Introduction to Representation Theory - Week 1 - Representations of Finite Groups

Antonio León Villares

October 2023

Contents

1	Intr	roduction to Representations
	1.1	Definition: General Linear Group of Vector Space
	1.2	Definition: Finite Group Representations
	1.3	Definition: Trivial Representation
	1.4	Examples of Representations
		1.4.1 Representations from Geometry
		1.4.2 Permutation Representations of Sets
		1.4.3 Representations from Galois Theory
	1.5	Definition: Faithful Representations
		1.5.1 Remark: Why are representations interesting for group theorists?
2	Mat	trix Representations
	2.1	Definition: Matrix Representation of Finite Groups
	2.2	From Automorphisms to Matrices
		2.2.1 Definition: Matrices from Linear Maps
		2.2.2 Remark: Link Between Representations and Matrix Representations
		2.2.3 Example: Permutation Representations
3	G-S	Stability
	3.1	Definition: Intertwining Operator
	3.2	Definition: Equivalent Matrix Representations
	3.3	G-Stability
		3.3.1 Definition: G-Stable Subspace
		3.3.2 Definition: Subrepresentation Afforded by Subspace
		3.3.3 Definition: Quotient Subrepresentation Afforded by Subspace
		3.3.4 Remark: Short Exact Sequence
	3.4	Lemma: G-Stable Subspaces from Homomorphisms
	3.5	Theorem: First Isomorphism Theorem for Representations
	3.6	Example: Trivial Subrepresentations Don't Imply Trivial Representations
	3.7	Definition: Irreducible Representations
	3.8	Maschke's Theorem
		3.8.1 Definition: G-Stable Complement
		3.8.2 Example: G-Stable Complement in Permutation Representation of S_3
		3.8.3 Theorem: Maschke's Theorem
		3.8.4 Definition: Completely Reducible Representation
		3.8.5 Corollary: Representations of Finite Groups are Completely Reducible

1 Introduction to Representations

1.1 Definition: General Linear Group of Vector Space

Let V be a **vector space** over a field k. The **general linear group** of V is the group of **automorphisms** of V:

$$GL(V) = \{ \varphi : V \to V \mid \varphi \text{ is an invertible k-linear map} \}$$

(Notation 1.1)

1.2 Definition: Finite Group Representations

Let G be a **finite group** with V a finite dimensional **vector space** over k

A representation of G on V is a group homomorphism:

$$\rho: G \to GL(V)$$

The **degree** of ρ is dim(V). (Definition 1.2)

1.3 Definition: Trivial Representation

The trivial representation of a group G on V is the identity automorphism:

$$1: G \to GL(V)$$

whereby:

$$\forall g \in G, \forall v \in V, \quad 1(g)(v) = v$$

(Definition 1.16)

1.4 Examples of Representations

1.4.1 Representations from Geometry

- let $G = \{e, g\} = \langle g \rangle$ act on V = k via negation, such that $\rho(e) = 1, \rho(g) = -1$. This yields a representation of order 1.
- let $G = D_3 = \{e, g, g^2, h, gh, g^2h\}$ and let $k = \mathbb{R}$. G acts on $V = \mathbb{R}^2$ as the symmetries of a triangle; this induces a representation

$$\rho: D_3 \to GL(\mathbb{R}^2)$$

where:

- $-\rho(g)$ is a rotation by $\frac{2\pi}{3}$ about the origin
- $-\rho(h)$ is a reflection in the y-axis
- for a regular n-gon, $\rho: D_n \to GL(\mathbb{R}^2)$ is a degree 2 representation
- let $X \subset \mathbb{R}^3$ be the set of vertices of a cube centered at the origin. Let:

$$G = \operatorname{Stab}_{SO_3(\mathbb{R})}(X)$$

(so G contains all 3-dimensional rotations about the origin which map the cube to itself). It can be shown that $G \cong S_4$, which induces a representation:

$$\rho: S_4 \to GL(\mathbb{R}^3)$$

of degree 3.

