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Based on the notes by Konstantin Ardakov, Section 1

1 Introduction to Representations

1.1 Definition: General Linear Group of Vector Space

Let V' be a vector space over a field k. The general linear group of V
is the group of automorphisms of V' :

GL(V)={¢:V =V | ¢ is an invertible k-linear map}
(Notation 1.1)

1.2 Definition: Finite Group Representations

Let G be a finite group with V' a finite dimensional vector space over
k.

A representation of G on'V is a group homomorphism:
p:G— GL(V)

The degree of p is dim(V').
(Definition 1.2)

1.3 Definition: Trivial Representation

The trivial representation of a group G on V' is the identity auto-
morphism:
1:G— GL(V)
whereby:
Vge G,Yv eV, 1(g)(v) =v
(Definition 1.16)

1.4 Examples of Representations
1.4.1 Representations from Geometry

o let G = {e,g} = (g9) act on V = k via negation, such that p(e) = 1,p(g) = —1. This yields a
representation of order 1.

o let G = D3 = {e,g,9% h,gh,g*h} and let k = R. G acts on V = R? as the symmetries of a triangle;

this induces a representation
p: D3 — GL(R?)
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where:
. . 27 i
— p(g) is a rotation by 3 about the origin
— p(h) is a reflection in the y-axis
e for a regular n-gon, p : D,, — GL(R?) is a degree 2 representation
e let X C R? be the set of vertices of a cube centered at the origin. Let:
G= Stabso3(R) (X)

(so G contains all 3-dimensional rotations about the origin which map the cube to itself). It can be
shown that G = S, which induces a representation:

p:S; — GL(R?)

of degree 3.

1.4.2 Permutation Representations of Sets

1.4.2.1 Definition: Free Vector Space on a Set

Let X be a finite set. The free vector sapce on X is a vector space
with basis X, and whose underlying set is:

kX = Zaxx la, € k

zeX

(here this is just a formal linear combination; as such, the sum is just
notation, and addition may not even be defined amongst elements of X )

Addition and scalar multiplication is as would be expected.
(Definition 1.4)
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1.4.2.2 Definition: The Permutation Representation of a Set

Let G be a finite group acting on a finite set X. Fach g € G defines a
permutation of X :

pg: X =X
via:
po(x) =g -z
This extends (uniquely) to an invertible (since g is invertible) linear
map:
pg € GL(kX)
va:

Py (Z aw) = aa(g-x)

zeX zeX

In particular, by properties of group actions:
p:G— GL(kX) g Py

1s a representation, called the permutation representation associ-
ated with X .

One can check that pg is indeed a group homomorphism. For any x € X, consider g,h € G. Then:
pgn(x) = (gh) -z =g (h-z) = pg(pn(x)) = pgn = pgo pn
1.4.3 Representations from Galois Theory

e let F' be a finite field extension of Q, such that [F: Q] < oo

e from Galois Theory, G = Gal(F : Q) (the group of all automorphisms of F' over Q) is a finite group

the inclusion G — GL(F) thus gives a Q-linear representation of G of degree degg(F)

for example, if F = SFy(t3 —2) = (@(\3/57 62”/3), then G = S35 and this gives a degree 6 representation
p: 83— GL(Q(V2,e/?))

1.5 Definition: Faithful Representations

A representation

p:G— GL(V)
is faithful if

ker(p) = {ec}
(Definition 1.7)
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1.5.1 Remark: Why are representations interesting for group theorists?
o let p: G — GL(V)
e by the First Isomorphism Theorem for groups:
G/ ker(p) = im(p)
e if p is faithful, then its kernel is trivial, so:

G = im(p) < GL(V) = GLy (k)

As we will see, working with G will involve using matrix representations, which are easy to work with.

e if p isn’t faithful, then ker(p) will be a proper normal subgroup of p, and still G/ ker(p) = im(p)

2 Matrix Representations

2.1 Definition: Matrix Representation of Finite Groups

morphism
p:G— GL,(k)

where
GL,(k) = M,(k)*

is the group of invertible matrices under matirz multiplication.

