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Based on the notes by Renaud Lambiotte and Pete Grindrod, Chapter 7

1 Formalising Discrete Random Walks

1.1 Discrete Random Walks on Networks

• Given a transition matrix, how can we compute the probability of a random walker
arriving at a given vertex?

– let T be a transition matrix, such that:

Tij = probability that the walker goes from i to j

– the probability of the walker reaching the ith node in t steps is pi(t), which is the compoennt
of the matrix:

p(t) = p(0)T t

– this section focuses on understanding p through the spectral properties of T

• What is the trnasition matrix for a random walk?

– given a random walk, where the walker will uniformly randomly pick an adjacent edge:

Tij =
Aij

di

where di denotes the degree of the ith vertex

• When is the transition matrix symmetric?

– whenever the underlying network is symmetric (need an undirected graph) and whenever each
vertex has the same degree

– for Tij = Tji we need that:
Aij = Aji di = dj

• If the transition matrix is not symmetric, how can we derive its spectral properties?

– symmetric matrices have very nice, well-studied spectral properties (Perron-Frobenius
Theorem, guarantee on real eigenvalues, etc...)

– even if T isn’t symmetric, we can still study its properties through a related matrix which is
symmetric:

Ãij =
Aij√
didj

(whenever A is a symmetric matrix)

– notice, the spectral properties of Ã will be essentially equivalent to those of the normalised
Laplacian
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Let A be an adjacency matrix. The Laplacian of A is constructed by
defining a matrix

D = diag(d1, . . . , dn)

where di is the ith row sum of A. The Laplacian of A is the symmetric
matrix:

L = D − A

The normalised Laplacian is given by:

L̃ = I −D−1/2AD−1/2

where since D is a diagonal matrix:

Dω = diag(dω1 , . . . , d
ω
n)

where we identify:
Ã = D−1/2AD−1/2

• How can we express Ã in terms of its spectrum?

– since Ã is real and symmetric, we can diagonalise it:

Ã = UΛUT

– if {λi}i∈[1,n] gives a set of eigenvalues, and {ui}i∈[1,n] gives a set of eigenvectors, then the

orthonormal decomposition of Ã is:

Ã =

n∑
i=1

λuiu
T
i

• How can we use the spectrum of Ã to express T?

– notice:

Tij =

√
djÃij√
di

so in particular, if D = diag(d1, . . . , dn) denotes the diagonal matrix of degrees of A:

T = D− 1
2 ÃD

1
2

– in particular, the eigenvalues of T are the same as those for Ã and:

∗ the right eigenvectors of T are:
wR

i = D− 1
2ui

since:
D− 1

2 ÃD
1
2 (D− 1

2ui) = D− 1
2 (Ãui) = λiD

− 1
2ui

∗ similarly, the left eigenvectors of T are:

wL
i = D

1
2ui
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– this gives us the eigendecomposition

T =

n∑
i=1

λiw
R
i

(
wL

i

)T
• Using the eigendecomposition of the transition, how may we express the walker proba-
bility matrix p(t) (known as teh stationary density)?

– using the eigendecomposition, we have that:

T t =

n∑
i=1

λt
iw

R
i

(
wL

i

)T
– hence, if p(t) is a row vector:

p(t) = p(0)T t =

n∑
i=1

λt
i

(
wL

i

)T
(p(0)wR

i )

• In practice, how is the stationary density computed?

– via a power method

– that is, start with a random vector v0

– then define:
vi+1 = Tvi
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1.2 Proposition: Spectral Information of the Transition Matrix

Let T be the transition matrix given by:

Tij =
Aij

di

Then:

1. All eigenvalues λi of T lie in the interval [−1, 1]

2. The left eigenvector (wL
j )

T corresponding to the eigenvalue

λj = 1

gives the stationary density of the transition matrix; that is we
have:

(wL
j )

T = p∗

whereby:
lim
t→∞

p(t) = p∗ and p∗ = p∗T

3. The right eigenvector wR
j corresponding to λj = 1 is such that:

wR
j ∝

1
...
1


4. The eigenvalue λj is the largest magnitude eigenvalue, and all

elements of wR
j , w

L
j are positive.

