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Based on the notes by Renaud Lambiotte and Pete Grindrod, Chapters 2 € 3

1 Properties of Networks

1.1 Definition: Network

A network G consists of a set of vertices V connected by links E :
G=(V,E)
An edge e € E is defined by a pair of vertices:

e = (v;,v;)

e What is an undirected network?

— a network whereby if (v;,v;) € E then (v;,v;) € E (these typically just count as a single edge)

— links don’t have any “direction”
e What is a directed network?

— a network in which links have directionality

— if (vi,v5), (vj,v;) € E then v;,v; are said to be reciprocally connected
¢ What is a weighted network?

— a network where edges have a weight function assigned

— this denotes some property of the network

1.2 Definition: Adjacency Matrix

Let G = (V, E) be a network. The adjacency matriz A of G is a |V| x
\V'| matriz given by:

R (vi,vj) € E
“ 0, otherwise

Generally, G shouldn’t contain self connections or double edges, so A
1s binary and has 0s along its diagonal.
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1.3 Definition: Walk

A walk through a network G is an ordered sequence of links such that
the ending vertex of the ith edge is the starting vertex of the i + 1th edge.

e What is the length of a walk?

— the number of separate sequential edges

1.4 Definition: Path

A path is a walk where each vertex in the network is visited only once.

If the walk ends in the vertex where it started, the path is called a cycle.

e In what scenarios are walks used?
— typically to emulate dynamical processes (i.e random walks)
e In what scenarios are paths used?

— typically to consider the shortest travelling route between vertices
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1.4.1 Proposition: Counting Number of Walks

Let A, B adjacency matrices of graphs G4, Gg defined on a common set
of n vertices. Then:

(AB);; = # of walks from v; to v,
where fork # i,k # j:
e we take an edge from G 4 (from v; to vy)

o we take an edge from Gg (from vy to v;)

Similarly, if k > 1:
(Ak)ij = # of walks from v; to v of length k

Proof. This can be proved by induction (see this).

1.5 Definition: Connected Vertices

Let v; be a vertez in a network G = (V, E). v; is connected tov; € V iff
there exists a walk between v;, v;.

1.6 Definition: Strongly Connected Networks

A network G is strongly connected if any pair of vertices v;,v; are
connected.
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https://people.math.osu.edu/husen.1/teaching/571/graphs_old.pdf

1.6.1 Proposition: Strongly Connected from Adjacency Matrix

Let G be a network with adjacency matrixz A. The following are equiv-
alent:

1. G is a strongly connected network

2.
Vi,j,i#j 3k €N 1 (A%); >0

3. A is irreducible

Proof.

° @ — @ is immediate, as @ is essentially teh definition of an irreducible matrix.

. @ = @ is also immediate, since A* counts the number of walks of length k, so if (A4%);; is

non-zero for some k£, there is a walk between v;,v;, so they are connected.

1.7 Definition: Clique

A clique is a network where each vertex is connected to every other
vertex.

The adjacency matrix of a clique, denoted 1 contains all 1s, excepts Os
along the main diagonal.

1.8 Definition: Complementary Network

Let G = (V, E) be a network. A complementary network is the net-
work G' = (V, E'), whereby E' is the set of all admissible edges not in E.

If G, G’ have adjacency matrices A, A, then:
A=1-A
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1.9 Degrees in Networks

1.9.1 Definition: Degree of Vertex

Let G = (V, E) be a network. The degree of v € V is the number of
edges that connected to v.

e How can the degree of a vertex be computed from the adjacency matrix of an undirected
network?

— compute the ith row/column sum of the adjacency matrix A

1.9.2 Definition: Degree Distribution

The degree distribution P(d) represents the probability that a ran-
dom vertex has degree d.

e How do typical degree distributions look?

