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Based on the notes by Renaud Lambiotte and Pete Grindrod, Chapters 4 & 5

1 Community Detection

1.1 Graph Partitioning

• What is community structure within a network?

– when a network is composed of intertwined groups of vertices

– these vertices are very densely connected within their own group (community)

– for example, in Stochastic Block Models each block presents community structure

• What is graph partitioning?

– process of splitting vertices into groups, minimising number of edges between different groups

– given c groups, and n total nodes ,the time complexity of such algorithms is of

O
(
nc2
)

• How are community detection and graph partitioning related?

– community detection seeks to split graphs into densely connected groups, which are
sparsely connected amongst each other

1.2 Partitioning via Spectral Methods

1.2.1 Proposition: Approximate Bi-Partition of Vertices

Let A be an adjacency matrix for an undirected graph.
Say we want to partition the graph into 2 communities (B1 and B−1).
Let f be the Fiedler Eigenvector corresponding to the combinatorial
Laplacian of A. Then, an approximately optimal partition is given
by:

vi ∈ Bsgn(fi)

for any vertex vi in the graph, and where sgn is the sign function.

Proof. For a vertex vi, denote with si the community to which it belongs, such that:

vi ∈ Bs(i)

If we do a bi-partition on our graph, the number R of edges between the two communities (known as the
cut size) is given by:

R =
1

2

∑
i,j | s(i)̸=s(j)

Aij
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Alternatively, since:

1

2
(1− sisj) =

{
0, vi, vj in the same community

1, vi, vj in different communities

we also have that:

R =
1

2

∑
i,j | s(i)̸=s(j)

Aij =
1

2

∑
i,j

1

2
(1− sisj)Aij =

1

4

∑
i,j

(1− sisj)Aij

If di denotes the degree of vi, then: ∑
i,j

Aij =
∑
i,j

δi,jdi =
∑
i,j

sisjδi,jdi

since:

sisjδi,j =

{
1, i = j

0, i ̸= j

so:

R =
1

4

∑
i,j

(1− sisj)Aij

=
1

4

∑
i,j

Aij −
∑
i,j

sisjAij


=

1

4

∑
i,j

sisjδi,jdi −
∑
i,j

sisjAij


=

1

4

∑
i,j

sisj(diδi,j −Aij)

But now, we recognise that the ij entry of the combinatorial Laplacian of A is:

Lij = diδi,j −Aij

so in fact we have the quadratic form:
R = sTLs

The bipartition is given by the vector s, which contains −1 or 1 (depending on the community). However,
minimising R = sTLs subject to this constraint is hard. Instead, we relax our assumptions, and choose s
to be some (normalised) real eigenvector. Then, we know that the s minimising the quadratic form is the
eigenvector corresponding to the first non-zero eigenvalue of L; in other words, the fielder eigenvector f .
Moreover, since f is orthogonal to the eigenvector with 0 eigenvalue (which is the eigenvevctor full of 1s), it
follows that choosing si = fi means that we have that:

n∑
i=1

si = 0

Then, we partition vi based on sgn(fi).
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• What are the advantages of the spectral method for bipartite community detection?

– it is relatively simple and inexepnsive (just need to compute an eigenvector)

– as n → ∞, the partition becomes more reliable

• What are the disadvantages of the spectral method for bipartite community detection?

– it is only approximate

– it only works for bipartite partitions

Figure 1: Example of applying the spectral method for a bipartite partition on a stochastic block model. To
the right, the “correct” partition. The spectral method (centre) performs 2 missclassifications.
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1.3 Partitioning via Modularity

1.3.1 Definition: Modularity

Modularity is a measure of how good a partitioning is at identifying
communities. In particular, it compares edges within a community
with the expected number of edges in an appropriate null model.

Modularity is a normalised sum of a modularity measure for each
community. For example, if we take the configuration model as our
null model, the probability of an edge between vi, v :j is:

Pij =
didj
2m

where m is the number of edges.
If we have:

• nCM communities

• the cth community is CMC

then the modularity is:

Q =
1

2m

nCM∑
c=1

 ∑
vi,vj∈CMc

Aij −
didj
2m︸︷︷︸
Pij




Equivalently, if we let gi denote the community of vi:

Q =
1

2m

∑
i,j

Aij −
didj
2m︸︷︷︸
Pij

 δ(gi, gj)

where δ(gi, gj) = 1 iff gi = gj, and is 0 otherwise.
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Figure 2: Twitter friendship network, partitioned into 74 communities by Mathematica’s implementation of
modularity maximisation.