Proof. We make extensive use of the Perron-Frobenius Theorem, since we assume that T is irreducible (i.e
that there is always a path between any 2 vertices i, j, or that ∃n : Tn = 0).
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Let A be a n× n matrix, such that A:

• is irreducible

• non-negative

• has spectral radius ρ(A) = r > 0

Then:

1. r is an eigenvalue of A (called the Perron-Frobenius eigenvalue)

2. r is simple. In particular:

• r has algebraic multiplicity 1 (it is not a repeated eigenvalue)

• r has geometric multiplicity 1 (both right and left eigenspaces
are one-dimensional - this is because geometric multiplicity is
bounded by algebraic multiplicity

3. A has left/right eigenvectors with eigenvalue r, and whose
components are all positive

4. the only eigenvectors whose components are all positive are those
associated to r

5. r is bounded above/below by the maximum and minimum row sums
of A (and also the column sums):

min
i∈[1,n]

n∑
j=1

Aij ≤ r ≤ max
i∈[1,n]

n∑
j=1

Aij

1

By Perron-Frobenius (part 5), the Perron-Frobenius Eigenvalue of T is bounded by row/column sums of
T . In particular:

r ≤
n∑

j=1

Aij

di
=

1

di

n∑
j=1

Aij

=

di
di

= 1

where we’ve used the definition of degree as:

n∑
j=1

Aij

=
di

In particular, since the eigenvalues of T are all real (as they are eigenvalues of a real symmetric matrix
Ã), and the absolute value of all eigenvalues is bounded by the spectral radius (which is given by the
Perron-Frobenius Eigenvalue), it follows that any eigenvalue of T satisfies:

λi ∈ [−1, 1]

2

By definition of the stationary density:
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The non-negative stationary density is a vector:

p∗ = (p∗1, . . . , p
∗
n)

where:
p∗i = lim

t→∞
pi(t)

and:
p∗ = p∗T

it corresponds to the left eigenvector of the transition matrix with eigenvalue 1. This is precisely (wL
j )

T .

3

If wR
j is the right eigenvector of T with eigenvalue 1, we have that:

TwR
j = wR

j

Notice also that if

v = c

(
1
...1

)
Then:

T (cv) = cv

since the row sums of T are 1 (as each row element is a probability). Hence, cv is a right eigenvector of T
with eigenvalue 1, so in particular:

∀c ∈ R, wR
j = cv

4

This is properties 1 and 3 of the Perron-Frobenius Theorem.

1.3 The Cheeger Constant and the Spectral Gap

1.3.1 The Spectral Grap

• How can we approximate the stationary desnity for large t?

– by the Perron-Frobenius Theorem, the eigenvalues of T are bounded on:

λi ∈ [−1, 1]

– in particular, since the stationary density is given by:

p(t) =

n∑
i=1

λt
i

(
wL

i

)T
(p(0)wR

i )

as t → ∞, most eigenvalues will tend to 0

– thus, if λmax = 1, and λ2 is the second largest eigenvalue (in magnitude), it follows that:

p(t) ≈
(
wL

max

)T
(p(0)wR

max) + λt
2

(
wL

2

)T
(p(0)wR

2 )
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• What is the spectral gap?

– the value:
γ = λmax − |λ2| = 1− |λ2|

• What does a large spectral gap imply?

– if γ is large, the term:

λt
2

(
wL

2

)T
(p(0)wR

2 )

goes to 0 much quicker (since |λ2| is small)

– in particular, λ2 controls the “relaxation time” (i.e the time required for the stationary density
to stabilise into a constant)

1.3.2 Definition: The Cheeger Inequality

The Cheeger Inequality gives useful bounds on |λ2|, and thus informs us on the relaxation time.