— P(d) is typically a long tailed distribution, defined by a power law:
P(d) ~d™
— normally v € [2, 3]

1.9.3 Proposition: Average Degree of a Network

If G = (V, E) is an undirected network, the average degree is given

by:
_ 2E|
dP(d
Z v

Proof. This is just the number of edges per node, where we use 2| E| since each edge in an undirected network
is actually 2 edges.
O

Page 7



1.9.4 Lemma: Hand Shake Lemma

Let G = (V, E) be a network. Then:

S deg(v) = 2|

veV

Proof. Since G is undirected, each edge incides on exactly 2 vertices. Since the degree of a vertex is the

number of edges inciding on it, the sum of all degrees must be twice as much as the number of edges.

1.9.5 Definition: In and Out Degree

Let G = (V, E) be a directed network. Then ,for some vertez v:
e the in-degree is the number of edges incoming to v

e the out-degree is the number of edges outgoing from v

Both in-degrees and out-degrees must sum up to |E|.

1.9.6 Definition: Regular Network

gree.

A regular network is a network where all vertices have the same de-

1.9.7 Remark: Friendship Paradox

The Friendship Paradox states that the average number of friends
of a friend is smaller than the average number of friends of oneself.

O

Proof. The average number of friends of some person corresponds to the average degree of a network, which

we know to be:
_ 2|E]|

lL]/ =
Vi
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The average number of friends of a friend corresponds to selecting some random vertex (with at least one
friend), and then computing its average number of friends. To do this, we can sample a random edge, and
then select one of the endpoints. The probability of selecting a vertex v through this strategy is:

deg(v) 1
E] 2

where delgT(lv) is the probability of picking an edge which contains v, and % compensates for the fact that one

of two vertices must be chosen.

Then, the average number of friends of a friend is:

1 deg(v
= 2/5 |gE(| ) deg(v)

Now, the variance of degree is:

2 D vev deg(v)? 2
T :

Hence: ) ) )
_ |V| (),LL2+O'2):M +o a

v= 1
2|E| 1 7

2 Random Graph Models

2.1 Definition: Random Graph

A random graph is a sample from a probability distribution over the

set of all possible graphs.

Equivalently, this can be a distribution over all possible adjacency ma-
trices (which for an undirected random graph must be symmetric,
binary and with 0s along the daigonal)

2.1.1 Proposition: Number of Random Undirected Graphs

Given n vertices, the number of undirected graphs is:

2n(n—1)/2

Proof. There are:

(-2t

of picking vertices with edges between them. Since matrices are binary, for each entry we have 2 choices as
to whether there is an edge or not.

(n—1)

Alternatively, there are = 5— non-diagonal entries in a n X n matrix, and each entry has a binary choice.

O
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2.2 Definition: Expected Value of a Matrix

Let A be a random graph, the expected value of A is the matriz (A)
whose entries are:

<A>ij = Dij

where p;; is the (independent) probability of vertices v;, v; sharing an edge.

In particular, any (A) € S, where S is the set of matrices which:
e are real valued

e are symmetric

have 0s along the main diagonal

non-diagonal elements have values in [0, 1]

2.3 Proposition: Probability Distribution from Expected Value

The probability of an adjacency matriz A is:

P(4) = [TIT 5" = 45™)

2.4 The Erdos-Rényi Graph

2.4.1 Definition: Erdés-Rényi Graph

An Erdos-Rényi Graph (ERG) (denoted G(n,p)) is a random graph
generated by, for each upper triangular entry, setting the entry to 1 with
1independent probability p.

e What is the expected value of an ERG?

— if G(n,p) is an ERG, then (G) = 1p

Page 10



Figure 1: Example of an ERG, both as an adjacency matrix and as a network.

2.4.2 Proposition: Distribution Over Edges and Degree

Let G(n,q) be a ERG. Let m denote the number of links in G, and d a
degree in G. Then, we have the following probability distributions:

p(m) = (n(n — 1)/2) g™ (1 — q)rn-D/2-m

m

s = (" )

Moreover:

e the expected number of edges is:

e the average degree is:

Proof. In ERGs, we are essentially making choices according to a bionomial distribution: we have

n(n—1)
2
independent events (graphs with n nodes) and a probability ¢ of a success (placing an edge).

