Networks - Week 1 - Randomness and Matrices

Antonio León Villares

October 2023

Contents

1	Bas	ic Probability	3
	1.1	Basic Rules with Conditional Probability	3
		1.1.1 Proposition: The Chain Rule	3
		1.1.2 Proposition: Bayes' Rule	3
		1.1.3 Definition: Odds	4
	1.2	The Binomial Distribution	4
		1.2.1 Definition: Discrete Random Variables	4
		1.2.2 Definition: Binomial Distribution	4
	1.3	Continuous Random Variables	5
		1.3.1 Definition: Updating Beliefs with Continuous Random Variables	5
		1.3.2 Definition: Maximum Likelihood Estimation	5
	1.4	Definition: Moments of a Continuous Random Variables	6
	1.5	Definition: Improper Distributions	6
2		trices	6
	2.1	Hermitian Matrices	6
		2.1.1 Definition: Hermitian Matrices	6
		2.1.2 Theorem: Spectral Theorem	7
		2.1.3 Definition: Normal Matrices	7
	2.2	The Perron-Frobenius Theorem	7
		2.2.1 Definition: Irreducible Matrix	7
		2.2.2 Definition: Spectral Radius	8
		2.2.3 Theorem: The Perron-Frobenius Theorem	8
		2.2.4 Proposition: Singular Value Decomposition of a Matrix	9
		2.2.5 Proposition: Pseudo-Inverse from SVD	10
		2.2.6 Exercises	10
	2.3	Laplacians of Matrices	11
		2.3.1 Definition: The Laplacian of a Matrix	11
		2.3.2 Proposition: Properties of the Laplacian Matrix	12
_	3.5		. ~
3			13
	3.1		13
	3.2	V	13
	3.3	V I	13
			13
		0	14
	o :		14
	3.4		14
		3.4.1 Definition: Stationary Density	15

4	Pois	sson Processes	16	
	4.1	Definition: Poisson Processes	16	
	4.2	Properties of Poisson Processes	16	
		4.2.1 Proposition: Distribution of Inter-Event Times	16	
		4.2.2 Proposition: Distribution of Number of Events	16	
5	Rar	ndom Walks	16	
	5.1	Definition: Random Walks	17	
	5.2	Proposition: Solution to Random Walks	17	
	5.3	Definition: Lévy Flight	18	
6	6 Power Law Distributions			
	6.1	Definition: Pareto Distribution	19	
	6.2	Proposition: Moments of the Pareto Distribution	20	
	6.3	Definition: Cauchy Distribution	20	
	6.4	Proposition: Properties of Power-Law Distributions	20	
7	Info	ormation Theory	21	
	7.1	Definition: Entropy of Random Variable	21	
	7.2	Definition: Joint Entropy		
	7.3	Definition: Conditional Entropy	21	
	7.4	Definition: Chain Rule of Entropy	22	
	7.5	Definition: Mutual Information		

1 Basic Probability

1.1 Basic Rules with Conditional Probability

1.1.1 Proposition: The Chain Rule

Consider a collection of random variables X_1, \ldots, X_n . Then:

$$P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i \mid X_{i+1}, ..., X_n)$$

where:

$$P(X_n \mid X_{n+1}) = P(X_n)$$

Proof. This comes from repeated application of the definition of conditional probability:

$$P(X,Y) = P(X \mid Y)P(Y)$$

1.1.2 Proposition: Bayes' Rule

$$P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$

where:

- P(X) is the **prior**
- $P(X \mid Y)$ is the **posterior**
- $P(Y \mid X)$ is the **likelihood**

Proof. This uses the commutativity in conditional probability:

$$P(X,Y) = P(Y,X) \implies P(X \mid Y)P(Y) = P(Y \mid X)P(X)$$

1.1.3 Definition: Odds

The **odds** of a given random variable X are:

$$O(X) = \frac{P(X)}{P(\neg X)} = \frac{P(X)}{1 - P(X)}$$

The odds of X given Y are:

$$O(X \mid Y) = \frac{P(X \mid Y)}{P(\neg X \mid Y)} \in [0, \infty)$$

Using Bayes' Rule, this can be rewritten as:

$$O(X \mid Y) = \frac{\frac{P(Y \mid X)P(X)}{P(Y)}}{\frac{P(Y \mid \neg X)P(\neg X)}{P(Y)}} = \frac{P(Y \mid X)}{P(Y \mid \neg X)}O(X)$$

1.2 The Binomial Distribution

1.2.1 Definition: Discrete Random Variables

A discrete random variable (DRV) is a variable which takes a number of mutually exclusive, distinct values.