(Definition 1.8)

Let G be a finite group. A matrixz representation is a group homo-

2.2 From Automorphisms to Matrices

2.2.1 Definition: Matrices from Linear Maps

Let
B = {’Ul,...,’Un}
be a basts forV.
Let
o: V=V

be a linear map.

tries a;; are given by the coefficients:
$v;) =) aiv;
i=1

(Definition 1.9)

The matriz of ¢ with respect to B is g[¢]z, ann X n matriz whose en-
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2.2.2 Remark: Link Between Representations and Matrix Representations

Let V' be a vector space with basis B. Then:
1. ¢ — gld]s is a group isomorphism, such that
GL(V) = GL,(k)
2. representations p : G — GL(V) lead to matriz representations
ps : G — GL, (k) via:
Vge G, pslg) = slp(9)ls

3. matrix representations o : G — GL, (k) lead to
representations g : G — GL(k"™) via:

Vge G,vek™ a(g)(v)=oa(gv

where o(g)v is matriz multiplication of o(g) (ann X n matriz) by a
column vector v € k"

2.2.3 Example: Permutation Representations
e consider G = S3 acting on the set X = {ej, e, e3} by permuting the indices
e this yields a degree 3 permutation p : G — GL(kX) (since |X| =3 and X is a basis)
e we can compute the effect of the representation on some elements of Ss:
— if g = (1 2 3), then:

(123)-e1=0-e1+1-e2+0-¢3
(123)-6220'61+0'62+1-63
(123)-63:1-€1+0'€2+0'63

so its corresponding matrix is:
0 0 1

px((123))=11 0 0
010

where notice, this has the effect of permuting the columns of the identity matrix according to the

permutation

— similarly
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3 G-Stability

3.1 Definition: Intertwining Operator

Consider 2 representations:
p:G—GL(V) o:G— GL(W)
A homomorphism or intertwining operator is a linear map:
p: VW

such that:
Vg € G, a(g)op =pop(g)

If ¢ is bigective, then it is an isomorphism.
(Definition 1.12)

An alternative way of thinking about the intertiwing operator is as the mapping required such that the
following diagram commutes:

vV L w

p(g)l lﬂ(g)

VTH/V
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3.2 Definition: Equivalent Matrix Representations

Matrix representations
are equivalent if:

JA € GL,(k) : Vg € G, pa(g) = Ap1(g) A~

If p1, p2 are equivalent, this translates to equality of the following linear
maps in GL(K™):
pa(g) 0 A= Ao pi(g)

The converse remains true.
(Definition 1.13)

Note, when underlining matriz representations, we refer to the corresponding linear map, as per:

Let' V' be a vector space with basis B. Then:

1. ¢ — gld]s is a group isomorphism, such that
GL(V) = GL,(k)

2. representations p : G — GL(V) lead to matriz representations
ps : G — GL, (k) via:

Vge G, psg) =5lr(9)ls

3. matrix representations o : G — GL, (k) lead to
representations o : G — GL(k") via:

VgeG,vek” a(g)(v)=oa(gv

where o(g)v is matriz multiplication of o(g) (ann X n matriz) by a
column vector v € k"™

Page 8



3.3 G-Stability

For readability, if p is some representation, we denote p(g) = py.

3.3.1 Definition: G-Stable Subspace

Letp : G — GL(V) be a representation, and let U be a linear sub-
space of V.
U is G-stable if:

Vu e UVg € G, ps(u) e U

(Definition 1.14, a))

3.3.2 Definition: Subrepresentation Afforded by Subspace

Letp : G — GL(V) be a representation, and let U be a linear sub-
space of V.

Suppose that U is G-Stable.

The subrepresentation of p afforded by U is:

pv: G — GL(U)

given by:
Yw € U,¥g € G, py(g)(w) = py(w)
(Definition 1.14, b))

3.3.3 Definition: Quotient Subrepresentation Afforded by Subspace

Letp : G — GL(V) be a representation, and let U be a linear sub-
space of V.

Suppose that U is G-Stable.

The quotient representation of p afforded by U is:

pvju : G = GL(V/U)
given by:
Yo+ U e V/UNg e G, pyuw(g)v+U) =py(v) +U
(Definition 1.14, c))
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3.3.4 Remark: Short Exact Sequence

We can represent this sequence of vector spaces as a short exact se-

quence:
O—+A—->B->C—=0

Here:
e (' is the quotient of B by A
e A is the kernel of the canonical mapping B — C

In our case, we’d have:

O—-U—=V—=V/U—O0O

3.4 Lemma: G-Stable Subspaces from Homomorphisms

Let
p: VW

be a homomorphism between the representations:
p:G— GL(V) o:G— GL(W)
Then:
1. ker(yp) is a G-stable subspace of V

2. im(y) is a G-stable subspace of W
(Lemma 1.15)

Proof. Both kernels and images are subspaces of V, W respectively. Recall, a subspace is G-stable if:

Letp : G — GL(V) be a representation, and let U be a linear sub-
space of V.
U is G-stable if:

Vu € U Vg € G, py(u) € U

(Definition 1.14, a))
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Let g € G,k € ker(p) C V. We need to show that:

py(k) € ker(p)

Then, using the definition of homomorphism:

p(pg(k)) = o4(p(k)) = 04(lw) = 1w <= py(k) € ker(p)
where we use that o, is an invertible linear map. Thus, ker(y) is indeed a G-stable subspace of V.

