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Based on the notes by Renaud Lambiotte and Pete Grindrod, Chapter 7

1 Formalising Discrete Random Walks

1.1 Discrete Random Walks on Networks

e Given a transition matrix, how can we compute the probability of a random walker
arriving at a given vertex?

— let T be a transition matrix, such that:

T;; = probability that the walker goes from i to j

— the probability of the walker reaching the ith node in ¢ steps is p;(t), which is the compoennt
of the matrix:

p(t) = p(0)T"
— this section focuses on understanding p through the spectral properties of T'
e What is the trnasition matrix for a random walk?
— given a random walk, where the walker will uniformly randomly pick an adjacent edge:

Ayj

where d; denotes the degree of the ith vertex
e When is the transition matrix symmetric?
— whenever the underlying network is symmetric (need an undirected graph) and whenever each
vertex has the same degree
— for T;; = Tj; we need that:
Aij = Aji dl = dj
e If the transition matrix is not symmetric, how can we derive its spectral properties?
— symmetric matrices have very nice, well-studied spectral properties (Perron-Frobenius
Theorem, guarantee on real eigenvalues, etc...)

— even if T isn’t symmetric, we can still study its properties through a related matrix which is
symmetric:

Aij

d;d;

Az‘j =
(whenever A is a symmetric matrix)

— notice, the spectral properties of A will be essentially equivalent to those of the normalised
Laplacian
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Let A be an adjacency matrixz. The Laplacian of A is constructed by
defining a matriz
D = diag(dy,...,d,)

where d; is the ith row sum of A. The Laplacian of A is the symmetric

matrix:
L=D-A

The normalised Laplacian is given by:
L=1-D?AD™'/?
where since D is a diagonal matriz:

D¥ = diag(d®, . ..,d)

where we identify:
A=DV2Ap~1/2

e How can we express A in terms of its spectrum?
— since A is real and symmetric, we can diagonalise it:
A=UAUT

— if {Xi}iepi,n) gives a set of eigenvalues, and {u;};c;1,n) gives a set of eigenvectors, then the

orthonormal decomposition of A is:

e How can we use the spectrum of A to express 7?7

— notice: -
YV
so in particular, if D = diag(dy,...,d,) denotes the diagonal matrix of degrees of A:
T =D":AD?

— in particular, the eigenvalues of T are the same as those for A and:

* the right eigenvectors of T are:
since: o ) L )
D 2 AD2 (D™ 2u;) = D™ 2 (Auy;) = \iD™ 2wy,

x similarly, the left eigenvectors of T are:
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— this gives us the eigendecomposition
- T
T=> l\w(w))
i=1

e Using the eigendecomposition of the transition, how may we express the walker proba-
bility matrix p(t) (known as teh stationary density)?

— using the eigendecomposition, we have that:
" T
T = Nuwf (wf)
i=1

— hence, if p(t) is a row vector:
- T
p(t) =p(O)T" = X (wh) (p(0)wf")
i=1

e In practice, how is the stationary density computed?

— via a power method
— that is, start with a random vector v,

— then define:
Vg =T,
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1.2 Proposition: Spectral Information of the Transition Matrix

Let T be the transition matrix given by:
Al
d;

T =
Then:

1. All eigenvalues \; of T' lie in the interval [—1, 1]

2. The left eigenvector (wf)T corresponding to the etgenvalue

Ny =1l
gives the stationary density of the transition matriz; that is we
have:
()" =p’
whereby:
lim p(t) = p* and p-=p'T

t—00 — -

3. The right eitgenvector wf corresponding to \; = 1 is such that:

1

4. The etgenvalue \; is the largest magnitude eigenvalue, and all

elements of wi, wt are positive.

Proof. We make extensive use of the Perron-Frobenius Theorem, since we assume that 7' is irreducible (i.e
that there is always a path between any 2 vertices 4, j, or that In : 7™ = 0).
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Let A be an X n matriz, such that A:
e is irreducible
e non-negative
e has spectral radius p(A) =r >0
Then:
1. ris an eigenvalue of A (called the Perron-Frobenius eigenvalue)
2. r is stmple. In particular:

e 1 has algebraic multiplicity 1 (it is not a repeated eigenvalue)

e r has geometric multiplicity 1 (both right and left eigenspaces
are one-dimensional - this is because geometric multiplicity is
bounded by algebraic multiplicity

3. A has left/right eigenvectors with eigenvalue r, and whose
components are all positive

4. the only etgenvectors whose components are all positive are those
associated to r

5. 1 is bounded above/below by the maximum and minimum row sums
of A (and also the column sums):

mln AZ] <r < max A;

7
1€[1,n] i€[l, n] J

@

By Perron-Frobenius (part 5), the Perron-Frobenius Eigenvalue of T is bounded by row/column sums of
T. In particular:
Ay A, d
. < 1] _ Zj
I

where we’ve used the definition of degree as:

>4

In particular, since the eigenvalues of T" are all real (as they are eigenvalues of a real symmetric matrix
A), and the absolute value of all eigenvalues is bounded by the spectral radius (which is given by the
Perron-Frobenius Eigenvalue), it follows that any eigenvalue of T satisfies:

A € [—1, 1]

By definition of the stationary density:

Page 6



The non-negative stationary density is a vector:

p = (pi,....p})

where:
p; = lim p;(t)

t—00

and:

it corresponds to the left eigenvector of the transition matrix with eigenvalue 1. This is precisely (MJL)T

®

If Qf is the right eigenvector of T" with eigenvalue 1, we have that:

Tl = uf
Notice also that if
1
v=cCl|.
1
Then:
T(cv) = cv

since the row sums of T  are 1 (as each row element is a probability). Hence, cv is a right eigenvector of T'
with eigenvalue 1, so in particular:

®

This is properties 1 and 3 of the Perron-Frobenius Theorem.

Ve € R, Qf:cy

1.3 The Cheeger Constant and the Spectral Gap
1.3.1 The Spectral Grap

e How can we approximate the stationary desnity for large t?7

— by the Perron-Frobenius Theorem, the eigenvalues of T are bounded on:
Ai € [—1, ].]

— in particular, since the stationary density is given by:

p(t) =3 X (wh)" (pO)uh)

as t — 0o, most eigenvalues will tend to 0

— thus, if Ajpaz = 1, and Az is the second largest eigenvalue (in magnitude), it follows that:

p(t) ~ (whao) " (PO)wE ) + N (wh) " (p(0)wh)
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e What is the spectral gap?

— the value:
Y= )\maa; - |)\2‘ =1- |A2|

e What does a large spectral gap imply?

— if v is large, the term:
T
g (wy)" (p(0)ws)
goes to 0 much quicker (since |\z| is small)

— in particular, Ay controls the “relaxation time” (i.e the time required for the stationary density
to stabilise into a constant)

1.3.2 Definition: The Cheeger Inequality

The Cheeger Inequality gives useful bounds on |Aa|, and thus informs us on the relaxation time.

Let S be a vertex subset of a network, and let S be its complement.
The Cheeger Constant (also known as conductance) is defined by:

, { of edges connecting S andg}
h = min - =
min{|S], |S]}

The Cheeger Inequality is:

h2

Intuitively, this makes sense. If h is small, this implies that there are a small number of edges connecting
S,S. This can be interpreted as the graph being split into 2 communities (namely S, S) with a few edges
connecting them. In such a scenario, the probability that a random walker moves between communitieis is
low, which menas that so too the spectral gap will be small, so in particular the relaxation time will be longer.

2 Applications of Random Walks

2.1 The PageRank Algorithm
2.1.1 Motivating PageRank
e What is the purpose of the PageRank algorithm?

— define a centrality measure on directed networks

— PageRank is defined such that a node v; is “important” if:
* it has many incoming edges
* the incoming edges originate from important nodes
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* if v; has an outgoing edge to v;, the out-degree of v; is small

— in short, v; has to be connected to a lot of important nodes, which themselves don’t share many
connections with other nodes

— these requirements were used to rank webpages, based on the hyperlinks which connected the
websites

e What is the PageRank of a given node?

— the corresponding stationary density of said node, given a discrete-time random walk
through the directed network

e Why can’t we immediately derive a stationary density p* in the case of PageRank (i.e in
some random directed network)?
— the stationary density exists and is unique if and only if the network is strongly connected
— otherwise:

* many possible p* can exist (i.e if the network contains multiple absorbing states, whereby
Tii=1)
* certain pf will be 0 (i.e they will be considered as irrelevant)

— generally, real world networks (and especially the Internet) don’t satisfy strong connected-
ness

1

@

1
TO.S
0.5

®__C0©

Figure 1: Example of the spider trap problem, whereby 2 nodes will get p* = 0. This is because once
states 1,2 are entered, they will indefinitely cycle amongst themselves. In particular, this is an example of a
periodic Markov Chain, and it yields p* = (0, 0.5, 0.5, 0); here, two states take away all the “importance”
of the other two states. a
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Figure 2: Example of the dead ends problem, whereby node 2 is an absorbing state. In such a case,
the algorithm will fail to converge and no unique stationary density vector will be found. This is because
once state 2 is reached, it can never be escaped; thus, different p* can be found through power iteration
methods, depending on the initial conditions of the process. a

@

e How can lack of strong connectivity be tackled?