If these values are **finite**, say $\{\alpha_1, \ldots, \alpha_k\}$, this describes a **multinomial distribution**, with probabilities $p_k, k \in [1, K]$ whose sum is 1.

1.2.2 Definition: Binomial Distribution

A binomial distribution is a distribution whereby an experiment is repeated n times (independently), and each experiment has 2 possible outcomes (with probability p and 1 - p).

If k outcomes are "positive" and n - k are "negative", the probability of such an experiment sequence is:

$$\binom{n}{k} p^k (1-p)^{n-k}$$

1.3 Continuous Random Variables

1.3.1 Definition: Updating Beliefs with Continuous Random Variables

Let θ be a **continuous random variable** (taking values in some set Ω). The **prior** distribution of θ is given by some non-negative function:

$$P(\theta) = f(\theta)$$

If we observe **new data** D, we **update our beliefs** via the chain rule:

$$P(\theta \mid D) = \frac{P(D \mid \theta)f(\theta)}{P(D)} \propto P(D \mid \theta)f(\theta)$$

We call $P(D \mid \theta)$ a **model**, since it informs about how a model θ perceives the observed data D.

Since P(D) is just a constant which normalises the distribution, it plays no role in the actual distribution of θ . If we want to compute a probability distribution, we can just use:

$$P(\theta \mid D) = \frac{P(D \mid \theta) f(\theta)}{\int_{\Omega} P(D \mid \theta) f(\theta) \ d\theta}$$

1.3.2 Definition: Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a technique to find the θ most likely to explain the data, by finding the mode of the distribution:

$$\theta^* = \operatorname{argmax}_{\theta} P(D \mid \theta)$$

If we have n independent observations $\{x_i\}_{i\in[1,n]}$, the likelihood of the data given θ is given by:

$$\mathcal{L} = \prod_{i=1}^{n} P(x_i \mid \theta)$$

In practice, we'd opitmise the **log likelihood**:

$$\log \mathcal{L} = \sum_{i=1}^{n} \log(P(x_i \mid \theta))$$

1.4 Definition: Moments of a Continuous Random Variables

Let θ be some distribution. Then, the k-th **moment** of the distribution is given by::

$$\left\langle \theta^{k} \right\rangle = \frac{\int_{\Omega} \theta P(D \mid \theta 9 f(\theta) \ d\theta)}{\int_{\Omega} P(D \mid \theta) f(\theta) \ d\theta}$$

In particular:

- the moment with k = 1 is the expected value of the distribution
- the variance of the distribution is:

$$\sigma_{\theta}^{2} = \left\langle (\theta - \langle \theta \rangle)^{2} \right\rangle = \left\langle \theta^{2} \right\rangle - \left\langle \theta \right\rangle^{2}$$

1.5 Definition: Improper Distributions

Let $f(\theta)$ be a distribution. Then, $f(\theta)$ is an **improper distribution** if it has **infinite probability mass/density**, and thus can't be summed/integrated to unity.

Improper distributions will still have maxima and be non-negative, so maximum likelihood methods (like gradient-based methods) can still be applied.

2 Matrices

2.1 Hermitian Matrices

2.1.1 Definition: Hermitian Matrices

A Hermitian (or self-adjoint) matrix A is one such that:

$$A = A^* (= (\overline{A})^T)$$

where \overline{A} denotes the **complex conjugate** matrix of A.

2.1.2 Theorem: Spectral Theorem

Let A be **Hermitian** on the (inner product) vector space \mathbb{C}^n . Then, there exists an **orthonormal basis** of \mathbb{C}^n consisting of **eigenvectors** of A. Moreover:

- each eigenvalue $\lambda_1, \ldots, \lambda_n$ of A is real
- A is diagonalisable: in fact, there exists a unitary matrix P (that is, a matrix such that $P^*P = \mathbb{I}$), such that:

$$P^{-1}AP = P^*AP = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

.

More details can be found in these notes for Honours Algebra at the University of Edinburgh.

