Networks - Week 6 - Discrete Random Walks on Networks

Antonio León Villares

November 2023

Contents

1	Formalising Discrete Random Walks			
	1.1	Discre	te Random Walks on Networks	
	1.2	Propos	sition: Spectral Information of the Transition Matrix	
	1.3	The C	heeger Constant and the Spectral Gap	
			The Spectral Grap	
		1.3.2	Definition: The Cheeger Inequality	
2	Applications of Random Walks			
	2.1		ageRank Algorithm	
		2.1.1	Motivating PageRank	
		2.1.2	Definition: Random Walk with Teleportation	
		2.1.3	Proposition: PageRank Stationary State	
	2.2	Epider	nic Modelling	
		2.2.1	The SIS Model	
		2.2.2	The SIR Model	

1 Formalising Discrete Random Walks

1.1 Discrete Random Walks on Networks

- Given a transition matrix, how can we compute the probability of a random walker arriving at a given vertex?
 - let T be a **transition matrix**, such that:

 T_{ij} = probability that the walker goes from i to j

- the **probability** of the walker reaching the *i*th node in t steps is $p_i(t)$, which is the component of the matrix:

$$p(t) = p(0)T^t$$

- this section focuses on understanding p through the **spectral properties** of T
- What is the trnasition matrix for a random walk?
 - given a **random walk**, where the walker will uniformly randomly pick an adjacent edge:

$$T_{ij} = \frac{A_{ij}}{d_i}$$

where d_i denotes the **degree** of the *i*th vertex

- When is the transition matrix symmetric?
 - whenever the underlying network is **symmetric** (need an undirected graph) and whenever each vertex has the same degree
 - for $T_{ij} = T_{ji}$ we need that:

$$A_{ij} = A_{ji} \qquad d_i = d_j$$

- If the transition matrix is not symmetric, how can we derive its spectral properties?
 - symmetric matrices have very nice, well-studied spectral properties (Perron-Frobenius Theorem, guarantee on real eigenvalues, etc...)
 - even if T isn't symmetric, we can still study its properties through a **related** matrix which is symmetric:

$$\tilde{A}_{ij} = \frac{A_{ij}}{\sqrt{d_i d_j}}$$

(whenever A is a symmetric matrix)

- notice, the **spectral properties** of \tilde{A} will be essentially equivalent to those of the **normalised** Laplacian

Let A be an adjacency matrix. The Laplacian of A is constructed by defining a matrix

$$D = \operatorname{diag}(d_1, \dots, d_n)$$

where d_i is the *i*th row sum of A. The Laplacian of A is the **symmetric** matrix:

$$L = D - A$$

The normalised Laplacian is given by:

$$\tilde{L} = I - D^{-1/2} A D^{-1/2}$$

where since D is a diagonal matrix:

$$D^{\omega} = \operatorname{diag}(d_1^{\omega}, \dots, d_n^{\omega})$$

where we identify:

$$\tilde{A} = D^{-1/2}AD^{-1/2}$$

- How can we express \tilde{A} in terms of its spectrum?
 - since \tilde{A} is **real** and **symmetric**, we can **diagonalise** it:

$$\tilde{A} = U \Lambda U^T$$

- if $\{\lambda_i\}_{i\in[1,n]}$ gives a set of **eigenvalues**, and $\{\underline{u}_i\}_{i\in[1,n]}$ gives a set of **eigenvectors**, then the **orthonormal decomposition** of \tilde{A} is:

$$\tilde{A} = \sum_{i=1}^{n} \lambda \underline{u}_i \underline{u}_i^T$$

- How can we use the spectrum of \tilde{A} to express T?
 - notice:

$$T_{ij} = \frac{\sqrt{d_j}\tilde{A}_{ij}}{\sqrt{d_i}}$$

so in particular, if $D = \operatorname{diag}(d_1, \ldots, d_n)$ denotes the diagonal matrix of degrees of A:

$$T = D^{-\frac{1}{2}} \tilde{A} D^{\frac{1}{2}}$$

- in particular, the **eigenvalues** of T are the same as those for \tilde{A} and:
 - * the **right eigenvectors** of T are:

$$\underline{w}_i^R = D^{-\frac{1}{2}}\underline{u}_i$$

since:

$$D^{-\frac{1}{2}}\tilde{A}D^{\frac{1}{2}}(D^{-\frac{1}{2}}\underline{u}_{i}) = D^{-\frac{1}{2}}(\tilde{A}\underline{u}_{i}) = \lambda_{i}D^{-\frac{1}{2}}\underline{u}_{i}$$

