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Based on the notes by Renaud Lambiotte and Pete Grindrod, Chapters 6 & 9

1 Katz Centrality in Continuous Time

1.1 Matrix-Valued Functions

When defining Katz Centrality for continuous networks, we need to be able to make sense of matrix valued
functions, for arbitrary functions. We’ve already seen some examples of these, like A2 or exp(A). We further
generalise these to even consider multi-valued functions, such as fractional powers, roots or logarithms.

1.1.1 Definition: Jordan Normal Form

Every n × n matrix A with complex entries can be written in Jordan
Normal/Canonical Form:

A = ZJZ−1

where:

• Z is some invertible matrix

• J is a block diagonal matrix, composed of Jordan Blocks Ji,
which is unique up to rearrangement of the Ji

Let λi be an eigenvalue of A, with algebraic multiplicity ni. A Jor-
dan Block Ji is a ni × ni square matrix:

Ji = λiIni
+Nni

=


λi 1 0 . . . 0
0 λi 1 . . . 0
0 0 λi . . . 0
...

...
...

. . .
...

0 0 0 . . . λi


where Nni

is a matrix containing 1s in the off-diagonal.

• What identity do the algebraic multiplicites satisfy?

–
n =

∑
i

ni

• What is the Jordan Normal Form of a diagonal/diagonalisable matrix?
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– a diagonal matrix

– this corresponds to a Jordan Matrix J composed of 1× 1 Jordan Blocks

– each Jordan Block corresponds to a single, unique eigenvalue

– this corresponds to the fact that an n×n matrix is diagonalisable if and only if it has n distinct
eigenvalues

1.1.2 Definition: Matrix Valued Function

This is a way of defining matrix valued functions - there are many others.

Let:

• A be an n×n matrices, whose eigenvalues {λi}i∈[1,r] have
algebraic multiplicity {ni}i∈[1,r]

• f be a complex function defined on each of the λi, and such that
∀i ∈ [1, r] each of the derivatives of f (up to the nith derivative) are
defined on λi

Then, if A has Jordan Canonical Form:

A = ZJZ−1, J = diag(J1, . . . , Jr)

we define the matrix f(A) via:

f(A) = Z diag(f(J1), . . . , f(Jr))

where:

f(Ji) =


f(λi) f (1)(λ1)

f (2)(λi)
2!

. . . f (ni−1)(λi)
(ni−1)!

0 f(λi) f (1)(λ1) . . . f (ni−2)(λi)
(ni−2)!

0 0 f(λi) . . . f (ni−3)(λi)
(ni−3)!

...
...

...
. . .

...
0 0 0 . . . f(λi)



• What justifies the above definition of a matrix valued function?

– recall, we can write a Jordan Block as:

Ji = λiIni
+Nni

– it is “standard” to define a function on a diagonal matrix by evaluating the function at each
diagonal element, so:

f(λiIni
) = f(λi)In1

= diag(f(λi), . . . , f(λi))
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– moreover, taking powers of Nni “moves” the off-diagonal of 1s up 1 diagonal. For example:

N3 =

0 1 0
0 0 1
0 0 0

 =⇒ N2
3 =

0 0 1
0 0 0
0 0 0


– in particular, this implies that:

1.
Nni

ni
= 0

2. if X is any square matrix, then:
XNk

ni

is a matrix where the diagonal elements of X have been shifted into the kth diagonal

– finally, the Taylor Expansion of a function f evaluated at some z and centered at λi is given
by:

f(z) =

∞∑
j=0

f (j)(λi)

j!
(z − λi)

j

– thus, if we apply a Taylor Expansion for f evaluated at λiIni
+Nni

and centered at λiIni
we

get that:

f(Ji) =

ni−1∑
j=0

f (j) (λiIni)

ni!
(Ji − λiIni

)

= f(λi)Ini + f (1)(λi)Nni + . . .+
fni−1(λi)

(ni − 1)!

which is precisely how f(Ji) was defined above

• Do we need to compute the Jordan Normal Form to compute functions of matrices for
every function?

– for some functions, the definition is straightforward

– for powers, we just use matrix powers

– for polynomials, we just “evaluate” the polynomial:

f(t) = t3 + t =⇒ f(A) = A3 +A

– for exponentials, we have the Taylor Series expansion:

eA =

∞∑
k=0

Ak

k!

However, note that:
eA1+A2 = eA1eA2 ⇐⇒ A1A2 = A2A1

• How can we relax the requirements for matrix valued functions for adjacency matrices of
undirected graphs?