1.4.2 Permutation Representations of Sets

1.4.2.1 Definition: Free Vector Space on a Set

Let X be a finite set. The free vector sapce on X is a vector space with basis X, and whose underlying set is:

$$kX = \left\{ \sum_{x \in X} a_x x \mid a_x \in k \right\}$$

(here this is just a **formal linear combination**; as such, the sum is just notation, and addition may not even be defined amongst elements of X) **Addition** and **scalar multiplication** is as would be expected. (Definition 1.4)

1.4.2.2 Definition: The Permutation Representation of a Set

Let G be a **finite group** acting on a **finite set** X. Each $g \in G$ defines a permutation of X:

$$\rho_a:X\to X$$

via:

$$\rho_g(x) = g \cdot x$$

This extends (uniquely) to an **invertible** (since g is invertible) linear map:

$$\rho_g \in GL(kX)$$

via:

$$\rho_g\left(\sum_{x\in X} a_x x\right) = \sum_{x\in X} a_x (g\cdot x)$$

In particular, by properties of group actions:

$$\rho: G \to GL(kX) \qquad g \mapsto \rho_q$$

is a representation, called the **permutation representation** associated with X.

One can check that ρ_g is indeed a group homomorphism. For any $x \in X$, consider $g, h \in G$. Then:

$$\rho_{qh}(x) = (gh) \cdot x = g \cdot (h \cdot x) = \rho_q(\rho_h(x)) \implies \rho_{qh} = \rho_q \circ \rho_h$$

1.4.3 Representations from Galois Theory

- let F be a finite field extension of \mathbb{Q} , such that $[F:\mathbb{Q}]<\infty$
- from Galois Theory, $G = Gal(F : \mathbb{Q})$ (the group of all automorphisms of F over \mathbb{Q}) is a finite group
- the inclusion $G \hookrightarrow GL(F)$ thus gives a \mathbb{Q} -linear representation of G of degree $\deg_{\mathbb{Q}}(F)$
- for example, if $F = SF_{\mathbb{Q}}(t^3 2) = \mathbb{Q}(\sqrt[3]{2}, e^{2\pi/3})$, then $G \cong S_3$ and this gives a degree 6 representation $\rho: S_3 \to GL(\mathbb{Q}(\sqrt[3]{2}, e^{2\pi/3}))$

1.5 Definition: Faithful Representations

A representation

$$\rho: G \to GL(V)$$

is **faithful** if

$$\ker(\rho) = \{e_G\}$$

(Definition 1.7)

1.5.1 Remark: Why are representations interesting for group theorists?

- let $\rho: G \to GL(V)$
- by the First Isomorphism Theorem for groups:

$$G/\ker(\rho) \cong \operatorname{im}(\rho)$$

• if ρ is faithful, then its kernel is trivial, so:

$$G \cong \operatorname{im}(\rho) \le GL(V) \cong GL_n(k)$$

As we will see, working with G will involve using matrix representations, which are easy to work with.

• if ρ isn't faithful, then $\ker(\rho)$ will be a proper normal subgroup of ρ , and still $G/\ker(\rho) \cong \operatorname{im}(\rho)$

2 Matrix Representations

2.1 Definition: Matrix Representation of Finite Groups

Let G be a finite group. A matrix representation is a group homomorphism

$$\rho: G \to GL_n(k)$$

where

$$GL_n(k) = M_n(k)^{\times}$$

is the group of invertible matrices under matrix multiplication. (Definition 1.8)

2.2 From Automorphisms to Matrices

2.2.1 Definition: Matrices from Linear Maps

Let

$$\mathcal{B} = \{v_1, \dots, v_n\}$$

be a **basis** for V.

Let

$$\phi: V \to V$$

be a linear map.