2.1.3 Definition: Normal Matrices

A matrix is **normal** if it **commutes** with its **adjoint**:

$$AA^* = A^*A$$

By definition, all **Hermitian matrices** are **normal**.

Moreover, a matrix is **normal** if and only if it is **diagonalisable**.

2.2 The Perron-Frobenius Theorem

2.2.1 Definition: Irreducible Matrix

Let A be a non-negative matrix. Then, A is irreducible if:

$$\forall (i,j), \exists k \in \mathbb{N} : (A^k)_{ij} > 0$$

2.2.2 Definition: Spectral Radius

Let A be a matrix. The **spectral radius** of A, $\rho(A)$, is the **maximum** of the **absolute values** of its **eigenvalues**.

2.2.3 Theorem: The Perron-Frobenius Theorem

The Perron-Frobenius Theorem states that real, square matrices with strictly positive entries have a unique largest real eigenvalue, and whose corresponding eigenvector has strictly positive components.

Let A be a $n \times n$ matrix, such that A:

- is irreducible
- non-negative
- has spectral radius $\rho(A) = r > 0$

Then:

- 1. r is an eigenvalue of A (called the Perron-Frobenius eigenvalue)
- 2. r is **simple**. In particular:
 - r has algebraic multiplicity 1 (it is not a repeated eigenvalue)
 - r has **geometric multiplicity** 1 (both right and left eigenspaces are one-dimensional - this is because geometric multiplicity is bounded by algebraic multiplicity
- 3. A has left/right eigenvectors with eigenvalue r, and whose components are all positive
- 4. the only **eigenvectors** whose components are **all positive** are those associated to r
- 5. r is **bounded** above/below by the maximum and minimum **row** sums of A (and also the **column** sums):

$$\min_{i \in [1,n]} \sum_{j=1}^{n} A_{ij} \le r \le \max_{i \in [1,n]} \sum_{j=1}^{n} A_{ij}$$

2.2.4 Proposition: Singular Value Decomposition of a Matrix

Let M be an $m \times n$ matrix with complex entries. The **singular value decomposition** of M is a **factorisation** of the form:

$$M = U\Sigma V^*$$

where:

- U is an $m \times m$ unitary matrix (whose columns are the eigenvectors of M^*M , called the left singular vectors of M).
- Σ is an $m \times n$ diagonal matrix, with non-negative, real diagonal elements (whose elements are the square root of the non-zero eigenvalues of MM^* or M^*M , called the singular values of M).
- V^* is the adjoint of the $n \times n$ unitary matrix V (the columns of V are the eigenvectors of MM^* , called the right singular vectors of M).

• Is SVD unique?

- the **singular values** are unique
- however, U, V needn't be unique

• How can SVD be derived?

- we exploit the fact that MM^* and M^*M will be **real**, **symmetric** matrices, which are diagonalisable
- see these notes for extra details

• How is SVD related to eigenvalue decomposition?

- if M is a normal matrix, it is diagonalisable
- this diagonalisation can be doen through the **eigenvalue decomposition**:

$$M = UDU^*$$

where U is a unitary matrix whose columns are the **eigenvectors** of M, and D is a diagonal matrix containing the **eigenvalues** of M

- in this case, the SVD will coincide with the eigenvalue decomposition

2.2.5 Proposition: Pseudo-Inverse from SVD

Let M be a matrix. Then, its **pseudo-inverse** is:

$$M^+ = (A^*A)^{-1}A^*$$

IOf we know the SVD of M, then:

$$M^+ = V\Sigma^+ U^*$$

where Σ^+ is the **pseudo-inverse** of Σ (which can be obtained by replacing every non-zero diagonal entry by its reciprocal).

2.2.6 Exercises

1. Suppose an $n \times n$ matrix A is non-negative and the spectral radius of A is given by the Perron-Frobenius eigenvalue, r. Let $\alpha \in (0, r)$. Then consider:

$$(\mathbb{I} - \alpha A)^{-1}$$

Show that if this matrix is strictly positive then A is irreducible. Is the converse true? Show that if the matrix:

$$\exp(A) = \sum_{i=0}^{\infty} \frac{A^i}{i!}$$

is strictly positive, then A is irreducible. Is the converse true?