Maximising modularity was the method used to derive the bipartition showcased above, which got 0 miss-
classifications.

• What range of values does modularity take?

– modularity ranges in [−0.5, 1]

– positive values indicate higher connectedness than expected by chance (i.e by the null model)

– negative values indicate lower connectedness than expected by change (i.e a completely random
model, or graphs with each node as a community)

• When is modularity of a graph 0?
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– when the whole graph is taken as a single community (the trivial partition):

Q =
1

2m

∑
i,j

(
Aij −

didj
2m

)
δ(gi, gj)

=
1

2m

(
2m−

∑n
i di

∑n
j dj

2m

)

=
1

2m

(
2m− (2m)(2m)

2m

)
by Handshake Lemma

= 0

• Is optimising modularity simple?

– it is an NP-Hard problem (cn ways of producing a c-element partition)

– in practice, modularity is optimised through approximations

1.4 Spectral Optimisation of Modularity

1.4.1 Definition: Modularity Matrix

The real symmetric matrix:

Bij = Aij −
didj
2m

is called the modularity matrix.

• How are the modularity and Laplacian matrices similar/dissimilar?

– similar : (1, . . . , 1)T is an eigenvector of B with eigenvalue 0

– dissimilar : the eigenvalues are can be positive and negative (in the Laplacian, all non-zero
eigenvalues were positive)

1.4.2 Proposition: Modularity Matrix for Modularity Optimisation

Let B be the modularity matrix corresponding to a graph. Then, the
sign of the components in the eigenvector of B with the largest posi-
tive eigenvalue gives a near optimal bipartition of the graph.

Notice, this strategy only seems to work for bipartite communities. In practice, the algorithm is applied
recursively through each community. One stops partitioning when the modularity Q stops increasing.
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Proof. As before, let si denote the partition to which vertex vi belongs. We have that if gi is the community
of vi:

δ(g1, gj) =
1

2
(sisj + 1

Hence:

Q =
1

2m

∑
i,j

(
Aij −

didj
2m

)
δ(gi, gj)

=⇒ Q =
1

4m

n∑
i,j

(
Aij −

didj
2m

)
(sisj + 1)

=
1

4m

n∑
i,j

(
Aij −

didj
2m

)
sisj

since we saw above that by the handshake lemma:

1

2m

∑
i,j

(
Aij −

didj
2m

)
= 0

But then, Q is nothing but a quadratic form in the modularity matrix:

Q =
1

4m
sTBs

To maximise Q, note we can write s using the eigenvectors ui of B (since they form an orthogonal basis):

s =

n∑
i=1

aiui

where
ai = uT

i s

and we label the (real) eigenvalues in decreasing order:

β1 ≥ β2 ≥ . . . ≥ βn

Hence, if βi is the eigenvalue of B for ui, we have that the modularity is:

Q =

n∑
i=1

βia
2
i

Moreover, notice that by definition of s, we have the normality constraint that:

n = sT s =

n∑
i=1

a2i

Now, the optimal solution would solve this optimisation problem with the elemnts of s restricted to ±1.

As before, we instead relax the problem, by choosing s to be a real vector. Then, we see from Q =∑n
i=1 βia

2
i that to maximise the sum, we want the component a1 to be the largest (since β1 is the largest

eigenvalue). Hence, we want to pick s as close as possible (parallel) to u1. This can be achieved by setting:

si = sgn((u1)i)

which will indeed satisfy the normality constraint.
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• What is the main issue with using spectral methods for modularity optimisation?

– need to estimate eigenvectors of the modularity matrix

– this can be particulary expensive for graphs with more than 104 vertices

1.5 Definition: Louvain Method for Optimising Modularity

The Louvain method is a greedy, agglomerative algorithm, used to more cheaply compute communities in
graphs.

The Louvain Method generates a hierarchical sequence of commu-
nity partitions. The hierarchy is generated iteratively, such that at
each pass of the algorithm:

• the average size of the communities

• the modularity

increases.