* similarly, the **left eigenvectors** of T are:

$$\underline{w}_i^L = D^{\frac{1}{2}}\underline{u}_i$$

- this gives us the **eigendecomposition**

$$T = \sum_{i=1}^{n} \lambda_{i} \underline{w}_{i}^{R} \left(\underline{w}_{i}^{L}\right)^{T}$$

- Using the eigendecomposition of the transition, how may we express the walker probability matrix p(t) (known as teh stationary density)?
 - using the **eigendecomposition**, we have that:

$$T^{t} = \sum_{i=1}^{n} \lambda_{i}^{t} \underline{w}_{i}^{R} \left(\underline{w}_{i}^{L}\right)^{T}$$

– hence, if p(t) is a **row vector**:

$$\underline{p}(t) = \underline{p}(0)T^t = \sum_{i=1}^n \lambda_i^t \left(\underline{w}_i^L\right)^T (\underline{p}(0)\underline{w}_i^R)$$

- In practice, how is the stationary density computed?
 - via a power method
 - that is, start with a random vector \underline{v}_0
 - then define:

$$\underline{v}_{i+1} = T\underline{v}_i$$

1.2 Proposition: Spectral Information of the Transition Matrix

Let T be the **transition matrix** given by:

$$T_{ij} = \frac{A_{ij}}{d_i}$$

Then:

1. All eigenvalues λ_i of T lie in the interval [-1, 1]

2. The left eigenvector $(\underline{w}_i^L)^T$ corresponding to the eigenvalue

$$\lambda_i = 1$$

gives the **stationary density** of the **transition matrix**; that is we have:

$$(\underline{w_j^L})^T = \underline{p}^*$$

whereby:

$$\lim_{t \to \infty} \underline{p}(t) = \underline{p}^* \qquad and \qquad p^* = p^*T$$

3. The **right eigenvector** \underline{w}_{i}^{R} corresponding to $\lambda_{j} = 1$ is such that:

$$\underline{w}_{j}^{R} \propto \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

4. The eigenvalue λ_j is the largest magnitude eigenvalue, and all elements of \underline{w}_j^R , \underline{w}_j^L are positive.

Proof. We make extensive use of the Perron-Frobenius Theorem, since we assume that T is irreducible (i.e that there is always a path between any 2 vertices i, j, or that $\exists n : T^n = 0$).

Let A be a $n \times n$ matrix, such that A:

- is irreducible
- non-negative
- has spectral radius $\rho(A) = r > 0$

Then:

- 1. r is an eigenvalue of A (called the Perron-Frobenius eigenvalue)
- 2. r is **simple**. In particular:
 - r has algebraic multiplicity 1 (it is not a repeated eigenvalue)
 - r has **geometric multiplicity** 1 (both right and left eigenspaces are one-dimensional - this is because geometric multiplicity is bounded by algebraic multiplicity
- 3. A has left/right eigenvectors with eigenvalue r, and whose components are all positive
- 4. the only **eigenvectors** whose components are **all positive** are those associated to r
- 5. r is **bounded** above/below by the maximum and minimum **row** sums of A (and also the **column** sums):

$$\min_{i \in [1,n]} \sum_{j=1}^{n} A_{ij} \le r \le \max_{i \in [1,n]} \sum_{j=1}^{n} A_{ij}$$

1

By Perron-Frobenius (part 5), the Perron-Frobenius Eigenvalue of T is bounded by row/column sums of T. In particular:

$$r \le \sum_{j=1}^{n} \frac{A_{ij}}{d_i} = \frac{1}{d_i} \sum_{j=1}^{n} \frac{A_{ij}}{d_i} \frac{d_i}{d_i} = 1$$

where we've used the definition of degree as:

$$\sum_{j=1}^{n} \frac{A_{ij}}{=} d_i$$

In particular, since the eigenvalues of T are all real (as they are eigenvalues of a real symmetric matrix \tilde{A}), and the absolute value of all eigenvalues is bounded by the spectral radius (which is given by the Perron-Frobenius Eigenvalue), it follows that any eigenvalue of T satisfies:

$$\lambda_i \in [-1, 1]$$

(2)