2. Suppose A is normal and invertible. Then there is a unitary U such that $A = U\Lambda U^T$ and Λ is diagonal containing the eigenvalues of A. Let $f: R \to R$ be any function that is well-defined at all of the eigenvalues of A. Define

$$f(A) = U f(\Lambda) U^T$$

where $f(\Lambda)$ is diagonal; with f applied to each corresponding element of Λ .

(a) Show that if Q is any polynomial:

$$Q(x) = \sum q_i x^i$$

then:

$$Q(A) = \sum q_i A^i$$

(b) Similarly, show that:

$$Q(A - \mathbb{I}) = \sum q_i (A - \mathbb{I})^i = UQ(\Lambda - I)U^T$$

(c) Finally, show that:

$$Q(A)^{-1} = UQ(\Lambda)^{-1}U^T$$

3. Suppose A is normal and its spectral radius is $\rho(A) < \frac{1}{\alpha}$ for some $\alpha > 0$. Then, consider:

$$(\mathbb{I} - \alpha)^{-1} = U(\mathbb{I} - \alpha\Lambda)^{-1}U^T$$

Show that this is the geometric series:

$$S = \sum \alpha^i A^i$$

2.3 Laplacians of Matrices

2.3.1 Definition: The Laplacian of a Matrix

Let A be a $n \times n$ matrix which is:

- real
- $\bullet \ non\text{-}negative$
- normal

If $\underline{s} = \underline{1} \in \mathbb{R}^n$, then $\underline{As} = (d_1, \dots, d_n)^T$ contains the **row sums** of A.

If we define:

$$D = \operatorname{diag}(d_1, \dots, d_n)$$

the combinatorial **Laplacian** of A is the **symmetric** matrix:

$$L = D - A$$

Notice, the fact that A is real and normal implies that A is symmetric. In particular, since A is normal, it is diagonalisable, so:

$$A = UDU^T$$

for some orthogonal matrix U. Then:

$$A^T = UD^TU^T = UD^TU = A$$

 $so\ A\ is\ symmetric.$

2.3.2 Proposition: Properties of the Laplacian Matrix

Let L be the **Laplacian** matrix of some $n \times n$ matrix A. Then:

1.

$$Ls = 0$$

2. For any $\underline{w} \in \mathbb{R}^n$, we have a quadratic form:

$$\underline{w}^T L \underline{w} = \frac{1}{2} \sum_{i,j=1}^n (w_i - w_j)^2 A_{ij}$$

In other words, L is always **positive-semidefinite** and if \underline{w} is an **eigenvector** of L corresponding to the 0 **eigenvalue**, then the components of \underline{w} must all be equal (so $w_i = w_j$ for any i, j).

Proof.

1

$$Ls = Ds - As = 0$$

(2)

We compute directly:

$$\underline{w}^{T} L \underline{w} = \underline{w}^{T} (D - A) \underline{w}$$

$$= \underline{w}^{T} D \underline{w} - \underline{w}^{T} A \underline{w}$$

$$= \sum_{i=1}^{n} d_{i} w_{i}^{2} - \sum_{i,j=1}^{n} A_{ij} w_{i} w_{j}$$

$$= \sum_{i,j=1}^{n} A_{ij} w_{i}^{2} - \sum_{i,j=1}^{n} A_{ij} w_{i} w_{j}$$

But now, notice that since A is symmetric:

$$\sum_{i,j=1}^{n} A_{ij} w_i^2 = \sum_{i,j=1}^{n} A_{ij} w_j^2 \implies \sum_{i,j=1}^{n} A_{ij} w_i^2 = \frac{1}{2} \sum_{i,j=1}^{n} A_{ij} (w_i^2 + w_j^2)$$

Hence:

$$\underline{w}^T L \underline{w} = \frac{1}{2} \sum_{i,j=1}^n (w_i - w_j)^2 A_{ij}$$

3 Markov Chains

3.1 Definition: Markov Chain

Consider some structure consisting of n states in discrete time. A **Markov chain** is a stochastic process, whereby the probability of observing a state at time t + 1, X_{t+1} solely depends on the previous state X_t .

