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Based on the notes by Renaud Lambiotte and Pete Grindrod, Chapters 8 & 10

1 Growing Networks

1.1 Scaling Laws: Combining Graphs from Set

1.1.1 Notation

This section focuses on how we can construct new graphs by successively merging smaller graphs together
(in a way this is dual to the process of community detection). For this:

• let S be the set of undirected graphs over a finite number of vertices

• if S ∈ S, then:

– V (S) denotes its vertex set

– E(S) denotes its edge set

• ♢ denotes a binary and commutative operation on graphs in S (for example, a disjoint union of
2 graphs)

• if we apply ♢ to S ∈ S n times, we denote this via:

nS = S♢ . . .♢S︸ ︷︷ ︸
n

• a Banach Space χ is a complete normed vector space:

– complete: every Cauchy Sequence in χ converges to some limit in χ

– normed: there exists a norm ∥ · ∥, such that for any vector in the space, the norm is non-
negative, positive definite, satisfies the triangle inequality and if λ is a scalar, ∥λv∥ = |λ|∥v∥

For example, R is a Banach Space

1.1.2 Definition: Well-Behaved Scoring Function

When dealing with growing networks, we want to have some function which tells us how certain network
properties (both mathematical, like degree distribution, but also properties inherent to the data encoded in
the network, such as when analysing biological networks. For this we need functions which are well-behaved:
that is, they behave smoothly given small changes in the edge set.
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Let B be a Banach Space, and consider functions

Q : S → B

Then, Q is well-behaved with respect to the edge set if:

∃C > 0 : ∀S1S1 ∈ S, ∥Q(S2)∥B − ∥Q(S1)∥B ≤ C
|E(S2 \ S1)|
|E(S1)|

where:

• S2 ∈ S is the result of adding edges of S1

• |E(S2 \ S1)| = |E(S2)− E(S1)| is the change in the number of edges

In particular, this says that Q is well-defined whenever if E(S1) → ∞ and
adding a fixed number of edges becomes negligible, we get that:

∥Q(S2)∥B − ∥Q(S1)∥B → 0

• If Q is a function counting the number of connected components in S ∈ S, is Q well-defined
on the edge set?

– suppose G is a graph composed of many disconnected components

– if we add a single edge connecting 2 such components, then:

∥Q(S2)∥B − ∥Q(S1)∥B = 1

– however:

C
|E(S2 \ S1)|

|E(S1)|
=

C

|E(S1)|
so no such C > 0 can exist for every S1 ∈ S, since we’d require that:

1 <
C

|E(S1)|

always
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1.1.3 Definition: Scaling Function

A scaling function for:

• a Banach Space B

• a well-defined map Q : S → B

• a binary and commutative operation on S ♢

is a mapping
H : B × Z+ → B

describing how Q behaves on nS, given how Q behaves on S:

∀S ∈ S, n ∈ Z+, Q(nS) = H(Q(S), n)

For any (S,♢,B, Q), there is no guarantee that a scaling function
even exists.

1.1.4 Proposition: Lipschitz Condition on Scaling Functions

A function f : R → R is Lipschitz Continuous if there exists a constant L such that

∀x, y ∈ R, |f(x)− f(y)| ≤ L|x− y|

Lipschitz Continuous functions are smooth and very well-behaved. We translate Lipschitz Continuity to our
functions Q : S → B, and use this to provide a sufficient condition for the existence of sacling functions.

Let B be a Banach Space, and consider a well-defined function on
edges:

Q : S → B
Suppose that ∀S ∈ S, there exists C(S) > 0 such that:

∀S1, S2 ∈ S, ∥Q(S1♢S)−Q(S2♢S)∥B ≤ C(S0)∥Q(S1)−Q(S2)∥B

Then, there exists a scaling function

H : B × Z+ → B

satisfying:
Q(nS) = H(Q(S), n)
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1.1.5 Proposition: Power-Law Scaling Functions

A solution to the functional equation

Q(nS) = H(Q(S), n)

given the initial condition:

H(Q, 1) = Q

is given by:
H(Q, n) = Qn−α + β(1− n−α)

where α ∈ R, β ∈ B are constants.