For the degree, we have n — 1 independent events (number of vertices which can be connected to some
other vertex), and the probability of success (2 vertices joined by an edge) is g.

The expected values come from the expected value for binomial distributions, whereby if X ~ Bin(n, p)
then E(X) = np. O
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2.4.3 Proposition: Average Distance Between Vertices

The average distance between pairs of vertices in an ERG of n nodes

log(n) _ log(n)

~ log((d)) ~ log(g(n — 1))

2.4.4 Remark: Expected Degree in ERGs

The average degree in ERGSs depends linearly on n, which might be un-
desirable. Because of this, sometimes we set:

1
g —
n

so that (d) < 1 asn — oo.

In fact, as ¢ — 0, the binomial distribution over degree approrimates a
Poisson distribution with = (d):

2.5 Definition: Stochastic Block Model

A stochastic block model is a generalisation of ERGSs, whereby (A)
contains blocks of probabilities.

In particular, vertices within the same block have some shared probabil-
ity of conforming edges. There is also fized probabilities for edges between
vertices of different blocks. Nonetheless, edge probabilities are all
independent.
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Figure 2: An example of a stochastic block model. This could for example be used to model the interaction
between people from one same college (vertices), whereby each block corresponds to students in sciences, or
students in humanities.

2.6 Definition: Configuration Model

A configuration model is another generalisation of ERGS, whereby
we construct random graphs where each vertex v; must have some fixed
degree d;.

To generate these graphs, given some degree sequence dy, . .., d,, we create
d; stubs (half vertices) for each vertex v;. Then, we randomly connect
the stubs, taking care to not form multiple edges or self-loops.

2.6.1 Proposition: Expected Number of Links in Configuration Models

Let A be the adjacency matrix of a configuration model with degree
sequence dy, . ..,d, and edge set E. Then:
d;d;
Ay, =23
< >7,] 2|E|

Proof. By the handshake lemma, we have that:

n

> di =2|E|

=1
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so the probability of an edge (v;,v;) is:
d;

2(E

Hence, the expected number of links between v; and v; is given by:

did;
2|E|

(since v; has d; possible stubs to which v; can connect)

3 Measures Derived from Walks and Paths

3.1 Definition: Distance Between Vertices

Let G = (V, E). The distance between v;,v; is:
d(v;, vj) = smallest number of edges in paths between v; and v,

This can be computed via:

0(vi,vy) = min{l | (A");; > 0}

e When does this measure of distance satisfy the definition of a distance?

— when we have undirected networks, then ¢§ satisfies:
* non-negativity
* 0(v;,v;) =0 <= v, =v;
* symmetry
* triangle inequality

— for directed networks, symmetry doesn’t apply
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3.2 Proposition: Dijkstra’s Algorithm

Digkstra’s Algorithm is an algorithm used to compute the distance of
some vertex v; to any other vertex v; of the graph.

The procedure is as follows:

1.

For some v;, fix:
(S(’Ui, Uj) = 00(1 — 5”)

Pick any neighbour v; of v; and set:
d(vi,vj) =1

Declare v; as visited

For any neighbour v, of v; (exceptv;), set:

d(vy, vy) = min(2(= §(vs, v;) + 1), 6(vi, vp))

4. Once weve visited all the nighbours of vj, declare it as visited.

Select an unvisited vertex with the smallest distance value (2 given
the previous iteration)

For each of the neighbours, we repeat the 3 previous steps , until every
vertex has been visited.

This is a great video explaining Djikstra’s Algorithm on a small example graph.

e For what sort of graphs shoudl Djikstra’s Algorithm be used?

— when graphs are large and sparse

— repeatedly multiplying A to obtain A* can become innefficient otherwise
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3.3 Definition: Average Distance of a Network

The average distance of a network is the average distance over all
pairs of distinct vertices:

n -1

2
L= mZZé(UhUﬁ')

i=1 j=1

e Is the average distance in real life networks large?