– for f(A) to be defined on an abitrary matrix A, f and its derivatives must be defined on the
spectrum of A

– however, if A is an adjacency matrix it is by definition real and symmetric, so in particular,
A is diagonalisable and has real eigenvalues

– in particular, the Jordan Canonical Form of A will have J be diagonal

– hence, for adjacency matrices, f(A) is defined if and only if f is defined on each of the
eigenvalues of A
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1.1.3 Definition: Rational Function

Let
f(z) = (1− αz)−1, α ∈ R+

Then, f is well-defined as a matrix-valued function on adjacency
matrices of undirected graphs if:

1

α
> ρ(A) > 0

where ρ(A) is the spectral radius of A.

• What motivates the above definition?

– f(z) is undefined whenever z = 1
α

– by the Perron-Frobenius Theorem, all eigenvalues of A are contained within a disc of radius
ρ(A)

– hence, if
1

α
> ρ(A)

we are guaranteed that f is well-defined on the spectrum

– notice, this requirement is equivalent to assuming that:

α <
1

ρ(α)

which is precisely the requirement for the Katz Centrality to be defined (so that the geometric
series defining it converges)

1.1.4 Definition: Principal Logarithm of a Matrix

Let A be a matrix. If A has no eigenvalues on R− (0 and all the nega-
tive real numbers), then we define the principal logarithm of A as the
unique matrix B such that:

•
B = log(A)

• for every eigenvalue µi of B we have that:

arg(µi) ∈ (−π, π)
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• Why do we require that the eigenvalues be all positive for the logarithm to be defined?

– logarithms of negative numbers are well-defined as complex numbers (for example, the
principal logarithm of −1 is iπ, since eiπ = −1 and arg(iπ) = π

2 )

– however, allowing such complex values means that the convergence of the exponential matrix
will be ill-defined

– as such, we require that eigenvalues are strictly positive

• What is the purpose of having a principal logarithm?

– the logarithm is a multi-valued function

– the principal logarithm allows us to talk about a unique logarithm, by restricting the spec-
trum of A

– for example, if A is the matrix of 2 dimensional rotations by an angle α:

A =

(
cos(α) − sin(α)
sin(α) cos(α)

)
then its logarithm is a set:

Bn = (α+ 2πn)

(
0 −1
1 0

)
This makes sense, since rotations can’t be uniquely described (they are 2π-periodic)

1.1.5 Definition: Principal pth Root

Let p > 0 be an integer. The principal pth root of a matrix A is the
unique matrix

B = A
1
p

such that:

•
Bp = A

• for every eigenvalue µi of B we have that:

arg(µi) =

(
−π

p
,
π

p

)

1.1.6 Definition: Principal Power

Let s ∈ R. The principal power of a matrix A is the unique matrix

B = As = es log(A)

where log(A) is the principal logarithm of A.
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1.1.7 Exercises

1. Let A be the adjacency matrix for an undirected graph. Then A is diagonalisable. How
many square roots does A have (that is, matrices B for which B2 = A)’ What about
fractional powers of A:

Aβ , β ∈ [0, 1]

2. Let A be the adjacency matrix for an undirected graph. Then, we can write A = UΛUT ,
where U is a unitary matrix containing the eigenvectors of A as columns, a dn Λ is a
real diagonal matrix of eigenvalues of A. Show taht for all polynomials P there exists a
polynomial R of degree less than n such that P (A) = UR(Λ)UT , where

R(Λ) = diag(R(λ1), . . . , R(λn))

1.2 Katz Centrality with Age Discounting

In Week 3 we defined the Katz Centrality for dynamic, evolving networks:

Let {Ak} be an evolving network. Its Katz Centrality Matrix is
given by:

Q =
K∏
i=1

(I − αA1)
−1

We now further develop the notion of the Katz Centrality Matrix to incorporate age discounting.

• How can the Katz Centrality Matrix be updated at a new time step?

– say we have a sequence of K adjacency matrices A1, . . . , AK

– thinking of each matrix as being “sampled” at some interval of length δt, we can define T = Kδt,
such that:

Q(T ) =

K∏
i=1

(I − αAi)
−1

– then, we can define an update to the matrix, given that we observe a new adjacency matrix
AK+1 during the interval (Kδt, (K + 1)δt] via:

Q(T + δt) = Q(T )(I − αAK+1)
−1

• What is age discounting, and why should it be used for the Katz Centrality Matrix?