The matrix of ϕ with respect to \mathcal{B} is $_{\mathcal{B}}[\phi]_{\mathcal{B}}$, an $n \times n$ matrix whose entries a_{ij} are given by the coefficients:

$$\phi(v_j) = \sum_{i=1}^n a_{ij} v_i$$

(Definition 1.9)

2.2.2Remark: Link Between Representations and Matrix Representations

Let V be a **vector space** with **basis** \mathcal{B} . Then:

1. $\phi \mapsto_{\mathcal{B}} [\phi]_{\mathcal{B}}$ is a **group isomorphism**, such that

$$GL(V) \cong GL_n(k)$$

2. representations $\rho: G \to GL(V)$ lead to matrix representations $\rho_{\mathcal{B}}: G \to GL_n(k)$ via:

$$\forall g \in G, \quad \rho_{\mathcal{B}}(g) = {}_{\mathcal{B}}[\rho(g)]_{\mathcal{B}}$$

3. matrix representations $\sigma: G \to GL_n(k)$ lead to representations $\sigma: G \to GL(k^n)$ via:

$$\forall g \in G, v \in k^n \quad \underline{\sigma}(g)(v) = \sigma(g)v$$

where $\sigma(g)v$ is matrix multiplication of $\sigma(g)$ (an $n \times n$ matrix) by a $column\ vector\ v \in k^n$

Example: Permutation Representations

- consider $G = S_3$ acting on the set $X = \{e_1, e_2, e_3\}$ by permuting the indices
- this yields a degree 3 permutation $\rho: G \to GL(kX)$ (since |X| = 3 and X is a basis)
- we can compute the effect of the representation on some elements of S_3 :
 - $\text{ if } g = (1 \ 2 \ 3), \text{ then:}$

$$(1\ 2\ 3) \cdot e_1 = 0 \cdot e_1 + 1 \cdot e_2 + 0 \cdot e_3$$

 $(1\ 2\ 3) \cdot e_2 = 0 \cdot e_1 + 0 \cdot e_2 + 1 \cdot e_3$

$$(1\ 2\ 3) \cdot e_2 = 0 \cdot e_1 + 0 \cdot e_2 + 1 \cdot e_3$$

$$(1\ 2\ 3) \cdot e_3 = 1 \cdot e_1 + 0 \cdot e_2 + 0 \cdot e_3$$

so its corresponding matrix is:

$$\rho_X((1\ 2\ 3)) = \begin{pmatrix} 0 & 0 & 1\\ 1 & 0 & 0\\ 0 & 1 & 0 \end{pmatrix}$$

where notice, this has the effect of permuting the columns of the identity matrix according to the permutation

- similarly

$$\rho_X((1\ 2)) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3 G-Stability

3.1 Definition: Intertwining Operator

Consider 2 representations:

$$\rho:G\to GL(V) \qquad \sigma:G\to GL(W)$$

A homomorphism or intertwining operator is a linear map:

$$\varphi: V \to W$$

such that:

$$\forall g \in G, \ \sigma(g) \circ \varphi = \varphi \circ \rho(g)$$

If φ is **bijective**, then it is an isomorphism. (Definition 1.12)

An alternative way of thinking about the intertiwing operator is as the mapping required such that the following diagram commutes:

$$\begin{array}{ccc} V & \xrightarrow{\varphi} & W \\ \rho(g) \!\!\! \downarrow & & \!\!\! \downarrow \!\!\! \sigma(g) \\ V & \xrightarrow{\varphi} & W \end{array}$$

3.2 Definition: Equivalent Matrix Representations

${\it Matrix\ representations}$

$$\rho_1: G \to GL_n(k) \qquad \rho_2: G \to GL_n(k)$$

are equivalent if:

$$\exists A \in GL_n(k) : \forall g \in G, \rho_2(g) = A\rho_1(g)A^{-1}$$

If ρ_1, ρ_2 are equivalent, this translates to equality of the following linear maps in $GL(k^n)$:

$$\rho_2(g) \circ \underline{A} = \underline{A} \circ \rho_1(g)$$

The converse remains true. (Definition 1.13)

Note, when underlining matrix representations, we refer to the corresponding linear map, as per:

Let V be a **vector space** with **basis** \mathcal{B} . Then:

1. $\phi \mapsto_{\mathcal{B}} [\phi]_{\mathcal{B}}$ is a **group isomorphism**, such that

$$GL(V) \cong GL_n(k)$$

2. representations $\rho: G \to GL(V)$ lead to matrix representations $\rho_{\mathcal{B}}: G \to GL_n(k)$ via:

$$\forall g \in G, \quad \rho_{\mathcal{B}}(g) = {}_{\mathcal{B}}[\rho(g)]_{\mathcal{B}}$$

3. matrix representations $\sigma: G \to GL_n(k)$ lead to representations $\underline{\sigma}: G \to GL(k^n)$ via:

$$\forall g \in G, v \in k^n \quad \underline{\sigma}(g)(v) = \sigma(g)v$$

where $\sigma(g)v$ is matrix multiplication of $\sigma(g)$ (an $n \times n$ matrix) by a column vector $v \in k^n$

3.3 G-Stability

For readability, if ρ is some representation, we denote $\rho(g) = \rho_g$.