— L tends to be small relative to the number of vertices
— for example, Facebook:

* n~ 7.2 x 10% active users

* 2 6.9 x 100 friendship links

* but L ~ 4.7

3.4 Definition: Diameter of a Network

The diameter of a network is the longest walk between any vertex pair:

D = maxd(u,v)

u,veV

3.5 Definition: Strong and Weak Connectivity in Directed Networks

In undirected networks, connectendess is an equivalence relation (reflexive, symmetric and transitive). How-
ever, this no longer makes sense for directed networks, so we need the notion of weak and strong connectivity.

Let u,v be vertices in a network. Then:

e u, v are strongly connected if there exists a reciprocal walk
between them

e u,v are weakly connected if there exists a walk between them when
we discard directionality

Both these notions of connectedness form an equivalence relation.

e What is a strongly connected component?

— a maximum set of vertices in which every vertex pair is strongly connected
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4 Clustering Coefficient & Small Worlds

4.1 Definition: Local Clustering Coefficient

Consider a network G and a vertex v;. The local clustering coefficient

of v; is:

c # triangles including v;
L di(d;) /2

A triangle is a set of 3 utually connected vertices.

€ [0,1]

e How can the local clustering coefficient be interpreted?

— if we think of a network as a group of friends, C; measures how many pairs of friends of ¢ are
themselves friends

4.2 Definition: Clustering Coefficient

Let G = (V, E) be a network. The clustering coefficient of G is the
average local clustering coefficient over all vertices:

4.3 Example: Clustering Coefficient of Ring Lattice

e consider a network with n vertices, which are laid out as a circle. 2 vertices have an edge if they are
separate by at most k vertices, where:
n—1

k
<
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Figure 3: A ring lattice where k = 2.

we know that each vertex has degree 2k (k edges clockwise, k edges anticlockwise) so the denominator
for C; is:
2k(2k — 1)

= k(2k — 1)

triangles are formed by 2 “clockwise” edges and 1 “anticlockwise” edge (by symmetry the actual
direction won’t matter)

moreover, once we choose the 2 edges, the third edge (in the opposite direction) is uniquely defined

the number of ways of picking 2 clockwise edges (out of all k possibilities) is:

-2

lastly, each vertex can be part of a triangle in 3 different ways (depending on which of the 3 clock-
wise/anticlockwise edges stem from it), so we get:

Sk(k—1)/2  3(k—1)

Ci = k2k—1)  2(2k—1)

by symmetry, every vertex has this local clustering coefficient, so:

_ oo 3k=1)
0_01_2(2/@—1)
thus, as k — oo:
3
C—>Z

which is fairly large
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4.4 Definition: The Small World Model

The small world model is created by modifying the ring lattice.
In particular, with probability p an edge of the lattice is rerouted to some
other vertex (chosen uniformly at random,).

A variation of this doesn’t destroy edges, and simply creates new ones be-
tween vertices.

Figure 4: a) Is the standard ring lattice with & = 3. b) Is the small world model ¢) Is the variation on
the small world model

e What happens to the small world model’s clustering coefficient as p — 17

— as p — 1, almost all edges get rerouted

— this will change the network to become more similar to the ERG
e What is the purpose of the rewiring process in the small world model?

— the standard ring lattice has a diameter of around § (there are n nodes; the longest walk will
occur if you go through adjacent nodes to a node which is diammetrically opposite to you)

— by rewiring, we reduce the maximum number of steps required to get between nodes
e Where are small world networks prevalent?