– age discounting is a way of reducing the influence of older events Ai on theKatz Centrality
Matrix

– this means that Q will pay more attention/be more representative of more recent adjacency
matrices, and thus, will give a better idea of which nodes have become more central towards
the end of the network evolution process

– this means that Q will be more “realistic” in portraying the dynamics of information flow in a
network
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1.2.1 Definition: Katz Centrality Matrix with Age Discounting

Let b > 0 be a discounting rate. Then, updating the Katz Centrality
Matrix with Age Discounting is given by:

Q(T + δt) = (I + e−bδt(Q(T )− I))(I − αAK+1)
−1

where we use the fact that:

Q = I + (Q− I)

and Q − I is a term containing non-trivial paths (walks with at least
one edge from some past time step) which is what we want to discount.

• How does the discounting affect the influence of certain paths?

– recall, the Katz Centrality Matrix had the following properties:

1. Entry ij of Q counts all possible walks of all possibe combinations of
edges taken from successive time steps that can be taken across time
in the evolving network.

2. Q is only defined when:

∀k ∈ [1, K], α <
1

ρ(Ak)

3. Q is generally non-symmetric

– in particular, for a particular path of length m, starting r time steps ago, their influence is
discounted by a factor of:

αm
(
e−bδt

)r
= αme−rbδt

• What is the effect of setting the discounting rate to 0?

– in such a case, we default to the standard update rule

– all walk history is counted equally, which won’t be useful for quickly evolving networks

• What is the effect of setting b to be large?

– as b → ∞,
Q(T + δt) → (I − αAK+1)

−1

– our understanding of the dynamics of the evolving network will depend solely on the current
network status (there is no memory)
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– in this sense, we have a Markov-like assumption, whereby future forecasts depend only on the
current state

• Why is tuning b important?

– depending on what future features we want to forecast with Q, it has been shown that b can
be optimised for these forecasting tasks

1.3 Katz Centrality for Continuous Time

Thus far, we’ve focused on network evolution over discrete time steps δt. However, this misses out on a
lot of “detail” regarding the dynamics (i.e certain edges might occur more frequently if we consider smaller
steps). To deal with this, we consider the continuous Katz Centrality, which considers what happens when
δt → 0.

1.3.1 Proposition: ODE for Katz Centrality Matrix

We can define an ODE which encodes the dynamics of the continuous Katz Centrality Matrix. For this,
understanding matrix valued functions is imperative.

Let Q(t) be the continuous Katz Centrality Matrix. Then, Q(t) sat-
isfies:

Q′(t) = −Q(t) log(I − αA(t)) + b(I −Q(t))

where:

• A(t) is the adjacency matrix for a continuous dynamically
evolving network

• b is the discounting rate, used for the age discounting update
step

Proof. Suppose A(t) defines the adjacency matrix of an evolving network over continuous time (so that
t ≥ 0).

If we fix δt > 0, then in the discrete setting, each Ak can be thought of as:

Ak =
⋃

t∈((k−1)δt,kδt]

A(t)

In particular, if we then take δt → 0, we will get that:

Ak → A(kδt)

which is what we had over the discrete case. Then, to this approximation of the discrete by using the
continuous, we can apply the age discounting update formula. In particular, for T = Kδt), we have that:

Q(T + δt) = (I + e−bδt(Q(T )− I))(I − αAK+1)
−1
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We can’t just take δt → 0: we could technically split δt into smaller subintervals, which would yield
more terms (I − αAγ)

−1 on the interval (T, T + δ]. This would make convergence of the formula as δt → 0
impossible.

Instead, we need a “trick” to avoid the generation of these new terms as δt → 0. To this end, we modify
the update expression, and use a fractional power:

Q(T + δt) = (I + e−bδt(Q(T )− I))(I − αAK+1)
−δt

By definition of fractional powers, we then have:

Q(T + δt) = (I + e−bδt(Q(T )− I)) exp (−δt log(I − αAK+1))

For this to even make sense, the principal logarithm of I − αAK+1 must be defined. However, notice that,
by requirement of convergence of the Katz Centrality Matrix, the spectral radius of A(t) will always satisfy:

ρ(A) <
1

α

In particular, if λ is any eigenvalue of A, nad using the fact that 1 is the only eigenvalue of the identity, the
eigenvalues of I − αA will be of the form:

1− αλ > 1− αρ(A) > 1− α

α
> 0

so in particular, 1 − αA always has positive eigenvalues, and thus, its principal logarithm is well-defined.
Hence, so are fractional powers.

Now, if we let δt → 0 and apply the definition of the derivative, we obtain:

Q′(t) = −Q(t) log(I − αA(t)) + b(I −Q(t))

as required.

• What is the benefit of adopting an ODE approach?