3.3.1 Definition: G-Stable Subspace

Let $\rho: G \to GL(V)$ be a **representation**, and let U be a **linear subspace** of V. U is **G-stable** if: $\forall u \in U, \forall g \in G, \ \rho_g(u) \in U$ (Definition 1.14, a))

3.3.2 Definition: Subrepresentation Afforded by Subspace

Let $\rho: G \to GL(V)$ be a **representation**, and let U be a **linear subspace** of V.
Suppose that U is **G-Stable**.
The **subrepresentation of** ρ **afforded by** U is: $\rho_U: G \to GL(U)$ given by: $\forall w \in U, \forall g \in G, \ \rho_U(g)(w) = \rho_g(w)$ (Definition 1.14, b))

3.3.3 Definition: Quotient Subrepresentation Afforded by Subspace

Let $\rho:G\to GL(V)$ be a representation, and let U be a linear subspace of V.

Suppose that U is G-Stable.

The quotient representation of ρ afforded by U is: $\rho_{V/U}:G\to GL(V/U)$ given by: $\forall v+U\in V/U, \forall g\in G,\ \rho_{V/U}(g)(v+U)=\rho_g(v)+U$ (Definition 1.14, c))

3.3.4 Remark: Short Exact Sequence

We can represent this sequence of vector spaces as a **short exact sequence**:

$$O \to A \to B \to C \to O$$

Here:

- \bullet C is the quotient of B by A
- A is the kernel of the canonical mapping $B \to C$

In our case, we'd have:

$$O \to U \to V \to V/U \to O$$

3.4 Lemma: G-Stable Subspaces from Homomorphisms

Let

$$\varphi: V \to W$$

be a **homomorphism** between the representations:

$$\rho: G \to GL(V)$$
 $\sigma: G \to GL(W)$

Then:

- 1. $\ker(\varphi)$ is a **G-stable** subspace of V
- 2. $\operatorname{im}(\varphi)$ is a **G-stable** subspace of W

(Lemma 1.15)

Proof. Both kernels and images are subspaces of V, W respectively. Recall, a subspace is G-stable if:

Let $\rho: G \to GL(V)$ be a **representation**, and let U be a **linear subspace** of V.

U is **G-stable** if:

$$\forall u \in U, \forall g \in G, \ \rho_g(u) \in U$$

(Definition 1.14, a))

Let $g \in G, k \in \ker(\varphi) \subseteq V$. We need to show that:

$$\rho_g(k) \in \ker(\varphi)$$

Then, using the definition of homomorphism:

$$\varphi(\rho_g(k)) = \sigma_g(\varphi(k)) = \sigma_g(1_W) = 1_W \iff \rho_g(k) \in \ker(\varphi)$$

where we use that σ_g is an invertible linear map. Thus, $\ker(\varphi)$ is indeed a **G-stable** subspace of V.

Let $g \in G, m \in \operatorname{im}(\varphi) \subseteq W$. We need to show that:

$$\sigma_a(m) \in \operatorname{im}(\varphi)$$

Since $m \in \operatorname{im}(\varphi), \exists v \in V : \varphi(v) = m$. Then, using the definition of homomorphism:

$$\sigma_q(m) = \sigma_q(\varphi(v)) = \varphi(\rho_q(v)) \in \operatorname{im}(\varphi)$$

Thus, $\operatorname{im}(\varphi)$ is indeed a **G-stable** subspace of W.

3.5 Theorem: First Isomorphism Theorem for Representations

Let $\rho: G \to GL(V)$ be a **representation**, and let U be a **linear subspace** of V.

