will be a proper normal subgroup of ρ, and still G/ ker(ρ) ∼= im(ρ)

2 Matrix Representations

2.1 Definition: Matrix Representation of Finite Groups

Let G be a finite group. A matrix representation is a group homo-
morphism

ρ : G → GLn(k)

where
GLn(k) = Mn(k)

×

is the group of invertible matrices under matirx multiplication.
(Definition 1.8)

2.2 From Automorphisms to Matrices

2.2.1 Definition: Matrices from Linear Maps

Let
B = {v1, . . . , vn}

be a basis for V .
Let

ϕ : V → V

be a linear map.
The matrix of ϕ with respect to B is B[ϕ]B, an n × n matrix whose en-
tries aij are given by the coefficients:

ϕ(vj) =
n∑

i=1

aijvi

(Definition 1.9)
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2.2.2 Remark: Link Between Representations and Matrix Representations

Let V be a vector space with basis B. Then:

1. ϕ 7→ B[ϕ]B is a group isomorphism, such that

GL(V ) ∼= GLn(k)

2. representations ρ : G → GL(V ) lead to matrix representations
ρB : G → GLn(k) via:

∀g ∈ G, ρB(g) = B[ρ(g)]B

3. matrix representations σ : G → GLn(k) lead to
representations σ : G → GL(kn) via:

∀g ∈ G, v ∈ kn σ(g)(v) = σ(g)v

where σ(g)v is matrix multiplication of σ(g) (an n× n matrix) by a
column vector v ∈ kn

2.2.3 Example: Permutation Representations

• consider G = S3 acting on the set X = {e1, e2, e3} by permuting the indices

• this yields a degree 3 permutation ρ : G → GL(kX) (since |X| = 3 and X is a basis)

• we can compute the effect of the representation on some elements of S3:

– if g = (1 2 3), then:

(1 2 3) · e1 = 0 · e1 + 1 · e2 + 0 · e3
(1 2 3) · e2 = 0 · e1 + 0 · e2 + 1 · e3
(1 2 3) · e3 = 1 · e1 + 0 · e2 + 0 · e3

so its corresponding matrix is:

ρX((1 2 3)) =


0 0 1

1 0 0

0 1 0


where notice, this has the effect of permuting the columns of the identity matrix according to the
permutation

– similarly

ρX((1 2)) =


0 1 0

1 0 0

0 0 1


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3 G-Stability

3.1 Definition: Intertwining Operator

Consider 2 representations:

ρ : G → GL(V ) σ : G → GL(W )

A homomorphism or intertwining operator is a linear map:

φ : V → W

such that:
∀g ∈ G, σ(g) ◦ φ = φ ◦ ρ(g)

If φ is bijective, then it is an isomorphism.
(Definition 1.12)

An alternative way of thinking about the intertiwing operator is as the mapping required such that the
following diagram commutes:

V W

V W

φ

ρ(g) σ(g)

φ
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3.2 Definition: Equivalent Matrix Representations

Matrix representations

ρ1 : G → GLn(k) ρ2 : G → GLn(k)

are equivalent if:

∃A ∈ GLn(k) : ∀g ∈ G, ρ2(g) = Aρ1(g)A
−1

If ρ1, ρ2 are equivalent, this translates to equality of the following linear
maps in GL(kn):

ρ2(g) ◦ A = A ◦ ρ1(g)

The converse remains true.
(Definition 1.13)

Note, when underlining matrix representations, we refer to the corresponding linear map, as per:

Let V be a vector space with basis B. Then:

1. ϕ 7→ B[ϕ]B is a group isomorphism, such that

GL(V ) ∼= GLn(k)

2. representations ρ : G → GL(V ) lead to matrix representations
ρB : G → GLn(k) via:

∀g ∈ G, ρB(g) = B[ρ(g)]B

3. matrix representations σ : G → GLn(k) lead to
representations σ : G → GL(kn) via:

∀g ∈ G, v ∈ kn σ(g)(v) = σ(g)v

where σ(g)v is matrix multiplication of σ(g) (an n× n matrix) by a
column vector v ∈ kn
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3.3 G-Stability

For readability, if ρ is some representation, we denote ρ(g) = ρg.