— in social networks

— the reduced diameter is exemplified by the phenomenon of “six degrees of separation”

5 The BA Preferential Attachment Model

The BA model is a dynamic network which evolves over time through the mechanism of preferential attach-
ment. We use this as an example of how networks in the real world might eveolve over time.
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5.1 Definition: BA Model

The BA Model constructs an evolving network using the following
steps:

1. Consider ng initial vertices, each with degree at least one (i.e a
clique)

2. Add a new vertex to the network, with m < ng half-edges. If the
network has n’ vertices (initially n' = ng) with degrees d;, the
probability that a half-edge connects to v; is given by:

di :
H(dz) == 5 ! € [1,”]
Zj:l dj
This is the preferential attachment mechanism: vertices with
higher degree are more likely to get attached to. However, this must
be carried out carefully®

3. Continue repeating step 2 until we reach a desired number of vertices
n.

%During this step, we should avoid generating multiple edges between 2 vertices. Moreover,
it is a design decision whether we need to update the d; as new edges are generated through this

process

5.2 Proposition: Degree Distribution of the BA Model

The degree distribution of the BA Model is given by:
P(d) ocd™®

Proof. We prove this through differential equations, although other methods are possible.

Assume that new vertices are added randomly at an expected rate of 1 per unit time. After ¢ timesteps,
we’ve added t vertices. If we assume the original network is sparse,then there’ll be approximately mt edges
(since each time we add a vertex we generate m edges) connecting the ¢ + ng vertices.

Now, let d;(t) denote the expected degree of the ith added vertex (added at time ). Then, for t > i:

d
%di (t) = rate at which new edges are added x P(new edge attaches to ith vertex)
In other words, using the preferential attachment formula alongside the handshake lemma:
d di(t)  di(t)
@B =mx 5 =
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We can solve this by separation of variables:

dd; _ d;
dt 2t
1 1
—dd; = | —dt
- /di 2%
1

= In(d;) = 3 In(t) + C

— In(d;) = In(t'/?) + C
—d; = Atl/Q)

Using the initial condition:

it follows that:

ww-n()"

Now, from this we can construct a cumulative distribution, which tells us the proportion of vertices with

degree less than some d. Indeed:
2

. tm
di(t) <d <= i> B
Hence, at time ¢ there are approximately ng +t — tgf vertices with degree less than d. This corresponds to
there being a proportion:

2
no +t— tm?

no+t  d(ng+1)

of vertices with degree less than d. But then, as t — oo, this proportion tends to:

(provided that d > m, since all vertices must have degree greater than or equal to m)

However, this distribution is a cumulative distribution; the density distribution for degrees can be ob-
tained by differentiating, which gives:
P(d) «cd™®

as required.

5.3 Proposition: Clustering Coefficient of the BA Model

The clustering coefficient for the BA Model is approximately:
m — 1 (log(n))?

G 8 n
which is such that:
lim C =0
n—oo
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e Why is the BA preferential attachment model unrealistic?

— it assumes new nodes have acces to information on the whole network before deciding how to
connect

— this is clearly not how real world networks evolve

— however, this can be modified, so that preferential attachment includes local mechanisms

6 Centrality

Centrality is a measure of the importance of vertices in a network. One simple such measure is, for example,
the degree. We now explore other ways of viewing centrality.

6.1 Definition: Closeness Centrality

Let G = (V, E) be a network. The closeness centrality for o vertex
v; 18 the reciprocal of the mean distance:

Vi-1
Z’U]' eVv;#v; 5(Ui7 Uj)

closeness; =

Closeness centrality is only well-defined for connected networks.

6.2 Definition: Betweenness Centrality

Let G = (V, E) be a network. The betweenness centrality for a ver-
tex v; is the fraction of shortest paths passing through v;:

betweenness; = = 1) Z Z ﬂ

j 1,541 l= 1l7éz

where:
e 0;; is the number of shortest paths connecting v;, v;

. 0;1 is the number of shortest paths connecting v;, v; which go
through v;

If oj; = 0 (no path between the 2 vertices) then we use Z—Ji = 0 in the sum.
J
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6.3 The Katz Centrality
6.3.1 Remark: Weighting Walks

e in real-life applications, short walks between vertices may be thought of as “more important” (i.e
spreading of infectious diesease - immediate contagion is more important)

e for a given adjacency matrix, we can consider the following sum:
I+aA+a?A?+ ...
where walks of length k& (encoded within A*) are weighted according to some o, where a € (0, 1)

e if the sum converges, then we can use the formula for the infinite sum of a geometric series to derive
that:
(I—aA) ' =T+aA+a?A%+...