3.2 Definition: Stationary Markov Chains

A stationary Markov Chain is a Markov Chain where the transition probability doesn't depend on t:

$$P(X_{t+1} = j \mid X_t)$$

These stationary transition probabilities can be stored as a transition matrix with entries:

$$T_{ij} = P(X_{t+1} = j \mid X_t)$$

Moreover, we require that:

$$\sum_{i=1}^{n} T_{ij} = 1$$

 $(from\ a\ given\ state,\ we\ must\ always\ go\ to\ some\ state,\ including\ the\ same\ one)$

3.3 Types of States

3.3.1 Definition: Ergodic Set

Let S be a set of states. S is an **ergodic set** if:

- for any $i, j \in S$, one can reach j from i solely through elements of S
- once an element of S is reached, all subsequent transitions happen within S

3.3.2 Definition: Absorbing State

State i is **absorbing** if it can't be escaped once reached:

$$T_{ii} = 1$$

Absorbing states form a 1-element ergodic set.

3.3.3 Definition: Transient State

A state i is transient if it isn't part of any erogdic set.

3.4 Evolution of Markov Chain Process

- At some time t+1, how can we compute the probability of reaching some state j from the previous state?
 - let $p_i(t)$ denote the probability of reaching state j at time t
 - then, since we assume that **transitions** and **states** are independent:

$$p_j(t+1) = \sum_{i=1}^{n} p_i(t) T_{ij}$$

- if we want to compute probabilities for all states, we can use matrix multiplication:

$$p(t+1) = p(t)T$$

where p is a row vector $(p_1(t), \ldots, p_n(t))$

- even more succintly (depending solely on the **initial state**):

$$p(t) = p(0)T^t$$

3.4.1 Definition: Stationary Density

The non-negative stationary density is a vector:

$$\underline{p}^* = (p_1^*, \dots, p_n^*)$$

where:

$$p_i^* = \lim_{t \to \infty} p_i(t)$$

and:

$$\underline{p}^* = \underline{p}^* T$$

- How is the stationary density related to T?
 - $-p^*$ is the **left eigenvector** of T, with **eigenvalue** 1
- Under what conditions does an eigenvalue of unity exist for T?
 - if the set of n states is **ergodic**, then T will have an eigenvalue 1
- What special type of eigenvalue is 1?
 - for a **transition matrix** T with an **erogdic set** of states, the **eigenvalue** 1 will be the **Perron-Frobenius Eigenvalue**
 - the stationary density is the Perron-Frobenius Eigenvector (which we know has all positive components, as expected)
- How does the difference between p^* and p(t) vary as $t \to \infty$?
 - the discrepancy decays **exponentially**
 - it depends on the second eigenvalue with the largest modulo:

$$\propto |\lambda_2|^t$$

- in general, speed of convergence depends on the difference or ratio of λ_2 and r (the Perron-Frobenius eigenvalue, which won't always be 1)
- What is the spectral gap?
 - the value $1 \lambda_2$
 - if the spectral gap is **large**, the Markov chain converges rapidly

4 Poisson Processes

4.1 Definition: Poisson Processes

A **Poisson Process** is a model for events which occur discretely, and in apparent random fashion.

In particular, consider a window of time Δt , with probability of an event happening during the window of q. Then, the **event rate** is given by:

$$\lambda = \frac{q}{\Delta t}$$

For λ to be well-defined, we require that:

- $q \to 0$ as $\Delta t \to 0$
- as $\Delta t \rightarrow 0$ we don't allow multiple events to happen in a single time window

4.2 Properties of Poisson Processes

- 4.2.1 Proposition: Distribution of Inter-Event Times
- 4.2.2 Proposition: Distribution of Number of Events

5 Random Walks

 $Random\ walks\ are\ useful\ in\ modelling\ trajectories\ in\ space,\ which\ can,\ for\ example,\ extract\ information\ from\ the\ structure\ of\ networks$

5.1 Definition: Random Walks

Consider a one-dimensional space (i.e the real line). A random walker performs a jump whose length and direction are random variables.

In particular, the **probability density** of transition is denoted f(r), such that the probability that a walker at x arrives in

$$[x+r, x+r+\Delta r]$$

in 1 jump is:

$$f(r)\Delta r$$

Moreover, we must have that:

$$\int_{-\infty}^{\infty} f(r) \ dr = 1$$

5.2 Proposition: Solution to Random Walks

Let p(x,t) denote the probability of a **random walker** being at x after t steps. Then, if f(r) has **finite** mean and variance:

$$p(x;t) = \frac{1}{(2\pi Dt)^{1/2}} e^{-\frac{(x-vt)^2}{4Dt}}$$

where D, v are constants.