By definition of the stationary density:

The non-negative stationary density is a vector:

$$\underline{p}^* = (p_1^*, \dots, p_n^*)$$

where:

$$p_i^* = \lim_{t \to \infty} p_i(t)$$

and:

$$p^* = p^*T$$

it corresponds to the left eigenvector of the transition matrix with eigenvalue 1. This is precisely $(\underline{w}_i^L)^T$.

(3)

If \underline{w}_i^R is the right eigenvector of T with eigenvalue 1, we have that:

$$T\underline{w}_j^R = \underline{w}_j^R$$

Notice also that if

$$\underline{v} = c \begin{pmatrix} 1 \\ \vdots 1 \end{pmatrix}$$

Then:

$$T(c\underline{v}) = c\underline{v}$$

since the row sums of T are 1 (as each row element is a probability). Hence, $c\underline{v}$ is a right eigenvector of T with eigenvalue 1, so in particular:

$$\forall c \in \mathbb{R}, \qquad \underline{w}_j^R = c\underline{v}$$

(4)

This is properties 1 and 3 of the Perron-Frobenius Theorem.

1.3 The Cheeger Constant and the Spectral Gap

1.3.1 The Spectral Grap

- How can we approximate the stationary desnity for large t?
 - by the **Perron-Frobenius Theorem**, the **eigenvalues** of T are bounded on:

$$\lambda_i \in [-1, 1]$$

- in particular, since the **stationary density** is given by:

$$\underline{p}(t) = \sum_{i=1}^{n} \lambda_{i}^{t} \left(\underline{w}_{i}^{L}\right)^{T} \left(\underline{p}(0)\underline{w}_{i}^{R}\right)$$

as $t \to \infty$, most eigenvalues will tend to 0

- thus, if $\lambda_{max} = 1$, and λ_2 is the second largest eigenvalue (in magnitude), it follows that:

$$\underline{p}(t) \approx \left(\underline{w}_{max}^L\right)^T (\underline{p}(0)\underline{w}_{max}^R) + \lambda_2^t \left(\underline{w}_2^L\right)^T (\underline{p}(0)\underline{w}_2^R)$$

- What is the spectral gap?
 - the value:

$$\gamma = \lambda_{max} - |\lambda_2| = 1 - |\lambda_2|$$

- What does a large spectral gap imply?
 - if γ is large, the term:

$$\lambda_2^t \left(\underline{w}_2^L\right)^T \left(p(0)\underline{w}_2^R\right)$$

goes to 0 much quicker (since $|\lambda_2|$ is small)

- in particular, λ_2 controls the "relaxation time" (i.e the time required for the stationary density to stabilise into a constant)

1.3.2 Definition: The Cheeger Inequality

The Cheeger Inequality gives useful bounds on $|\lambda_2|$, and thus informs us on the relaxation time.

Let S be a vertex subset of a network, and let \overline{S} be its complement. The Cheeger Constant (also known as conductance) is defined by:

$$h = \min_{S} \left\{ \frac{\text{of edges connecting } S \text{ and } \overline{S}}{\min\{|S|, |\overline{S}|\}} \right\}$$

The Cheeger Inequality is:

$$\frac{h^2}{2} < 1 - |\lambda_2| \le 2h$$

Intuitively, this makes sense. If h is small, this implies that there are a small number of edges connecting S, \overline{S} . This can be interpreted as the graph being split into 2 communities (namely S, \overline{S}) with a few edges connecting them. In such a scenario, the probability that a random walker moves between communities is low, which menas that so too the spectral gap will be small, so in particular the relaxation time will be longer.