6.3.2 Definition: Katz Centrality

Let G = (V, E) be a network. The Katz Centrality of a vertex v; is:

Vi

Katzi = Z[(I - CYA>_1]Z']'

j=1

That is, we take a weighted sum of the number of walks starting in v;,
and sum over all destination vertices.

6.3.3 Proposition: Convergence of Katz Centrality

The Katz Centrality is well-defined when:
1

p(A4)

where p(A) is the spectral radiius of A.

o <

Proof. The Katz Centrality is undefined if the matrix I — a4 is singular (so that (I — «A4)~! doesn’t exist).
In other words,it is undefined whenever:

1
det(I —ad)=0 = det (A—al) =0

where we have used the fact that one can “pull out” scalars from the determinant. Hence, Katz Centrality
is undefined whenever é is an eigenvalue of A.
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Since A is an adjacency matrix, in particular it is positive, so by the Perron-Frobenius Theorem, there is
a largest eigenvalue r = p(A) which is positive. In particular, if we maintain 1/« above r, we are guaranteed
to never hit any other eigenvalue. In other words, the Katz Centrality is defined for « satisfying:

1 1
—>r = a<-—
o r

We are interested in non-zero «, since when o = 0, the Katz Centrality just defaults to 1. In other words,
the “interesting” values are those for which a € (O, %)

7 Spectral Properties

7.1 Definition: Normalised Laplacian

Let A be an adjacency matrixz. The Laplacian of A is constructed by
defining a matriz
D = diag(dy,...,d,)

where d; is the ith row sum of A. The Laplacian of A is the symmetric

matrix:
L=D—-A

The normalised Laplacian is given by:
L=1-D?AD™'/?
where since D is a diagonal matriz:

D¥ = diag(d®, . ..,d)

e What happens to A, L, L when A is regular?

— if A is regular (all vertices have the same degree), then the 3 matrices have the same eigen-
vectors
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7.2 Proposition: Spectral Properties of Laplacian Matrices

Let A be ann x n adjacency matriz, and let L, L be its Laplacian and
Normalised Laplacian matrices. Then:

1. the eigenvectors of L, L form an orthonormal basis

2. L, L alwyas have a 0 eigenvalue. For L, the corresponding
etgenvector is:
w, = (1,...,1)F

For L, the corresponding eigenvector is:
Uy = (\/317 0009 dn>T

3. if A corresponds to an undirected network the 0 eigenvalue is
isolated (no other eigenvalues in a neighbourhood)

4. if A corresponds to a connected network, all non-zero eigenvalues
are positive:
0:)\1<)\2§§)\n

5. The number of connected components in G 4 is given by the
number of zero eigenvalues of L, L. In particular, a network is
connected iff \o > 0. A\ is called the spectral gap, and its
corresponding etgenvector is the Fiedler vector.

8 Network Models

8.1 Fitting Models to Data

e What does it mean to fit a network model to data?

— say we observe entities,, alongside some evidence of relationship between these entities

— one could think of modelling these relationships as a network, and then analysing the data
through network theory

— to fit the model to the data would be to come up with network parameters, such that the
network best represents the observed data

e What are false positives?
— when the network has an edge which shouldn’t be present
e What are false negatives?

— edges which aren’t present in the network, but which shuld be
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8.2 Undirected Range Dependent Models

8.2.1 Definition: Range Dependent Random Networks

A range dependent random network consists of an ordered list
of vertices (labelled with i € [1,n]), whereby 2 vertices i,j are edge-
connected with independent probability:

piy = f(k) €(0,1), k=|i—j

Here, f is a monotonically decreasing function, which “forces” ver-
tices with smaller ranges to be more likely connected.