3.3.1 Definition: G-Stable Subspace

Let ρ : G → GL(V ) be a representation, and let U be a linear sub-
space of V .
U is G-stable if:

∀u ∈ U,∀g ∈ G, ρg(u) ∈ U

(Definition 1.14, a))

3.3.2 Definition: Subrepresentation Afforded by Subspace

Let ρ : G → GL(V ) be a representation, and let U be a linear sub-
space of V .
Suppose that U is G-Stable.
The subrepresentation of ρ afforded by U is:

ρU : G → GL(U)

given by:
∀w ∈ U,∀g ∈ G, ρU(g)(w) = ρg(w)

(Definition 1.14, b))

3.3.3 Definition: Quotient Subrepresentation Afforded by Subspace

Let ρ : G → GL(V ) be a representation, and let U be a linear sub-
space of V .
Suppose that U is G-Stable.
The quotient representation of ρ afforded by U is:

ρV/U : G → GL(V/U)

given by:

∀v + U ∈ V/U, ∀g ∈ G, ρV/U(g)(v + U) = ρg(v) + U

(Definition 1.14, c))
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3.3.4 Remark: Short Exact Sequence

We can represent this sequence of vector spaces as a short exact se-
quence:

O → A → B → C → O

Here:

• C is the quotient of B by A

• A is the kernel of the canonical mapping B → C

In our case, we’d have:

O → U → V → V/U → O

3.4 Lemma: G-Stable Subspaces from Homomorphisms

Let
φ : V → W

be a homomorphism between the representations:

ρ : G → GL(V ) σ : G → GL(W )

Then:

1. ker(φ) is a G-stable subspace of V

2. im(φ) is a G-stable subspace of W

(Lemma 1.15)

Proof. Both kernels and images are subspaces of V,W respectively. Recall, a subspace is G-stable if:

Let ρ : G → GL(V ) be a representation, and let U be a linear sub-
space of V .
U is G-stable if:

∀u ∈ U,∀g ∈ G, ρg(u) ∈ U

(Definition 1.14, a))
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Let g ∈ G, k ∈ ker(φ) ⊆ V . We need to show that:

ρg(k) ∈ ker(φ)

Then, using the definition of homomorphism:

φ(ρg(k)) = σg(φ(k)) = σg(1W ) = 1W ⇐⇒ ρg(k) ∈ ker(φ)

where we use that σg is an invertible linear map. Thus, ker(φ) is indeed a G-stable subspace of V .

Let g ∈ G,m ∈ im(φ) ⊆ W . We need to show that:

σg(m) ∈ im(φ)

Since m ∈ im(φ),∃v ∈ V : φ(v) = m. Then, using the definition of homomorphism:

σg(m) = σg(φ(v)) = φ(ρg(v)) ∈ im(φ)

Thus, im(φ) is indeed a G-stable subspace of W .

3.5 Theorem: First Isomorphism Theorem for Representations

Let ρ : G → GL(V ) be a representation, and let U be a linear sub-
space of V .
Then, there is a natural isomorphism:

V/ ker(φ) ∼= im(φ)

between the G-representations ρV/ ker(φ) and σim(φ).
(Lemma 1.15)

3.6 Example: Trivial Subrepresentations Don’t Imply Trivial Representations

• let k be the finite field Fp and G ∼= Cp have generator g

• let ρ : G → GL2(k) be the matrix representation given by:

ρ(gi) =

1 i

0 1


where i ∈ [0, p− 1]. This can be easily verified to show that ρ(gigj) = ρ(gi)ρ(gj).

• the standard basis for V = F2
p si given by:v1 =

1

0

 , v2 =

0

1


• notice, ⟨v1⟩ is G-stable, since for any α ∈ Fp:

ρ(gi)(αv1) =

1 i

0 1

α

0

 =

α

0

 ∈ ⟨v1⟩
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• in fact, this shows that the subrepresentation of ρ afforded by U , ρU , is trivial, since any gi ∈ G
maps into the identity automorphism in GL(⟨v⟩):α

0

 7→

α

0


• similarly, consider the action of G on the quotient space F2

p/ ⟨v1⟩

ρ(gi)(αv1) =

1 i

0 1

0

β

+ ⟨v1⟩

 =

βi

β

+ ⟨v1⟩

 =

0

β

+ ⟨v1⟩


• again, the quotient representation of ρ afforded by U is trivial

• however, ρ itself is not trivial!