– in practice, we don’t aim to solve the ODE analytically

– instead, we can use numerical methods, which use adaptive timesteps

– this allows us to analyse dramatic changes in network behaviour (for example, as A(t) start
evolving more dynamically, we might use a small timestep to better gauge these changes)

– by using the solver, we are using time discretisation under the hood

• How do the broadcast and receiver centralities change under the new definition of the
Katz Centrality matrix?

– recall:

The broadcast centralities measure the outward influence of each ver-
tex within the network, as a weighted sum of walks from each vertex to
anywhere.

These are given by the row sums in the Katz Centrality Matrix.
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The receive centralities measure the inwards influence of each vertex
within the network, as a weighted sum of walks from anywhere to each ver-
tex.

These are given by the column sums in the Katz Centrality Matrix.

– if we define s to be the column vector of ones, we can define:

b(t) = Q(t)s r(t) = QT s

– the receiver centrality satisfies an ODE:

r′(t9 = b(s(t)− r(t))− (log(I − αA(t)))T r(t) r(0) = s

– however, the broadcast centrality doesn’t have this: intuitively, this is because b deals with
outgoing information from a vertex, which doesn’t include where the information is currently,
and thus, outward information flow can’t be updated using just b

– on the other hand, r contains incoming information, which can be updated by knowing r

2 Dynamics on Networks

In Week 3, we aimed to identify modular structures. This was because we are often interested in analysing
a network from the point of view of how different modules interact (i.e group of friends).

2.1 Notation

• we use n for the number of vertices and m for the number of edges

• in directeed graph A ∈ Rn×n, the weight between vertices i, j is given by Aij

• the weighted out-degree of nodes is the vector:

d = A1̂

where 1̂ is the vector of ones

• the combinatorial Laplacian is denoted with L:
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Let A be a n× n matrix which is:

– real

– non-negative

– normal

If s = 1 ∈ Rn, then As = (d1, . . . , dn)
T contains the row sums of A.

If we define:
D = diag(d1, . . . , dn)

the combinatorial Laplacian of A is the symmetric matrix:

L = D − A

L is:

– symmetric

– positive semi-definite

– if A is connected, L has a simple zero eigenvalue, all its eigenvalues are positive, and the eigen-
vector corresponding to the smallest non-zero eigenvalue (known as the Fiedler eignevalue,
λF ) is the Fiedler eigenvector

2.2 Consensus Dynamics

2.2.1 Definition: Average Consensus Dynamics

Let A be a connected network of n nodes. Endow each node with a
scalar state variable which is time dependent:

xi(t) ∈ R

and define:
x(t) = (x1(t), . . . , xn(t))

T

The average consensus dynamics on A is defined by the ODE:

ẋ = −Lx

2.2.2 Behaviour of Average Consensus Dynamics

• What does the ODE above amount to componentwise?

– we have that:
ẋ = −Lx = Ax−Dx
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so that:
ẋi =

∑
j∈[1,n]

Aijxj − dixi

But by definition:

di =
∑

j∈[1,n]

Aij

– hence, componentwise we have that:

ẋi =
∑

j∈[1,n]

Aij(xj − xi)

• Why is this setting called average consensus dynamics?

– if ∀i, j, xi ≈ xj , then:
∀i, ẋi ≈ 0

– thus, x stabilises into a value whenever each of its entries are pairwise similar

– thus, the ODE will “push” x to a consensus state, where each node has the same state variable

– in fact:

lim
t→∞

xi =
1̂T · x0

n

so each xi will tend to the arithmetic mean of the initial node states

– this corresponds to the notion that, in absence of external input, opinions in communities tend
to “average out”

• What dominates the rate of convergence to the average state?

– convergence is dominated by the Fiedler eigenvalue λF :

x(t) = x∗1̂ +O(e−λF t)

– to see why, we can diagonalise:
L = UΛUT

and then:
ẋ = −Lx =⇒ x = Ue−ΛtUTx0

Since λF is the smallest eigenvalue, then all other terms get dominated by e−ΛF t

2.3 Time-Scale Separation in Dynamical Systems

More on time-scaled separation can be found in the following book: Neuronal Dynamics.
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2.3.1 Definition: Time-Scale Separation in ODEs

Time-scale separation occurs when observing two different systems,
one of which is assumed to occur much faster than the other.

As ODEs, we may write:

dx

dt
= f(x, y)

dy

dt
= εg(x, y)

where 0 < ε << 1 is very small and positive. In this setting, x(t)
changes more rapidly than y(t).

Alternatively, if we define τ = εt, then:

dy

dτ
= g(x, y)

where t, τ represent the fact that x, y evolve over different timescales (τ
is the slow timescale, t is the fast timescale).

2.3.2 Exploiting Time-Scale Separation for System Decoupling

• How can short term behaviour of a time-scale separated system be studied?