Then, there is a natural isomorphism:

$$V/\ker(\varphi) \cong \operatorname{im}(\varphi)$$

between the G-representations $\rho_{V/\ker(\varphi)}$ and $\sigma_{\mathrm{im}(\varphi)}$. (Lemma 1.15)

3.6 Example: Trivial Subrepresentations Don't Imply Trivial Representations

- let k be the finite field \mathbb{F}_p and $G \cong C_p$ have generator g
- let $\rho: G \to GL_2(k)$ be the matrix representation given by:

$$\rho(g^i) = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}$$

where $i \in [0, p-1]$. This can be easily verified to show that $\rho(g^i g^j) = \rho(g^i) \rho(g^j)$.

• the standard basis for $V = \mathbb{F}_p^2$ si given by:

$$\left\{ v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

• notice, $\langle v_1 \rangle$ is G-stable, since for any $\alpha \in \mathbb{F}_p$:

$$\rho(g^i)(\alpha v_1) = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \end{pmatrix} \in \langle v_1 \rangle$$

• in fact, this shows that the subrepresentation of ρ afforded by U, ρ_U , is trivial, since any $g^i \in G$ maps into the identity automorphism in $GL(\langle v \rangle)$:

$$\begin{pmatrix} \alpha \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$$

• similarly, consider the action of G on the quotient space $\mathbb{F}_p^2/\langle v_1 \rangle$

$$\rho(g^i)(\alpha v_1) = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \left(\begin{pmatrix} 0 \\ \beta \end{pmatrix} + \langle v_1 \rangle \right) = \left(\begin{pmatrix} \beta i \\ \beta \end{pmatrix} + \langle v_1 \rangle \right) = \left(\begin{pmatrix} 0 \\ \beta \end{pmatrix} + \langle v_1 \rangle \right)$$

- again, the quotient representation of ρ afforded by U is trivial
- however, ρ itself is not trivial!
- this gives us the short exact sequence:

$$O \to 1 \to \mathbb{F}_p^2 \to 1 \to O$$

3.7 Definition: Irreducible Representations

The representation

$$\rho: G \to GL(V)$$

is irreducible/simple if:

- 1. V is not the zero vector space
- 2. if U is a G-stable subspace of V, then either:
 - $U = \{0\}$
 - \bullet U = V

(Definition 1.18)

Irreducible representations are the atoms of representation theory: finding all the irreducible representations up to isomorphism is a major goal of representation theory.

3.8 Maschke's Theorem

3.8.1 Definition: G-Stable Complement

Let

$$\rho: G \to GL(V)$$

be a representation, and let U be a G-stable subspace. A G-stable complement for U in G is a G-stable subspace W such that:

$$V = U \oplus W$$

where recall, this means that:

- \bullet U + W = V
- $\bullet \ U\cap W=\{0\}$

(Definition 1.19)

3.8.2 Example: G-Stable Complement in Permutation Representation of S_3

- consider the **permutation representation** of S_3 when acting on kX, where $X = \{e_1, e_2, e_3\}$
- let

$$U = \langle e_1 + e_2 + e_3 \rangle$$

- U is a subspace of kX, and since the generator of U is symmetric in the indices of e_1, e_2, e_3, S_3 fixes every $u \in U$, so U is S_3 -stable (and affords a trivial subrepresentation of V)
- can we find a non-trivial subrepresentation? Consider

$$W = \{a_1e_1 + a_2e_2 + a_3e_3 \mid a_1 + a_2 + a_3 = 0\}$$

- W is also S_3 -stable (due to the condition $a_1 + a_2 + a_3 = 0$ holding irrespective of how we permute e_1, e_2, e_3)
- we claim that W is a S_3 -stable complement to U
 - notice, $U \cap W = \emptyset$, since U contains sums of all 3 basis vectors, but W can never contain such a sum (or multiples thereof)
 - to show that U+W=kX, it is sufficient to show that we can generate a basis for kX from U,W. For sake of argument, lets consider constructing e_1 . For some $m \in k$, a general element in U+W is given by:

$$m(e_1 + e_2 + e_3) + a_1e_1 + a_2e_2 + a_3e_3 = (m + a_1)e_1 + (m + a_2)e_2 + (m + a_3)e_3$$