• this gives us the short exact sequence:

O → 1 → F2
p → 1 → O

3.7 Definition: Irreducible Representations

The representation
ρ : G → GL(V )

is irreducible/simple if:

1. V is not the zero vector space

2. if U is a G-stable subspace of V , then either:

• U = {0}
• U = V

(Definition 1.18)

Irreducible representations are the atoms of representation theory: finding all the irreducible
representations up to isomorphism is a major goal of representation theory.
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3.8 Maschke’s Theorem

3.8.1 Definition: G-Stable Complement

Let
ρ : G → GL(V )

be a representation, and let U be a G-stable subspace.
A G-stable complement for U in G is a G-stable subspace W such
that:

V = U ⊕W

where recall, this means that:

• U +W = V

• U ∩W = {0}
(Definition 1.19)

3.8.2 Example: G-Stable Complement in Permutation Representation of S3

• consider the permutation representation of S3 when acting on kX, where X = {e1, e2, e3}

• let
U = ⟨e1 + e2 + e3⟩

• U is a subspace of kX, and since the generator of U is symmetric in the indices of e1, e2, e3, S3 fixes
every u ∈ U , so U is S3-stable (and affords a trivial subrepresentation of V )

• can we find a non-trivial subrepresentation? Consider

W = {a1e1 + a2e2 + a3e3 | a1 + a2 + a3 = 0}

• W is also S3-stable (due to the condition a1 + a2 + a3 = 0 holding irrespective of how we permute
e1, e2, e3)

• we claim that W is a S3-stable complement to U

– notice, U ∩W = ∅, since U contains sums of all 3 basis vectors, but W can never contain such a
sum (or multiples thereof)

– to show that U +W = kX, it is sufficient to show that we can generate a basis for kX from U,W .
For sake of argument, lets consider constructing e1. For some m ∈ k, a general element in U +W
is given by:

m(e1 + e2 + e3) + a1e1 + a2e2 + a3e3 = (m+ a1)e1 + (m+ a2)e2 + (m+ a3)e3

Solving simultaneous equations and using the fact that a1 + a2 + a3 = 0, we get that:

m = −a3 = −a2 a1 − a3 = 1 a1 = −a2 − a3

It follows that:
−3a3 = 1
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Thus, assuming that char(k) ̸= 3, we can always solve this system. For example, using m =
−1, a1 = 2, a2 = a3 = 1)

A perhaps easier way of reaching the same conclusion is to notice that:

dim(U) = 1 dim(W ) = 2

but dim(V ) = 3. Since U,W ≤ V , it suffices to show that U ∩W is trivial.
Indeed, assume that:

λ(e1 + e2 + e3) ∈ U ∩W

In particular, this requires that 3λ = 0, which, if char(k) ̸= 0 implies that
λ = 0, so U ∩W = {0}.

• moreover, we can construct a basis for W via:

B = {v1 = e1 − e2, v2 = e2 − e3}

• S3 is generated by the permutations (1 2) and (1 2 3); thus, the degree 2 matrix representation:

σ = B[ρW ]B : G → GL2(k)

is determined by its effect on B

• we compute:

(1 2 3) · (e1 − e2) = e2 − e3 = v2

(1 2 3) · (e2 − e3) = e3 − e1 = −v1 − v2

so:

σ((1 2 3)) =

0 −1

1 −1


Similarly:

(1 2) · (e1 − e2) = e2 − e1 = −v1

(1 2) · (e2 − e3) = e1 − e3 = v1 + v2

so:

σ((1 2 3)) =

−1 1

0 1


3.8.3 Theorem: Maschke’s Theorem

Turns out, we can always find G-stable complements.
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Let G be a finite group, |G| ≠ 0 in k (i.e |G| isn’t a multiple of char(k)).
Let U be a G-stable subspace of a finite-dimensional G-
representation V . Then, U admits at least one G-stable complement
W in V .
(Theorem 1.21)

Proof. Start with a basis for U . We can extend it to a basis for V , which yields a linear complement Z for
U in V :

V = U ⊕ Z

Generally Z won’t be G-stable, but we can use it to generate a G-stable complement.