– consider how the coupled system x, y evolves in the short term

– in such a situation, only the fast system x(t) will do anything interesting; in the slow system
y(t) will be effectively constant

– thus, as ε → 0 the system is essentially decoupled

• How can long term behaviour of a time-separated sysmte be studied?

– in the long term, we may assume that the fast system x(t) will have reached a stable config-
uration x∗

– over the fast time-scale, we may assume that y is somewhat constant (at each step), so that the
stable point:

x(t) → x∗(y)

acts as a function of y

– in the short term, we thus have a system:

dy

dτ
= g(x∗(y), y)

– this will lead to errors, but allows us to focus on the simpler 1-dimensional system
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2.4 Time-Scale Separation in Consensus Dynamics

2.4.1 Proposition: Solution to Average Consensus Dynamics in Terms of Eigenvectors and
Eigenvalues

Consider the average consensus dynamics ODE:

ẋ = −Lx

with initial condition x0.

If vi are eigenvectors of L with corresponding eigenvalues λi, then the
solution to the average consensus dynamics is:

x(t) =
∑
i

exp(−λit)viv
T
i x0

Proof. Standard differential equation knowledge tells us that the solution to the ODE is given by:

x(t) = exp(−Lt)x0

The Laplacian is diagonalisable, so we can write it as:

L = UΛUT

where U has the vi as column vectors, and Λ is a diagonal matrix containing the iegenvalues of L. Then, we
have that:

L =
∑
i

λiviv
T
i

Hence, we obtain the desired result:

x(t) =
∑
i

exp(−λit)viv
T
i x0

2.4.2 Analysing Long and Short Term Consensus

• How does time-scale separation arise in the solution to the average consensus dynamics?

– the contribution of each eigenvector vi to x is scaled by the term exp(−λit)

– thus, they depend on the eigenvalue λi

– in particular, if we define

τi =
1

λi

we see that as t > τi the contribution of vi degrades
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– if there is a separation in the magnitude of eigenvalues (such that there are k “small” eigen-
values, which WLOG we may call {0 = λ1, . . . , λk}, and such that λk+1 >> λk) then there is a
time scale separation

– this occurs whenever t > τk+1, point at which the eigenvectors with the larger eigenvalues
contribute negligibly to x(t)

– in this respect, x (and thus its dynamics) can be reasonable described by the k smallest eigen-
vectors (they form a dominant invariant subspace of the dynamics)

• What matrix construction can be used to analyse the time-scale separation in consensus
dynamics?

– consider a network composed of k modules, which have strong intraconnections, but weak
interconnection

– such a network can be described as:

A = Astructure +Arandom

where:

∗ Astructure is a block diagonal matrix, composed of Ai, which are the adjacency matrices
of individual modules

∗ Arandom can be thought of as “noise” (i.e an ER graph), meant to add sparse connectivity
amongst the different modules

– we can then ask questions about how the eigenvalues of L = Lstructure + Lrandom affect the
time-scale separation of A

• What are the eigenvectors for L when Lrandom = 0?

– if Lrandom = 0, then A consists of k separated components

– the number of components in A corresponds to the number of 0 eigenvalues of L, so L has λ = 0
as the unique eigenvalue, with algebraic and geometric multiplicity 0

– for each component j, there is an associated eigenvector defined componentwise via:

c(j)i =

{
1, i ∈ j

0, otherwise

• How are the eigenvectors of L with the smallest k eigenvalues related to the eigenvectors
of L when we assume that Lrandom = 0?

– assume that Lrandom ̸= 0, and that there is a collection of k smallest eigenvalues of L

– then, for networks of the form:
A = Astructure +Arandom

the Davis-Kahan Theorem states that, provided that the noise Arandom is not too high, the
spaces:

∗ Y , spanned by {c(j)}j∈[1,k], the eigenvectors of L when Lrandom = 0

∗ Y ′, spanned by the eigenvectors of L (when Lrandom ̸= 0) corresponding to the k smallest
eigenvalues

are similar:
Y ≈ Y ′

• What implications does the Davis-Kahan Theorem have in terms of time-scale separation
in consensus dynamics?
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– in the long term, when the k smallest eigenvalues define the behaviour of x, L behaves as if the
Laplacian of k separated components

– in particular, global network consensus is achieved in the long term

– on the other hand, in the short term, consensus is reached within blocks

– thus, consensus dynamics in this network arise as a stwo step process:

1. intra-module consensus

2. global consense

Figure 1: Consensus is first reached within each of the blocks, before collapsing into a global consensus.

Figure 2: Consensus arising in the karate network.
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