Proof. We begin by noting that:

Q(nmS) = Q(n(mS)) = H(Q(mS), n) = H(H(Q,m), n)

so a (defining) property of scaling functions is:

Q(nm) = H(H(Q,m), n)

(where we recover the original definition by setting m = 1 and using the initial condition H(Q, 1) = Q).

Now, for any α ∈ R, we claim that:
H(Q,n) = Qn−α

satisfies the properties of a scaling function. Indeed, for any S ∈ S:

Q(nm) = Q(nm)−α = (Qm−α)n−α = (H(Q,m))n−α = H(H(Q,m), n)

and it also satisfies the initial condition:
H(Q, 1) = Q

Now, assuming H is non-trivial (so that α ̸= 0), we may assume that the (general) form of H is given
by:

H(Q,n) = Qn−α + g(n)

where so that H satisfies the initial condition

g(1) = 0

Assuming that for n,m ∈ R we have:

Q(nm) = H(H(Q,m), n)

we must have that:

Q(nm)−α + g(nm) = H(Q,m)n−α + g(n) = (Qm−α + g(m))n−α + g(n)
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which implies that:
g(nm) = g(m)n−α + g(n)

If we differentiate with respect to m:

g′(mn)n = g′(m)n−α =⇒ g′(mn) = g′(m)n−α−1

Now, setting m = 1:
g′(n) = g′(1)n−α−1

If we define:
g′(1) = αβ

for some β ∈ B, we thus obtain:
g′(n) = αβn−α−1

This is a differential equation, which can be solved by separation of variables:

g(n) =

∫
αβn−α−1dn = −βn−α + C

and using the initial condition g(1) = 0 we have that

0 = −β + C =⇒ C = β

so:
g(n) = β(1− n−α)

Thus:
H(Q,n) = Qn−α + β(1− n−α)

as required.

1.1.6 Remark: Lipschitz Scaling Function for Non-Commutative Operations

If ♢ is non-commutative, we require that Q is Lipschitz Continuous
from the left and right. In particular, if ∀S ∈ S there exists C(S) > 0 such
that ∀S1, S2 ∈ S:

max{∥Q(S1♢S)−Q(S2♢S)∥B,
∥Q(S♢S1)−Q(S♢S2)∥B}
≤ C(S0)∥Q(S1)−Q(S2)∥B

Then, there exists a scaling function H, such that:

Q(nS) = H(Q(S), n)

1.2 Scaling Laws: Combining Graphs from Distribution

1.2.1 Notation

• let S be the set of undirected graphs over a finite number of vertices
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• a random graph W is a probability distribution PW (S) defined over S (i.e with an independent
probability for each edge, or range-dependent graphs like in the small world configuration)

• let W denote the set of all random graphs

• □ denotes a binary and commutative operation on random graphs in W

• if we apply □ to W ∈ W n times, we denote this via:

nW = W□ . . .□W︸ ︷︷ ︸
n

1.2.2 Proposition: Lipschitz Condition on Scaling Functions for Random Networks

Let B be a Banach Space, and consider a well-defined function on
edges:

Q : W → B
Suppose that ∀W ∈ W, there exists C(W ) > 0 such that:

∀W1,W2 ∈ W , ∥Q(W1♢W )−Q(W2♢W )∥B ≤ C(W0)∥Q(W1)−Q(W2)∥B

Then, there exists a scaling function

H : B × Z+ → B

satisfying:
Q(nW ) = H(Q(W ), n)

1.2.3 Example: Preferential Attachment Stochastic Block Model

• recall the preferential attachment model
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The BA Model constructs an evolving network using the following
steps:

1. Consider n0 initial vertices, each with degree at least one (i.e a
clique)

2. Add a new vertex to the network, with m < n0 half-edges. If the
network has n′ vertices (initially n′ = n0) with degrees di, the
probability that a half-edge connects to vi is given by:

Π(di) =
di∑n′

j=1 dj
, i ∈ [1, n]

This is the preferential attachment mechanism: vertices with
higher degree are more likely to get attached to. However, this must
be carried out carefullya

3. Continue repeating step 2 until we reach a desired number of vertices
n.

aDuring this step, we should avoid generating multiple edges between 2 vertices. Moreover,
it is a design decision whether we need to update the di as new edges are generated through this
process

• this can be generalised in the following way:

– fix parameters K (number of nodes) and p (probability of generating an edge)

– these define a Erdös-Rényi Graph G(K, p)

– we define an existing combination graph (ECG), initiliased as a single graph fdrawn from
G(K, p)

– then, we generate a new graph Γ from G(K, p)

– using the vertex degree distributions of the ECG and Γ, we select 2 vertices in the ECG and
Γ to join via an edge (this is nothing but preferential attachment, whereby the vertices of
higher degree in the 2 graphs are most likely to be joined)

– after n steps, this results in a random graph with Kn vertices (called a PASBM graph)

• in this case, □ corresponds to degree-biased, random preferential attachment

• moreover, if K = 1 (so that we are joining single nodes), this defaults to the standard preferential
attachment model
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Figure 1: Example of the PASBM model. The 3 vertices with the highest degree have been highlighted.
This used K = 10, p = 0.6, n = 100.

1.3 Alternative Random Graph Combination Operations

1.3.1 Mechanistic Aggregative Combination

• can be thought of to further generalise preferential attachment

• given 2 graphs, we randomly join 2 nodes according to a distribution proportional to the rth power
of the vertex degree distributions of the graphs:

– as r → 0, this is non-preferential attachment (since we uniformly randomly select 2 vertices
to join, one from each graph)

– as r → ∞, this is most popular vertex attachment (since we will jsut join the vertices of
maximum degree within each graph)

• to further generalise this, at each step, we might choose to join J > 1 edges, so called multiple-edge
preferential attachment

1.3.2 Product Combination

• we can add graphs hierarchically

• each random graph is defined by a core vertex; non-core vertices are called peripheral

• we initialise a graph G
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• at each iteration, we expand G, by generating a new graph Γ, and then attaching peripheral vertices
of Γ to the core node of G

• notice here that the combination operator □ will not be commutative

1.3.3 Probability Distribution Combination

• since random graphs are probability distributions, we can generate new random graphs by com-
bining their probability distributions

• let
h : [0, 1]2 → R+

is a commutative map of 2 variables

• if W1,W2 are random graphs, then we can define □ via:

PW1□W2
(S) =

h(PW1
(S), PW2

(S)))∑
S′∈S h(PW1(S

′), PW2(S
′)))

• if h(x, x) = x, then W□W = W

2 Decomposing Trees

In this article they discuss how the Hodge decomposition can be used analyse Bitcoin Money Flow.

2.1 Definition: Flow Trees

A tree is a connected graph with no cycles.

If a tree is a weighted graph, we can interpret the weights as flow:
that is, if there is an edge vi → vj with weight k ∈ R, we can interpret
k as the amount of flow between vi and vj.

2.2 Helmholtz-Hodge Decomposition

2.2.1 Motivation: Hodge Decomposition of Vector Fields

• What is a vector field?

– a mapping, which assigns to each point in some space a vector

– for example:

F (x, y, z) =
〈
x2 + y,

z

ex
, 2
〉

defines a vector field

• What is the divergence of a vector field?

– let F be a vector field on a n dimensional space, defined by variables {xi}i∈[1,n]
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– the divergence of F is defined as:

divF = ∇ · F =

n∑
i=1

∂Fxi

∂xi

– the divergence gives a measure of flow at a given point in space, due to F

– for example, if F represents the motion of a fluid, and the divergence at a point is positive,
then the point acts like a source (fluid emanates from the point); if the divergence is negative,
the point acts as a sink (fluid goes towards the point)

• What is the gradient of a vector field?