Let g € G,m € im(p) C W. We need to show that:
og(m) € im(p)
Since m € im(yp),Jv € V : p(v) = m. Then, using the definition of homomorphism:
og(m) = aq(p(v)) = (py(v)) € im(p)

Thus, im(y) is indeed a G-stable subspace of W.

3.5 Theorem: First Isomorphism Theorem for Representations

Letp : G — GL(V) be a representation, and let U be a linear sub-
space of V.
Then, there is a natural isomorphism:

V/ ker(p) = im(e)

between the G-representations pyyec(y) and Oim(yp)-
(Lemma 1.15)

3.6 Example: Trivial Subrepresentations Don’t Imply Trivial Representations
e let k be the finite field [F, and G = (), have generator g

e let p: G — GLy(k) be the matrix representation given by:

. 1
p(gl)—( )
0 1

where i € [0, p — 1]. This can be easily verified to show that p(g'g’) = p(g°)p(g?).

e the standard basis for V = ]Ff, si given by:



e in fact, this shows that the subrepresentation of p afforded by U, py, is trivial, since any ¢° € G
maps into the identity automorphism in GL((v)):

e similarly, consider the action of G on the quotient space IE"ZQ) / (v1)

e again, the quotient representation of p afforded by U is trivial
e however, p itself is not trivial!

e this gives us the short exact sequence:

O—1-F,—-1-0

3.7 Definition: Irreducible Representations

The representation
p:G— GL(V)

is trreducible/simple if:
1. V is not the zero vector space
2. if U is a G-stable subspace of V, then either:
o U ={0}
e U=V
(Definition 1.18)

Irreducible representations are the atoms of representation theory: finding all the irreducible
representations up to isomorphism is a major goal of representation theory.
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3.8 Maschke’s Theorem

3.8.1 Definition: G-Stable Complement

Let
p:G— GL(V)

be a representation, and let U be a GG-stable subspace.
A G-stable complement for U in G is a G-stable subspace W such

that:
V=UsoW
where recall, this means that:
o U+W=V
o UNW = {0}

(Definition 1.19)

3.8.2 Example: G-Stable Complement in Permutation Representation of S3

e consider the permutation representation of S5 when acting on kX, where X = {e1,e2,e3}

e let
U: <61+62+63>

U is a subspace of kX, and since the generator of U is symmetric in the indices of ey, eq, e3, S3 fixes
every u € U, so U is S3-stable (and affords a trivial subrepresentation of V')

can we find a non-trivial subrepresentation? Consider

W = {CL161 + ageos + ases | a1 +ag+asg = 0}

e W is also Sz-stable (due to the condition a; 4+ as + a3 = 0 holding irrespective of how we permute
€1,€2, 63)

we claim that W is a S3-stable complement to U

— notice, UNW = 0, since U contains sums of all 3 basis vectors, but W can never contain such a
sum (or multiples thereof)

— to show that U+ W = kX, it is sufficient to show that we can generate a basis for kX from U, W.
For sake of argument, lets consider constructing e;. For some m € k, a general element in U + W
is given by:

m(e1 + ea + e3) + arer + ages + azes = (m+ ay)er + (m + az)es + (m + asz)es
Solving simultaneous equations and using the fact that a; + as + a3 = 0, we get that:
m = —az = —az (11—03:1 a1 = —az — asg

It follows that:
—3&3 =1
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Thus, assuming that char(k) # 3, we can always solve this system. For example, using m =

—1,a1 :27a2 = a3 = 1)

A perhaps easier way of reaching the same conclusion is to notice that:
dim(U) =1 dim(W)=2

but dim (V') = 3. Since U, W <V, it suffices to show that U N W s trivial.
Indeed, assume that:

)\(61+62+63)€Uﬂw

In particular, this requires that 3\ = 0, which, if char(k) # 0 implies that
A=0,s0UNW ={0}.

e moreover, we can construct a basis for W via:
B={vi =e —e2,v3 =e3 —e3}
e 53 is generated by the permutations (1 2) and (1 2 3); thus, the degree 2 matrix representation:
o=glpw|s: G — GLy(k)

is determined by its effect on B

e we compute:

(1 23)'(61—62)262—63:’02
(1 3)'(62*63) =€3— €1 = VU1 — U2
S0:
0 -1
o((123)) =
1 -1
Similarly:
(12)-(e1—e2) =ex—e1=—v;
(12)-(e2—e3)=e1 —ez3=v1 + v
S0:
-1 1
o((123)) =
0 1

3.8.3 Theorem: Maschke’s Theorem

Turns out, we can always find G-stable complements.