Solving simultaneous equations and using the fact that $a_1 + a_2 + a_3 = 0$, we get that:

$$m = -a_3 = -a_2$$
 $a_1 - a_3 = 1$ $a_1 = -a_2 - a_3$

It follows that:

$$-3a_3 = 1$$

Thus, assuming that $char(k) \neq 3$, we can always solve this system. For example, using $m = -1, a_1 = 2, a_2 = a_3 = 1$

A perhaps easier way of reaching the same conclusion is to notice that:

$$\dim(U) = 1 \quad \dim(W) = 2$$

but $\dim(V) = 3$. Since $U, W \leq V$, it suffices to show that $U \cap W$ is trivial. Indeed, assume that:

$$\lambda(e_1 + e_2 + e_3) \in U \cap W$$

In particular, this requires that $3\lambda = 0$, which, if $\operatorname{char}(k) \neq 0$ implies that $\lambda = 0$, so $U \cap W = \{0\}$.

 \bullet moreover, we can construct a basis for W via:

$$\mathcal{B} = \{v_1 = e_1 - e_2, v_2 = e_2 - e_3\}$$

• S_3 is generated by the permutations (1 2) and (1 2 3); thus, the degree 2 matrix representation:

$$\sigma = {}_{\mathcal{B}}[\rho_W]_{\mathcal{B}}: G \to GL_2(k)$$

is determined by its effect on \mathcal{B}

• we compute:

$$(1\ 2\ 3) \cdot (e_1 - e_2) = e_2 - e_3 = v_2$$

 $(1\ 2\ 3) \cdot (e_2 - e_3) = e_3 - e_1 = -v_1 - v_2$

so:

$$\sigma((1\ 2\ 3)) = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$$

Similarly:

$$(1 \ 2) \cdot (e_1 - e_2) = e_2 - e_1 = -v_1$$
$$(1 \ 2) \cdot (e_2 - e_3) = e_1 - e_3 = v_1 + v_2$$

so:

$$\sigma((1\ 2\ 3)) = \begin{pmatrix} -1 & 1\\ 0 & 1 \end{pmatrix}$$

3.8.3 Theorem: Maschke's Theorem

Turns out, we can always find G-stable complements.

Let G be a **finite group**, $|G| \neq 0$ in k (i.e |G| isn't a multiple of char(k)). Let U be a G**-stable subspace** of a **finite-dimensional** G-representation V. Then, U admits **at least** one G**-stable complement** W in V. (Theorem 1.21)

Proof. Start with a basis for U. We can extend it to a basis for V, which yields a linear complement Z for U in V:

$$V = U \oplus Z$$

Generally Z won't be G-stable, but we can use it to generate a G-stable complement.

Let $\pi: V \to V$ be the projection map for $V = U \oplus Z$:

$$\forall u \in U, z \in Z, \quad \pi(u+z) = u$$

Define a new linear map $\varphi: V \to V$ via:

$$\forall v \in V, \quad \varphi(v) = \frac{1}{|G|} \sum_{x \in G} x \cdot (\pi(x^{-1} \cdot v))$$

where we've used the notation:

$$\rho(g)(v) = g \cdot v$$

for some representation $\rho: G \to GL(V)$. Notice, φ is linear: it is a sum of compositions of linear mappings

We claim that φ is a homomorphism of representations. Consider:

$$|G|\varphi(g\cdots v) = \sum_{x\in G} x \cdot (\pi(x^{-1}\cdot (g\cdot v)))$$

Now, make the substitution $y^{-1} = x^{-1}g$. Then, x = gy, and the sum can be made to run over all $y \in G$:

$$|G|\varphi(g\cdots v) = \sum_{y\in G} (gy)\cdot (\pi(y^{-1}\cdot v)) = g\cdot \left(\sum_{y\in G} y\cdot (\pi(y^{-1}\cdot v))\right) = g\cdot |G|\varphi(v)$$

where we've used properties of group actions (from the fact that ρ is a homomorphism, so $g \cdot v = \rho(g)(v)$ defines a group actions). Thus, after cancelling |G|:

$$\varphi(g \cdot v) = g \cdot \varphi(v)$$

which is precisely the definition of φ being a representation homomorphism.