2 Applications of Random Walks

2.1 The PageRank Algorithm

2.1.1 Motivating PageRank

- What is the purpose of the PageRank algorithm?
 - define a centrality measure on directed networks
 - **PageRank** is defined such that a node v_i is "important" if:
 - * it has many incoming edges
 - * the incoming edges originate from important nodes

- * if v_j has an **outgoing edge** to v_i , the **out-degree** of v_j is small
- in short, v_i has to be connected to a lot of important nodes, which themselves don't share many connections with other nodes
- these requirements were used to rank webpages, based on the hyperlinks which connected the websites
- What is the PageRank of a given node?
 - the corresponding stationary density of said node, given a discrete-time random walk through the directed network
- Why can't we immediately derive a stationary density \underline{p}^* in the case of PageRank (i.e in some random directed network)?
 - the stationary density exists and is unique if and only if the network is strongly connected
 - otherwise:
 - * many possible \underline{p}^* can exist (i.e if the network contains multiple absorbing states, whereby $T_{ii} = 1$)
 - * certain p_i^* will be 0 (i.e they will be considered as irrelevant)
 - generally, real world networks (and especially the Internet) don't satisfy strong connectedness

Figure 1: Example of the **spider trap** problem, whereby 2 nodes will get $p^* = 0$. This is because once states 1, 2 are entered, they will indefinitely cycle amongst themselves. In particular, this is an example of a **periodic Markov Chain**, and it yields $\underline{p}^* = \langle 0, 0.5, 0.5, 0 \rangle$; here, two states take away all the "importance" of the other two states.

Figure 2: Example of the **dead ends** problem, whereby node 2 is an absorbing state. In such a case, the algorithm will fail to converge and no unique stationary density vector will be found. This is because once state 2 is reached, it can never be escaped; thus, different \underline{p}^* can be found through **power iteration** methods, depending on the initial conditions of the process.

- How can lack of strong connectivity be tackled?
 - PageRank can "ignore" the lack of strong connectivity by assuming node teleportation: from a given website, you can randomly "jump" to any other website (i.e you don't use a hyperlink to find a new website, you just search it up)
 - this reasonable assumption then allows us to find a unique stationary density

2.1.2 Definition: Random Walk with Teleportation

Suppose we have a **directed network** traversed by a **random walker** who's dynamics are defined by the **transition matrix**:

$$T_{ij} = \frac{A_{ij}}{d_i^{out}}$$

Then, random walks with teleportation are defined by:

$$p(t+1) = \alpha p(t)T + (1-\alpha)\underline{b}$$

or componentwise:

$$p_i(t+1) = \alpha \sum_{j=1}^{n} p_j(t) T_{ji} + (1-\alpha)b_i$$

where:

- $\alpha \in (0,1)$ is the **damping factor**, which is the probability that at any given time-step the walker follows links (and 1α is thus the probability that it teleports)
- \underline{b} is a **preference row vector** satisfying:

$$\sum_{i=1}^{n} b_i = 1$$

and such that $b_i \in [0,1]$ is the probability of randomly teleporting to the ith vertex

- What value is typically used for the damping factor?
 - a well-agreed value is $\alpha = 0.85$

2.1.3 Proposition: PageRank Stationary State

The PageRank Stationary State can be calculated via:

$$p^* = (1 - \alpha)\underline{b}(I - \alpha T)^{-1}$$

or componentwise:

$$p_i^* = b_i + \sum_{l=1}^{\infty} \sum_{j=1}^{n} b_j (T_{ji} - T_{ji}^{l-1})$$

Notice, here we assume that α is well chosen, such that the geometric series form of $(I - \alpha T)^{-1}$ is well-defined, like in Katz Centrality

2.2 Epidemic Modelling

2.2.1 The SIS Model

2.2.1.1 Definition: SIS Model

Consider a clique of n vertices. Let:

- S(t) be the **proportion** of nodes which are **susceptible** (can be infected) at time t
- I(t) be the **proportion** of nodes which are **infected** (can infect) at time t

The **dynamics** of the **SIS Model** (susceptible-infected-susceptible) are defined by a system of ODEs:

$$\frac{dS}{dt} = -\beta I(t)S(t) + \mu I(t)$$
$$\frac{dI}{dt} = \beta I(t)S(t) - \mu I(t)$$

where:

- β is the infection rate (the rate at which a suceptible node contracts an infection, and thus becomes an infected node)
- μ is the recovery rate (the rate at which an infected node recovers from the infection, and thus becomes a susceptible node