Notice, by construction (A) is a symmetric Toeplitz matriz (elements
along a given diagonal are all the same).

A good option for f is:

where n, a > 0.

8.2.2 Proposition: Fitting Range Dependent Random Networks

Say we are given edge data as an adjacency matriz A. Most likely, the vertex list won’t be correct. We aim
to fit a range dependent random network to the data, by finding an f which is most likely to generate the
network given by A.

Let A be a binary adjacency matrix for some data. Then, the per-
mutation q of the vertex indices which mazimises the likelihood of A
being a range dependent random network is obtained by considering
the order of increasing elements of the Fiedler eigenvector of A.

Proof. Let ¢ = (q1,...,q,) € N" denote a permutation of [1, n], representing a possible configuration for the
indices of the range dependent random network. Since we assume edge creation is independent, we have that
the likelihood of the observed data (the matrix A) given the range dependent random network assumption

1S:
£ =TT flla = a5 (1 = (g — a51)' =

i<j

where:
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e f(|gi — g;]) is the probability of having observed an edge in A;;
e 1 — f(lg: — g;|) is the probability of not having observed an edge in A;;

Moreover, notice, we are only iterating ove rth eupper triangular part of A, since A is symmetric.

We can then take logs and manipulate the expression as:

log(£)= > loglf(ls—asDI+ > log[l— f(lai — g5

i<j & Agy=1 i<j & Ai;=0

= > loglf(lei =g+ [ D loglt = fllai =D = > loglt = f(lai — ;)]

i<j & Ajj=1 i<j i<j & Aij=1
Sllg — g
= 5 o[ S ol — sl )
i<j & Ajj=1 E i<j

But now, the second term doesn’t really depend on ¢ (since it is iterating through all the entries in A,
and |¢; — g;]) is symmetric. Hence, maximising the likelihood is equivalent to maximising:

ogl/= 5 log {mqu)]

Iy W R (L 1))
which is a sum of log odds. Now, if we substitute in:

cue*"k2
14 qe—

f(k)

It follows that:

[ ae*'?\qq:*ij\Q
_ 1+ae—nk?
- Z log ae—Mai—a;1?
i<i &A=t | 1= S

= Z ) log {ae‘"l‘“_qﬂz}

i<j & Aqj=1
X Z (¢ — qj)2
i<j & Ajj=1
1
= 5 Z (Qz _qj) Azg
ij=1

But now, recall that the Laplacian of A is positive semi-definite, and:
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Let L be the Laplacian matriz of somen X n matriz A. Then:

1.
Ls=0

2. For any w € R™, we have a quadratic form:

1 n
w' Lw =3 > (wi — w;)* Ay

ij=1

In other words, L is always positive-semidefinite and if w is an
etgenvector of L corresponding to the 0 eigenvalue, then the
components of w must all be equal (so w; = w; for anyi,j).

In particular, this means that to maximise the likelihood, we can equivalently minimise:
—log L' o q"Lgq

Now, optimising this subject to ¢ having integer entries on [1, n] is difficult. Instead, we relax the problem,
and optimise when ¢ € R™. We can then define a permutation, by reordering vertices in increasing order of
their corresponding real elements of ¢. Note that scalar addition or scalar multiplication don’t affect this
ordering. In particular, since we only care about the order, we can restrict ¢ so that:

lgll =1 and g~(1,‘..,1)T:O

In other words, we seek a ¢ which is normalised and orthogonal to a vector of just 1s. But recall, this vector
of 1s is in fact an eigenvector of L, with eigenvalue 0 (it is in the null space). The eigenvectors of L form
an orthonormal basis, so we can pick ¢ to be the Fiedler eigenvector (associated with the first (smallest)

non-zero eigenvalue).
O

Generally, the eigenvector associated to the smallest non-zero eigenvalue of amatriz will minimise quadratic
forms like T Ax; see this post.

8.3 Directed Stoachastic Block Models
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