Now, let $u \in U$, then:

$$\begin{split} \varphi(u) &= \frac{1}{|G|} \sum_{x \in G} x \cdot (\pi(x^{-1} \cdot u)) \\ &= \frac{1}{|G|} \sum_{x \in G} x \cdot (x^{-1} \cdot u) \quad (\textit{since U is G-stable, $x^{-1} \cdot u \in U$, so π does nothing)} \\ &= u \end{split}$$

To recap:

- $\varphi: V \to V$ is a representation homomorphism
- $\forall u \in U, \varphi(u) = u$

Now, let $W = \ker(\varphi) \leq U$. By:

Let

$$\varphi:V\to W$$

be a **homomorphism** between the representations:

$$\rho: G \to GL(V)$$
 $\sigma: G \to GL(W)$

Then:

- 1. $\ker(\varphi)$ is a **G-stable** subspace of V
- 2. $\operatorname{im}(\varphi)$ is a **G-stable** subspace of W

(Lemma 1.15)

W is a G-stable subspace of V. Moreover, by the rank-nullity theorem:

$$\dim(W) = \operatorname{nullity}(\varphi) = \dim(V) - \operatorname{rank}(\varphi)$$

Moreover, $\operatorname{im}(\pi) = \pi(V) = U$, so by definition of φ , $\varphi(V) = \operatorname{im}(V) \subseteq U$ (since U is G-stable, then $\pi(x^{-1} \cdot v) \in U$, so $x \cdot \pi(x^{-1} \cdot v) \in U$). But $\varphi(U) = U$, so $U = \varphi(U) \subseteq \varphi(V)$ implies that $\varphi(V) = U$ so $\operatorname{im}(\varphi) = U$ and $\operatorname{rank}(\varphi) = \dim(U)$. Putting it all together:

$$\dim(V) = \dim(W) + \dim(U)$$

It remains to show that $W \cap U$ is empty, but this follows easily: assume that $v \in W \cap U$. Then:

$$0 \stackrel{since \ v \ \in \ W \ \leq \ V}{=} \varphi(v) \stackrel{since \ v \ \in \ U}{=} v$$

Thus, $W \cap U$ is empty, as required.

Hence, $V = U \oplus W$, and $W = \ker(\varphi)$ is a G-stable complement to U in V.

3.8.4 Definition: Completely Reducible Representation

Let:

$$\rho: G \to GL(V)$$

be a representation.

 ρ is completely reducible if there exist G-stable subspaces $U_1, \ldots, U_m \leq V$ such that:

$$V = U_1 \oplus \ldots \oplus U_m$$

and the **subrepresentation** of G afforded by each U_i is **irreducible**, or if $V = \{0\}$. (Definition 1.23)

3.8.5 Corollary: Representations of Finite Groups are Completely Reducible

Let G be a **finite group**, and suppose that:

Then, every finite dimensional representation

$$\rho: G \to GL(V)$$

is **completely reducible**. (Corollary 1.24)

Proof. We induce on $n = \dim(V)$.

(1)

If n=0, then $V=\{0\}$ and by definition, ρ is completely reducible.

(2)

Assume that if $\dim(V) = k$, then ρ is completely reducible.

 $\widehat{3}$

Let $\dim(V) = k + 1$. Pick U_1 to be a non-zero, G-stable subspace of V of smallest dimension (if no such U_1 exists, then V will already be completely reducible).

We claim that U_1 is irreducible. Consider some $S \leq U_1$. Assume that $0 < \dim(S) \leq \dim(U_1)$. If U_1 is not irreducible, then S will be a G-stable subspace of V, and have smaller dimension than U_1 , which is a contradiction. Thus, either $S = \{0\}$ of $\dim(S) = \dim(U_1) \implies V = S$, so U_1 is indeed irreducible.

By Maschke's Theorem, U_1 admits a G-stable complement W. But $\dim(W) < \dim(V)$, so by induction, there exist G-stable irreducible subspaces U_2, \ldots, U_m such that:

$$W = U_2 \oplus \dots U_m \implies V = U_1 \oplus U_2 \oplus \dots U_m$$

 $as\ required.$