2.2.1.2 Explaining the SIS Model

- What is the probability of infection on some small time frame Δt ?
 - we can approximate this probability via:

 $\beta \Delta t$

- What is the intuition behind the ODEs defining the SIS model?
 - for the **susceptible nodes**:
 - * if S increases, then we expect the rate of change of S to decrease (since more susceptible ndoes are available to infect)
 - * increasing I will both **decrease** the number of susceptibles (since more nodes can now infect at a rate β) and **increase** the number of susceptibles (since more nodes can now recover at a rate μ)
 - * thus, if $\beta >> \mu$, the number of susceptibles will generally decrease, but if $\mu >> \beta$, the number of susceptibles will generally increase
 - similar arguments work for the **infected nodes**, but the other way round
 - in particular, we have that:

$$\frac{d}{dt}(S+I) = 0 \implies \forall t \ge 0, S+I = 1$$

(since S(0) + I(0) = 1)

- What is equilibrium like for the SIS model?
 - let S^*, I^* be equilibrium values (that is, points at which S'(t) = I'(t) = 0.
 - then, assuming that $I^* \neq 0$:

$$0 = -\beta I^* S^* + \mu I^* \qquad 0 = \beta I^* S^* - \mu I^*$$

$$\Longrightarrow \beta S^* = \mu$$

$$\Longrightarrow S^* = \frac{\mu}{\beta}$$

and since S + I = 0 always, we must then have that:

$$S^* = \frac{\mu}{\beta} \qquad I^* = 1 - \frac{\mu}{\beta}$$

- otherwise, we will have that $I^* = 0$ (i.e at equilibrium there are no infections
- What is the epidemic threshold of the SIS model?
 - the **epdiemic threshold** ε is a value such that if $\varepsilon > 1$, an **epidemic** is possible; if $\varepsilon < 1$, then sustaining the infections becomes impossible
 - in the **SIS model**, we have that:

$$\varepsilon = \frac{\beta}{\mu}$$

since if:

$$\frac{\beta}{\mu} > 1$$

then S^*, I^* remain in the range (0,1) and we have epidemic activity

- otherwise, we see that $S^* > 1, I^* < 0$ and the epidemic is unsustainable

• Does the epidemic threshold make sense?

- suppose that

$$\frac{\beta}{\mu} > 1$$

such that the **epidemic** holds

- if μ is large (i.e high recovery rate) or β is small (i.e low infection rate), we see that:

$$S^* \to 1$$
 $I^* \to 0$

– conversely, for small μ or large β :

$$S^* \to 0$$
 $I^* \to 1$

2.2.2 The SIR Model

2.2.2.1 Definition: SIR Model

Consider a **clique** of n vertices. Let:

- S(t) be the **proportion** of nodes which are **susceptible** (can be infected) at time t
- I(t) be the **proportion** of nodes which are **infected** (can infect) at time t
- R(t) be the **proportion** of nodes which are **recovered** (were infected, recovered and can no longer infect or be infected) at time t

The **dynamics** of the **SIR Model** (susceptible-infected-recovered) are defined by a system of ODEs:

$$\begin{aligned} \frac{dS}{dt} &= -\beta I(t)S(t) + \mu I(t) \\ \frac{dI}{dt} &= \beta I(t)S(t) - \mu I(t) \\ \frac{dR}{dt} &= \mu I(t) \end{aligned}$$

where:

- β is the infection rate (the rate at which a suceptible node contracts an infection, and thus becomes an infected node)
- μ is the recovery rate (the rate at which an infected node recovers from the infection, and thus becomes a susceptible node

Figure 3: Dynamics of the **SIR Model**. Notice, the **infections** always reach a peak of contagion. The idea behind **epidemic management** is to spread the peak as much as possible, to avoid strain on medical services.

2.2.2.2 Explaining the SIR Model

- What is the key dynamic difference between the SIS and SIR models?
 - in the SIR model, the infection eventually dies out, even if β is large
 - the final state solely consists of susceptible and recovered nodes
- When doos the peak observed above occur?

- if

$$\frac{dI}{dt} > 0$$

then there will be a **perceptible** infectious outbreak

- otherwise, the rate of infection won't lead to outbreaks on a visible scale