Let S be a vertex subset of a network, and let S be its complement.
The Cheeger Constant (also known as conductance) is defined by:

h = min
S

{
of edges connecting S and S

min{|S|, |S|}

}

The Cheeger Inequality is:

h2

2
< 1− |λ2| ≤ 2h

Intuitively, this makes sense. If h is small, this implies that there are a small number of edges connecting
S, S. This can be interpreted as the graph being split into 2 communities (namely S, S) with a few edges
connecting them. In such a scenario, the probability that a random walker moves between communitieis is
low, which menas that so too the spectral gap will be small, so in particular the relaxation time will be longer.

2 Applications of Random Walks

2.1 The PageRank Algorithm

2.1.1 Motivating PageRank

• What is the purpose of the PageRank algorithm?

– define a centrality measure on directed networks

– PageRank is defined such that a node vi is “important” if:

∗ it has many incoming edges

∗ the incoming edges originate from important nodes
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∗ if vj has an outgoing edge to vi, the out-degree of vj is small

– in short, vi has to be connected to a lot of important nodes, which themselves don’t share many
connections with other nodes

– these requirements were used to rank webpages, based on the hyperlinks which connected the
websites

• What is the PageRank of a given node?

– the corresponding stationary density of said node, given a discrete-time random walk
through the directed network

• Why can’t we immediately derive a stationary density p∗ in the case of PageRank (i.e in
some random directed network)?

– the stationary density exists and is unique if and only if the network is strongly connected

– otherwise:

∗ many possible p∗ can exist (i.e if the network contains multiple absorbing states, whereby
Tii = 1)

∗ certain p∗i will be 0 (i.e they will be considered as irrelevant)

– generally, real world networks (and especially the Internet) don’t satisfy strong connected-
ness

2 1

3 0

1

1

0.5

0.5

0.5

0.5

Figure 1: Example of the spider trap problem, whereby 2 nodes will get p∗ = 0. This is because once
states 1, 2 are entered, they will indefinitely cycle amongst themselves. In particular, this is an example of a
periodic Markov Chain, and it yields p∗ = ⟨0, 0.5, 0.5, 0⟩; here, two states take away all the “̀ımportance”
of the other two states.
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Figure 2: Example of the dead ends problem, whereby node 2 is an absorbing state. In such a case,
the algorithm will fail to converge and no unique stationary density vector will be found. This is because
once state 2 is reached, it can never be escaped; thus, different p∗ can be found through power iteration
methods, depending on the initial conditions of the process.

• How can lack of strong connectivity be tackled?

– PageRank can “ignore” the lack of strong connectivity by assuming node teleportation:
from a given website, you can randomly “jump” to any other website (i.e you don’t use a hyperlink
to find a new website, you just search it up)

– this reasonable assumption then allows us to find aunique stationary density
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2.1.2 Definition: Random Walk with Teleportation

Suppose we have a directed network traversed by a random walker
who’s dynamics are defined by the transition matrix:

Tij =
Aij

douti

Then, random walks with teleportation are defined by:

p(t+ 1) = αp(t)T + (1− α)b

or componentwise:

pi(t+ 1) = α

n∑
j=1

pj(t)Tji + (1− α)bi

where:

• α ∈ (0, 1) is the damping factor, which is the probability that at
any given time-step the walker follows links (and 1− α is thus the
probability that it teleports)

• b is a preference row vector satisfying:

n∑
i=1

bi = 1

and such that bi ∈ [0, 1] is the probability of randomly teleporting to
the ith vertex

• What value is typically used for the damping factor?

– a well-agreed value is α = 0.85
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2.1.3 Proposition: PageRank Stationary State

The PageRank Stationary State can be calculated via:

p∗ = (1− α)b(I − αT )−1

or componentwise:

p∗i = bi +
∞∑
l=1

n∑
j=1

bj(Tji − T l−1
ji )

Notice, here we assume that α is well chosen, such that the geometric series form of (I − αT )−1 is
well-defined, like in Katz Centrality

2.2 Epidemic Modelling

2.2.1 The SIS Model

2.2.1.1 Definition: SIS Model

Consider a clique of n vertices. Let:

• S(t) be the proportion of nodes which are susceptible (can be
infected) at time t

• I(t) be the proportion of nodes which are infected (can infect) at
time t

The dynamics of the SIS Model (susceptible-infected-susceptible) are
defined by a system of ODEs:

dS

dt
= −βI(t)S(t) + µI(t)

dI

dt
= βI(t)S(t)− µI(t)

where:

• β is the infection rate (the rate at which a suceptible node
contracts an infection, and thus becomes an infected node)

• µ is the recovery rate (the rate at which an infected node recovers
from the infection, and thus becomes a susceptible node
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2.2.1.2 Explaining the SIS Model

• What is the probability of infection on some small time frame ∆t?