Each pass consists of 2 steps:

1. Local Optimisation: for each vertex vi, move vi to the
community which leads to the maximal increase in modularity
(if no such community is found, vi doesn’t move). Repeat until no
vertex moves. If there are n vertices, and nc communities:

• if n > nc (there’s been vertex movement), proceed to next step

• else, return the current partition

2. Vertex Merge: construct new graph with nc vertices
(corresponding with each of the communities found previously).
Edge weights in new graph is the sum of edge weights between the
vertices in each community node.

• How is the Louvain algorithm initialised?

– before the first pass, we start with singleton communities

– each vertex constitues its own community (so the partition contains n communities)
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1.6 Limitations of Modularity Optimisation

• What are the 4 principal issues with modularity optimisation?

1. Overlapping Communities: these tend to occur in emprirical networks, but won’t be found
by partitions

2. Size Dependency: size of graph influences the effectiveness of modularity:

– modularity-based emthods favour communities of a certain size (which depends on the
size of the network)

– as m → ∞ (number of edges), the null model is neglected (since it relies on a factor
proportional to 1/2m); instead, it uncovers the connected components of the network

– the dependency of 1/2m means that dense node clusters might get neglected if smaller than
a certain scale

3. Marginal Gains: as high scoring partitions are found, subsequent partitions will only be
marginally better (due to the exponential number of possible high-scoring partitions which exist,
one just jumps around amongst them)

Figure 3: In dashed green, the modularity. In solid green, the entropy.

4. Comparability: a modularity score for a network can only be used to compare partitions of
the same network, not partitions of different networks (for example, in a random network, the
best partition can be found to have Q ≈ 1, even if there is no modularity)
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2 Katz Centrality for Observed Evolving Networks

2.1 The Katz Centrality Matrix

2.1.1 Definition: Evolving Network

An evolving network consists of a sequence of adjacency matrices

{Ak}k∈[1,K

with n vertices.
Each Ak represents an undirected graph, without loops or double edges).
At step tk, the network is equal to Ak.

2.1.2 Definition: Dynamic Walk

A dynamic walk of length m from vertex i1 to vertex im+1 consists of:

• a sequence of edges

(i1, i2), . . . , (im, im+1)

• a sequence of non-decreasing times

tr1 ≤ tr2 ≤ . . . ≤ trm

such that in an evolving network , the edge (ij, ij+1 is traversed at time trj .
In other words:

(Arj)ijij+1
= 1

2.1.3 Definition: Katz Centrality Matrix

The Katz Centrality Matrix generalises the notion of Katz centrality for dynamic networks.

Let {Ak} be an evolving network. Its Katz Centrality Matrix is
given by:

Q =
K∏
i=1

(I − αAi)
−1
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2.1.4 Proposition: Properties of the Katz Centrality Matrix

1. Entry ij of Q counts all possible walks of all possibe combinations of
edges taken from successive time steps that can be taken across time
in the evolving network.

2. Q is only defined when:

∀k ∈ [1, K], α <
1

ρ(Ak)

3. Q is generally non-symmetric

Proof.

1

The matrix product
m∏
i=1

Ari

has entry ij counting the number of dynamic walks of length m from vi to vj , and with the jth step of the
walk happening at trj .

The matrix product:
m∏
i=1

Ami
ri

has entry ij counting the number of dynamical walks from vi to vj taking mk ≥ 0 edges in Ak at each time
step tk.

Hence, the product:

∞∏
i=1

∑
j=0

αjAj
i

contains all possible walks of all possible combinations of edges taken from succesive time steps. Using
the defintion of Katz Centrality, the result follows.

2

The Katz Centrality only converges when:

α <
1

ρ(Ak)

Hence, the product converges if and only if each of the product elements converges.
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3

Since matrix multiplication isn’t commutative, this matrix multiplication won’t always yield a symmetric
Katz Centrality Matrix (it depends on the order of the Ak).

2.1.5 Definition: Broadcast Centralities

The broadcast centralities measure the outward influence of each ver-
tex within the network, as a weighted sum of walks from each vertex to
anywhere.

These are given by the row sums in the Katz Centrality Matrix.

2.1.6 Definition: Receive Centralities

The receive centralities measure the inwards influence of each vertex
within the network, as a weighted sum of walks from anywhere to each ver-
tex.

These are given by the column sums in the Katz Centrality Matrix.
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