Let π : V → V be the projection map for V = U ⊕ Z:

∀u ∈ U, z ∈ Z, π(u+ z) = u

Define a new linear map φ : V → V via:

∀v ∈ V, φ(v) =
1

|G|
∑
x∈G

x · (π(x−1 · v))

where we’ve used the notation:
ρ(g)(v) = g · v

for some representation ρ : G → GL(V ). Notice, φ is linear: it is a sum of compositions of linear mappings

We claim that φ is a homomorphism of representations. Consider:

|G|φ(g · · · v) =
∑
x∈G

x · (π(x−1 · (g · v)))

Now, make the substitution y−1 = x−1g. Then, x = gy, and the sum can be made to run over all y ∈ G:

|G|φ(g · · · v) =
∑
y∈G

(gy) · (π(y−1 · v)) = g ·

∑
y∈G

y · (π(y−1 · v))

 = g · |G|φ(v)

where we’ve used properties of group actions (from the fact that ρ is a homomorphism, so g · v = ρ(g)(v)
defines a group actions). Thus, after cancelling |G|:

φ(g · v) = g · φ(v)

which is precisely the definition of φ being a representation homomorphism.

Now, let u ∈ U , then:

φ(u) =
1

|G|
∑
x∈G

x · (π(x−1 · u))

=
1

|G|
∑
x∈G

x · (x−1 · u) (since U is G-stable, x−1 · u ∈ U , so π does nothing)

= u
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To recap:

• φ : V → V is a representation homomorphism

• ∀u ∈ U,φ(u) = u

Now, let W = ker(φ) ≤ U . By:

Let
φ : V → W

be a homomorphism between the representations:

ρ : G → GL(V ) σ : G → GL(W )

Then:

1. ker(φ) is a G-stable subspace of V

2. im(φ) is a G-stable subspace of W

(Lemma 1.15)

W is a G-stable subspace of V . Moreover, by the rank-nullity theorem:

dim(W ) = nullity(φ) = dim(V )− rank(φ)

Moreover, im(π) = π(V ) = U , so by definition of φ, φ(V ) = im(V ) ⊆ U (since U is G-stable, then
π(x−1 · v) ∈ U , so x · π(x−1 · v) ∈ U). But φ(U) = U , so U = φ(U) ⊆ φ(V ) implies that φ(V ) = U so
im(φ) = U and rank(φ) = dim(U). Putting it all together:

dim(V ) = dim(W ) + dim(U)

It remains to show that W ∩ U is empty, but this follows easily: assume that v ∈ W ∩ U . Then:

0
since v ∈ W ≤ V

= φ(v)
since v ∈ U

= v

Thus, W ∩ U is empty, as required.

Hence, V = U ⊕W , and W = ker(φ) is a G-stable complement to U in V .
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3.8.4 Definition: Completely Reducible Representation

Let:
ρ : G → GL(V )

be a representation.
ρ is completely reducible if there exist G-stable subspaces
U1, . . . , Um ≤ V such that:

V = U1 ⊕ . . .⊕ Um

and the subrepresentation of G afforded by each Ui is irreducible, or
if V = {0}.
(Definition 1.23)

3.8.5 Corollary: Representations of Finite Groups are Completely Reducible

Let G be a finite group, and suppose that:

char(k) ̸ ||G|

Then, every finite dimensional representation

ρ : G → GL(V )

is completely reducible.
(Corollary 1.24)

Proof. We induce on n = dim(V ).

1

If n = 0, then V = {0} and by definition, ρ is completely reducible.

2

Assume that if dim(V ) = k, then ρ is completely reducible.

3

Let dim(V ) = k + 1. Pick U1 to be a non-zero, G-stable subspace of V of smallest dimension (if no such
U1 exists, then V will already be completely reducible).

We claim that U1 is irreducible. Consider some S ≤ U1. Assume that 0 < dim(S) ≤ dim(U1). If U1 is
not irreducible, then S will be a G-stable subspace of V , and have smaller dimension than U1, which is a
contradiction. Thus, either S = {0} of dim(S) = dim(U1) =⇒ V = S, so U1 is indeed irreducible.
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By Maschke’s Theorem, U1 admits a G-stable complement W . But dim(W ) < dim(V ), so by induction,
there exist G-stabel irreducible subspaces U2, . . . , Um such that:

W = U2 ⊕ . . . Um =⇒ V = U1 ⊕ U2 ⊕ . . . Um

as required.
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