– we can approximate this probability via:
β∆t

• What is the intuition behind the ODEs defining the SIS model?

– for the susceptible nodes:

∗ if S increases, then we expect the rate of change of S to decrease (since more susceptible
ndoes are available to infect)

∗ increasing I will both decrease the number of susceptibles (since more nodes can now infect
at a rate β) and increase the number of susceptibles (since more nodes can now recover at
a rate µ)

∗ thus, if β >> µ, the number of susceptibles will generally decrease, but if µ >> β, the number
of susceptibles will generally increase

– similar arguments work for the infected nodes, but the other way round

– in particular, we have that:

d

dt
(S + I) = 0 =⇒ ∀t ≥ 0, S + I = 1

(since S(0) + I(0) = 1)

• What is equilibrium like for the SIS model?

– let S∗, I∗ be equilibrium values (that is, points at which S′(t) = I ′(t) = 0.

– then, assuming that I∗ ̸= 0:

0 = −βI∗S∗ + µI∗ 0 = βI∗S∗ − µI∗

=⇒ βS∗ = µ

=⇒ S∗ =
µ

β

and since S + I = 0 always, we must then have that:

S∗ =
µ

β
I∗ = 1− µ

β

– otherwise, we will have that I∗ = 0 (i.e at equilibrium there are no infections

• What is the epidemic threshold of the SIS model?

– the epdiemic threshold ε is a value such that if ε > 1, an epidemic is possible; if ε < 1, then
sustaining the infections becomes impossible

– in the SIS model, we have that:

ε =
β

µ

since if:
β

µ
> 1

then S∗, I∗ remain in the range (0, 1) and we have epidemic activity

– otherwise, we see that S∗ > 1, I∗ < 0 and the epidemic is unsustainable
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• Does the epidemic threshold make sense?

– suppose that
β

µ
> 1

such that the epidemic holds

– if µ is large (i.e high recovery rate) or β is small (i.e low infection rate), we see that:

S∗ → 1 I∗ → 0

– conversely, for small µ or large β:

S∗ → 0 I∗ → 1

2.2.2 The SIR Model

2.2.2.1 Definition: SIR Model

Consider a clique of n vertices. Let:

• S(t) be the proportion of nodes which are susceptible (can be
infected) at time t

• I(t) be the proportion of nodes which are infected (can infect) at
time t

• R(t) be the proportion of nodes which are recovered (were
infected, recovered and can no longer infect or be infected) at time t

The dynamics of the SIR Model (susceptible-infected-recovered) are
defined by a system of ODEs:

dS

dt
= −βI(t)S(t) + µI(t)

dI

dt
= βI(t)S(t)− µI(t)

dR

dt
= µI(t)

where:

• β is the infection rate (the rate at which a suceptible node
contracts an infection, and thus becomes an infected node)

• µ is the recovery rate (the rate at which an infected node recovers
from the infection, and thus becomes a susceptible node
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Figure 3: Dynamics of the SIR Model. Notice, the infections always reach a peak of contagion. The
idea behind epidemic management is to spread the peak as much as possible, to avoid strain on medical
services.

2.2.2.2 Explaining the SIR Model

• What is the key dynamic difference between the SIS and SIR models?

– in the SIR model, the infection eventually dies out, even if β is large

– the final state solely consists of susceptible and recovered nodes

• When deos the peak observed above occur?

– if
dI

dt
> 0

then there will be a perceptible infectious outbreak

– otherwise, the rate of infection won’t lead to outbreaks on a visible scale
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