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Based on the notes by Renaud Lambiotte and Pete Grindrod, Chapter 5

Here we explore generating a dynamically evolving network, by using
a non-linear Markov Model.

We use the following notation:

• A(t): n× n binary (with 0 diagonal), symmetric adjacency matrix
for the network at time t

• GA(t): the corresponding graph, whose edges appear/disappear over
time

• S: real, symmetric, n× n matrices with elements in [0, 1] and 0
diagonals. The expected value ⟨B⟩ of a graph B must lie in S
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1 Markov Network Evolution

1.1 Definition: Conditional Stochastic Network

Consider a random graph A(t), whose edges evolve independently
over time, although they are conditionally dependent on the current
state of the network.

Since edges evolve independently, we can generate such random
graphs from its expected value, which is conditioned on the previous
state:

⟨A(t+ δt) | A(t)⟩ = A(t) + δtF (A(t))

where:

• this holds as δt → 0

• F is a real matrix-valued function, taking values in S

More specifically, we typically fix F as:

F (A(t)) = −A(t) ◦ ω(A(t)) + (1−A(t)) ◦ α(A(t))

where:

• 1 is the adjacency matrix of the clique (all edges present, except
for 0 diagonal)

• ◦ is the Hadamard Product (elementwise multiplication)

• How can we interpret the role of ω, α in F?

– ω acts on −A(t), so it is used to eliminate edges in A, by assigning edge death probabilities

– α acts on (1−A(t)), so it is used to add edges in A, by assigning edge birth probabilities to
the complement of A (edges which aren’t present in A can be added)

1.2 Definition: Markov Process for Dynamic Networks

The above framework is perhaps too complex. In practice, we can consider using a discrete set of matrices
instead.
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Let {Ak | k ∈ [1, K]} be a set of adjacency matrices, representing a
discrete time evolving network with value Ak at time tk. We assume
edges evolve independently, but that each network is conditionally in-
dependent on the previous one. By the edge independence assumption,
the distribution of Ak is determined by the expected value ⟨Ak+1 | Ak⟩.

A Markov Process on the Ak is defined by:

⟨Ak+1 | Ak⟩ = Ak ◦ (1−ω̃(Ak)) + (1−Ak) ◦ α̃(Ak)

where again ω̃, α̃ are functions with image in S

1.2.1 Definition: Markov Network with Triadic Closure Dynamic

Triadic closure is the process by which if two unconnected people hav
ea friend in common at step k, they are more likely to be connected at
step k + 1.

Mathematically, we model this via:

w̃(Ak) = γ 1 α̃(Ak) = δ 1+ϵA2
k ◦ 1

where:

• γ ∈ [0, 1]

• δ, ϵ > 0, such that:
δ + ϵ(n− 2) < 1

Then, this yields a Markov Process with Triadic Closure Dynamic
given by:

⟨Ak+1 | Ak⟩ = Ak ◦ (1− γ)1+(1−Ak) ◦ (δ 1+ϵA2
k ◦ 1)

This is an ergodic dynamic: given enough time, it can visit all states.

• Why is ω̃ defined thus?

– the triadic closure dynamic doesn’t make assumptions about death rate of edges

– this ω̃ assumes that deaths occur uniformly randomly, with probability γ
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• Why is α̃ defined thus?

– there are 2 terms:

∗ δ 1 gives a uniformly random birth rate of edges

∗ ϵA2
k ◦ 1 increases chance of an edge appearing, if the two vertices aren’t connected, but share

a common vertex (given by A2
k, entry (i, j) contains vertices shared by i, j)

• Why do we require that δ, ϵ satisfy δ + ϵ(n− 2) < 1?

– consider entry i, j of
δ 1+ϵA2

k ◦ 1

– this is given by:
δ + ϵ(number of walks of length 2 between i and j

(this number of walks encodes whether 2 unconnected verteices have a common friend)

– since we want ω̃ to lie in S, we require that this sum is always in the range [0, 1]

– the maximum number of walks of length 2 possible between two edges is n − 2 (whereby two
vertices can use every other vertex to get to each other)

– hence, we require that:
δ + ϵ(n− 2) < 1

– since δ, ϵ > 0, we ensure that this sum is always in [0, 1]

• Despite being ergodic, what is the behaviour of the above Markov process in practice?

– the average behaviour over time of the process is given by its expected value

– solutions will tend to spend most time close to states with high edge density

Figure 1: Simulations of the above Markov Process with (n, δ, ϵ, γ) = (100, 4× 10−4, 5× 10−4, 1× 10−2). At
each step, Ak is generated as a random graph from its expected value. Notice, despite being ergodic, graphs
tend towards 2 distinct edge distributions. In theory, there is a small change that the graph generated is a
clique or an empty graph, but other graphs are much more likely.
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2 Mean Field Dynamic Approximation

2.1 Definition: Mean Field Dynamic Approximation for Markov Networks

The Mean Field Dynamic Approximation approximates each Ak,
with its own expectation:

⟨Ak+1 | Ak⟩ = pk 1, pk+1 ∈ [0, 1]

as an Erdös-Rényi Random Graph with edge density pk. We re-
place the right hand side with:

⟨Ak⟩ = pk 1
〈
A2

k ◦ 1
〉
= (n− 2)p2k 1

Hence, we obtain a recursion:

pk+1 = pk(1− γ) + (1− pk)(δ + (n− 2)ϵp2k)

If

• δ is small

• ω < ϵ(n− 2)/4

then this iteration has 3 fixed points:

• 2 stable fixed points at:

x0 =
δ

γ
+ δ∈ x1 =

1

2
+

√
1

4
− γ

ϵ
(n− 2) +O(δ)

• 1 unstable fixed point

x2 =
1

2
−
√

1

4
− γ

ϵ
(n− 2) +O(δ)

• How does the mean field dynamic approximation differ from the actual Markov model?

– the key difference is that the approximation is deterministic, whereas the Markov model is
stochastic

– in practice, in short/medium scales, the approximation is really good
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Figure 2: Squiggly lines corresponding to 3 Markov chain networks. The solid curve is the mean field
evolution. Notice how the fit is fairly good. However, in the long run, stochasticity will lead to observable
divergence between the 2 modles.

• What sort of system is this network modelling?

– consider a group of friends, and let δ → 0

– if triadic closure doesn’t really apply, the system will approach the lower equilibrium, where
the friendship rate is determined by γ

– if in turn there is a lot of socialisation, the equilibrium will shift towards to higher value for edge
density
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