— PageRank can “ignore” the lack of strong connectivity by assuming node teleportation:
from a given website, you can randomly “jump” to any other website (i.e you don’t use a hyperlink
to find a new website, you just search it up)

— this reasonable assumption then allows us to find aunique stationary density
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2.1.2 Definition: Random Walk with Teleportation

Suppose we have a directed network traversed by a random walker
who’s dynamics are defined by the transition matrix:

Ay
Tyj = —o

~ _Jout
di

Then, random walks with teleportation are defined by:
pt+1)=apt)T + (1 —a)b

or componentwise:

pilt+1) =ad pit)Ty + (1 — a)b;

j=1
where:

e « € (0,1) is the damping factor, which is the probability that at
any given time-step the walker follows links (and 1 — « is thus the
probability that it teleports)

e b is a preference row vector satisfying:

n

> bhi=1

=1

and such that b; € [0,1] is the probability of randomly teleporting to
the ith vertex

¢ What value is typically used for the damping factor?

— a well-agreed value is a = 0.85
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2.1.3 Proposition: PageRank Stationary State

The PageRank Stationary State can be calculated via:
pr=(1-a) - o)™

or componentwise:

[e.e] n

pi=bi+) > bi(T—TH"

=1 j=1

Notice, here we assume that « is well chosen, such that the geometric series form of (I — aT)™ ! is
well-defined, like in Katz Centrality

2.2 Epidemic Modelling

2.2.1 The SIS Model
2.2.1.1 Definition: SIS Model

Consider a clique of n vertices. Let:

e S(t) be the proportion of nodes which are susceptible (can be
infected) at time t

e [(t) be the proportion of nodes which are infected (can infect) at
time t

The dynamics of the SIS Model (susceptible-infected-susceptible) are
defined by a system of ODEs:

9 — —B1()S() + uI()

o = BI)S() — I (1)

where:

e [ is the infection rate (the rate at which a suceptible node
contracts an infection, and thus becomes an infected node)

e 1 is the recovery rate (the rate at which an infected node recovers
from the infection, and thus becomes a susceptible node
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2.2.1.2 Explaining the SIS Model
e What is the probability of infection on some small time frame A¢?

— we can approximate this probability via:

BAt
e What is the intuition behind the ODEs defining the SIS model?

— for the susceptible nodes:

x if S increases, then we expect the rate of change of S to decrease (since more susceptible
ndoes are available to infect)

* increasing I will both decrease the number of susceptibles (since more nodes can now infect
at a rate 8) and increase the number of susceptibles (since more nodes can now recover at
a rate p)

x thus, if 8 >> pu, the number of susceptibles will generally decrease, but if 4 >> 3, the number
of susceptibles will generally increase

— similar arguments work for the infected nodes, but the other way round

— in particular, we have that:

%(su):o — Vt>0,8+1=1

(since S(0) + I(0) =1)
e What is equilibrium like for the SIS model?

— let S*, I'* be equilibrium values (that is, points at which S’(¢) = I'(t) = 0.
— then, assuming that I* # 0:

0=—BI*'S* +ul* 0=pBI*S* — ul*

.M
== ST ==
B

and since S + I = 0 always, we must then have that:

* * 1%
s*=E pr=1-L
5 5

— otherwise, we will have that I* = 0 (i.e at equilibrium there are no infections
e What is the epidemic threshold of the SIS model?

— the epdiemic threshold ¢ is a value such that if ¢ > 1, an epidemic is possible; if ¢ < 1, then
sustaining the infections becomes impossible

— in the SIS model, we have that:

B
e="
1
since if:
by
I

then S*, I* remain in the range (0,1) and we have epidemic activity

— otherwise, we see that S* > 1,I* < 0 and the epidemic is unsustainable
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e Does the epidemic threshold make sense?

— suppose that

P
o

such that the epidemic holds
— if u is large (i.e high recovery rate) or /3 is small (i.e low infection rate), we see that:
S*—=1 I"—0
— conversely, for small p or large f:
S*—=0 I"—1
2.2.2 The SIR Model
2.2.2.1 Definition: STR Model

Consider a clique of n vertices. Let:

e S(t) be the proportion of nodes which are susceptible (can be
infected) at time t

e [(t) be the proportion of nodes which are infected (can infect) at
time t

e R(t) be the proportion of nodes which are recovered (were
infected, recovered and can no longer infect or be infected) at time t

The dynamics of the SIR Model (susceptible-infected-recovered) are
defined by a system of ODEs:

9 — —B1()S() + 1)
o = BIW)S(t) — I (1)
(2—}; = pl(t)

where:

e [ is the infection rate (the rate at which a suceptible node
contracts an infection, and thus becomes an infected node)

e 1 is the recovery rate (the rate at which an infected node recovers
from the infection, and thus becomes a susceptible node
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Figure 3: Dynamics of the SIR Model. Notice, the infections always reach a peak of contagion. The
idea behind epidemic management is to spread the peak as much as possible, to avoid strain on medical
services.

2.2.2.2 Explaining the SIR Model
e What is the key dynamic difference between the SIS and SIR models?

— in the SIR model, the infection eventually dies out, even if 3 is large

— the final state solely consists of susceptible and recovered nodes
¢ When deos the peak observed above occur?

— if
dl
dt
then there will be a perceptible infectious outbreak

>0

— otherwise, the rate of infection won’t lead to outbreaks on a visible scale
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