Page 14



Let G be a finite group, |G| # 0 in k (i.e |G| isn’t a multiple of char(k)).
Let U be a G-stable subspace of a finite-dimensional G-

representation V. Then, U admits at least one G-stable complement

WinV.
(Theorem 1.21)

Proof. Start with a basis for U. We can extend it to a basis for V', which yields a linear complement Z for
UinV:
V=UsZ

Generally Z won’t be G-stable, but we can use it to generate a G-stable complement.
Let m: V — V be the projection map for V=U & Z:
YueUzeZ, n(u+z)=
Define a new linear map ¢ : V — V via:
YoeV, o |G| Z x- - v))
zeG

where we’ve used the notation:
p(g)(v) =g-v

for some representation p : G — GL(V'). Notice, ¢ is linear: it is a sum of compositions of linear mappings

We claim that ¢ is a homomorphism of representations. Consider:

|Gle(g =z (r(@"-(g-v)))

zeG

1

Now, make the substitution y~' = 27 'g. Then, = gy, and the sum can be made to run over all y € G-

Glelg---v) =Y (g9)- (ry™ - v) =g | D_y-(xy™"-v) | =g-|Cle(v)

yeG yeG

where we’ve used properties of group actions (from the fact that p is a homomorphism, so ¢ - v = p(g)(v)
defines a group actions). Thus, after cancelling |G|:

p(g-v) =g-¢(v)
which is precisely the definition of ¢ being a representation homomorphism.

Now, let u € U, then:

1 ~1
o) = g S o )
S Z x-(x7tu)  (since U is G-stable, ™' -u € U, so 7 does nothing)
|G| zeG
=u
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To recap:

e ¢ :V — V is a representation homomorphism
o Vue U p(u)=u

Now, let W = ker(y) < U. By:

Let
p: VW

be a homomorphism between the representations:
p:G— GL(V) o:G— GL(W)
Then:
1. ker(yp) is a G-stable subspace of V

2. im(yp) is a G-stable subspace of W
(Lemma 1.15)

W is a G-stable subspace of V. Moreover, by the rank-nullity theorem:

dim(W) = nullity(¢) = dim(V') — rank(¢p)

V)
Moreover, im(7) = w(V) = U, so by definition of ¢, ¢(V) = im(V) C U (since U is G-stable, then
m(z7l-v) € U,soz-w(z7t-v) € U). But (U) = U, so U = p(U) C (V) implies that o(V) = U so
im(¢) = U and rank(y) = dim(U). Putting it all together:

—_

dim(V) = dim(W) + dim(U)
It remains to show that W N U is empty, but this follows easily: assume that v € W NU. Then:

OsincengﬁV(p(rU) since:'UEUU
Thus, W N U is empty, as required.

Hence, V =U @& W, and W = ker(yp) is a G-stable complement to U in V.
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3.8.4 Definition: Completely Reducible Representation

Let:
p:G— GL(V)

be a representation.

p is completely reducible if there exist G-stable subspaces
Uy, ..., U, <V such that:

and the subrepresentation of G afforded by each U; is irreducible, or

if V= {0}.
(Definition 1.23)

3.8.5 Corollary: Representations of Finite Groups are Completely Reducible

Let G be a finite group, and suppose that:
char(k) |G|
Then, every finite dimensional representation
p:G— GL(V)

1s completely reducible.
(Corollary 1.24)

Proof. We induce on n = dim(V).

@

If n = 0, then V = {0} and by definition, p is completely reducible.

Assume that if dim(V') = k, then p is completely reducible.

®

Let dim(V') = k + 1. Pick U; to be a non-zero, G-stable subspace of V' of smallest dimension (if no such
U, exists, then V will already be completely reducible).

We claim that U; is irreducible. Consider some S < U;. Assume that 0 < dim(S) < dim(Uy). If Uy is

not irreducible, then S will be a G-stable subspace of V', and have smaller dimension than U;, which is a
contradiction. Thus, either S = {0} of dim(S) = dim(U;) == V =5, so U; is indeed irreducible.
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By Maschke’s Theorem, Uy admits a G-stable complement W. But dim(W) < dim(V), so by induction,
there exist G-stabel irreducible subspaces Us, ..., U,, such that:

wW=U®...U,, —= V=U;0Us®...U,

as required.
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