– let F be a vector field on a n dimensional space, defined by variables {xi}i∈[1,n]

– the gradient of F is another vector field, defined as:

∇F =

〈
∂Fx1

∂x1
, . . . ,

∂Fxn

∂xn

〉
– the gradient gives the direction of maximum increase of F

• What is the Hodge decomposition of a vector field?

– we can decompose any vector field as:

F (r) = G(r) +R(r)

where:

∗ R has 0 divergence
∇ ·R(r) = 0

This can be interpreted as there being no flow.

∗ G is the gradient of some other vector field:

∃Φ : G(r) = −∇Φ(r)
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2.2.2 Proposition: Helmholtz-Hodge Decomposition of Directed Graph

Let T be a tree, with vertex set V . Let:

• A be the adjacency matrix of T

• B be the weight matrix of T , such that Tij ∈ R+ denotes the
weight of the edge Aij

Define:

• a symmetric matrix

W =
A+ AT

2

• a net flow matrix
F = B −BT

where Fij gives the net flow from i to j

The Hodge Decomposition of F is:

Fij = Wij(ϕi − ϕj) + F circ
ij

where:

• ϕi ∈ R is the Hodge potential at vertex vi

• the matrix defined by F circ
ij is the divergence free flow of edge i, j,

which is defined to satisfy:

n∑
j=1

F circ
ij = 0

• How can we compute the Hodge decomposition for any matrix?

– using the property of divergence free flow, we can write:

n∑
j=1

Fij =

n∑
j=1

Wij(ϕi − ϕj) = ϕi

n∑
j=1

Wij −
n∑

j=1

Wijϕj

– if we let L be the Laplacian of W :

L = diag(W 1)−W

then if we define:

wi =

n∑
j=1

Wij
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we have that:

−
n∑

j=1

Wijϕj =

n∑
j=1

(Lij − wiδij)ϕj

=

 n∑
j=1

Lijϕj

− wiϕi

=

n∑
j=1

Lijϕj − ϕi

n∑
j=1

Wij

– in other words:
n∑

j=1

Fij =

n∑
j=1

Lijϕj

– since L isn’t invertible (as it has a non-trivial nullspace - L1 = 0), the system defined by:

n∑
j=1

Fij =

n∑
j=1

Lijϕj

can’t be solved

– however, if we restrict the ϕi to be orthogonal to 1:

n∑
i=1

ϕi = 0

then the system has a unique solution for the ϕi

– then, from the ϕi, Fij and Wij , we can solve for F ◦
ij

2.3 Helmholtz-Hodge Decomposition from Perturbing Tree

• What is the effect of adding cycles to a tree in the corresponding Hodge Decomposition?

– if we connect vertices in the tree, such that a cycle is formed, then the divergence free flow
will no longer satisfy:

n∑
j=1

F ◦
ij

– this will also visibly alter the Hodge Potentials
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Figure 2: An example of a tree.

Figure 3: We join 2 vertices together, thus creating a cycle of 12 elements.
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Figure 4: WE then compute the Hodge Potentials. In blue are the potentials for the original tree. In red are
the potentials for the graph which now contains a single cycle. Notice the big difference between the before
and after.

2.4 Breaking Cycles in Directed Graphs

• Given a directed graph, what is the best way of eliminating edges to produce a tree with
properties similar to the original graph?

– we apply the Hodge decomposition to the graph

– we thus obtain a matrix F circ

– if we define:
β =

∑
i,j

(Fij)
2

then:
β = 0 ⇐⇒ graph is a tree

– thus, we follow an iterative process: at each step, delete the edge which leads to the largest
decrease in β, until β = 0

– this generates a tree (which is simpler to work with) but which has algebraic properties similar
to the original graph
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Figure 5: Consider the following (directed) graph.

Figure 6: The adjacency and weight matrices are given by A and B respectively.

Figure 7: If we apply the Hodge Decomposition, then we obtain the following matrix for F circ.
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Figure 8: Successively removing the edges which most decrease β, we obtain the following sequence for F circ.
At the end, removing any edge will result in a tree. Then, all the flow in the tree will come as part of the
potential flow.
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