Proof. Assuming that jumps are independent events, the probability of reaching x at time t from any other x' is:

$$p(x;t) = \int_{-\infty}^{\infty} f(x - x')p(x';t - 1) dx'$$

Notice, this looks exactly like a convolution between f, p. If we apply the Fourier transform, we can convert this into a product:

$$\hat{p}(k;t) = \hat{f}(k)\hat{p}(k;t-1)$$

where:

$$\hat{g}(k) = \int_{-\infty}^{\infty} g(x)e^{-ikx} dx$$

Now, at the start of the walk (t = 0) we know for certain where the random walker is, so we can model:

$$p(x;0) = \delta(x)$$

where δ is the Dirac distribution. But the Fourier Transform of δ is:

$$\hat{p}(k;0) = 1$$

so it follows that:

$$\hat{p}(k;t) = \hat{f}(k)\hat{p}(k;t-1) \implies \hat{p}(k;t) = [\hat{f}(k)]^t$$

Now, if we take the Inverse Fourier Transform:

$$p(x;t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} [\hat{f}(k)]^t e^{ikx} dk$$

Whilst the function depends on \hat{f} , the behaviour of the random walk as t grows only depends on some of its properties.

In particular, if the mean and variance of f are finite, the solution converges to:

$$p(x;t) = \frac{1}{(2\pi Dt)^{1/2}} e^{-\frac{(x-vt)^2}{4Dt}}$$

Notice, it is expected that a Gaussian profile appears: after all, a random walk is nothing but a sum of independent steps, drawn from a smooth distribution f with finite mean and variance. That is, the Central Limit Theorem applies!

5.3 Definition: Lévy Flight

A **Lévy Flight** is a **non-diffusive** spatial process: f doesn't have finite variance, so large jumps are possible.

6 Power Law Distributions

Power Law distributions are defined by properties whose probability density changes as powers.

6.1 Definition: Pareto Distribution

The **Pareto Distribution** is a power-law distribution defined by:

$$p(x) = Cx^{-\alpha}$$

where:

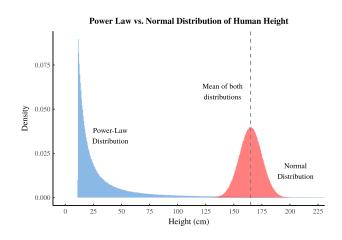
- $x > x_{min}$, and x_{min} is the minimum value taken by the random variable
- $\alpha > 1$
- C is a normalisation constant

$$C = (\alpha - 1)x^{\alpha - 1}$$

such that:

$$\int_{x_{min}}^{\infty} p(x) \ dx = 1$$

- How do power law distributions differ from Gaussian distributions?
 - Gaussian distributions are more "balanced", with very little probability density assigned to
 its tails
 - on the other hand, power law distributions have:
 - * a vast majority of instances with small values
 - * few (but not negligible) very large values
 - **power-law distributions** are said to have a "fat tail", as it is more populated than other distributions (like the exponential distribution)



• How are power laws related to Zipf's Law?

- Zipf's Law gives a relationship between frequency and ranking of certain phenomena (typically languages see these notes on NLP)
- turns out that **Zipf's Law** is just a specific instance of a **power-law distribution**
- beyond linguistics, power-law distributions can also be used to model individual wealth and city populations (for example)

6.2 Proposition: Moments of the Pareto Distribution

Let $\beta > \alpha - 1$. Then, the β th moment of the **Pareto distribution** is:

$$\langle x^{\beta} \rangle = \int_{x_{min}}^{\infty} x^{betap(x)} dx = \frac{\alpha - 1}{\alpha - 1 - \beta} x_{min}^{\beta}$$

Clearly, such moments are undefined when $\beta > \alpha - 1$

6.3 Definition: Cauchy Distribution

The Cauchy Distribution is proportional to:

$$\frac{1}{1+x^2}$$

and behaves asymptotically like the **Pareto distribution** with $\alpha = 2$.

- Does the Cauchy Distribution have a well-defined mean?
 - notice, when $\alpha = 2$, the mean of the **Pareto Distribution** diverges
 - since the Cauchy Distribution behaves asymptotically like the Pareto Distribution, it doesn't have a defined mean (or variance)
 - in particular, this menas that the CLT doesn't apply

6.4 Proposition: Properties of Power-Law Distributions

1. Scale Invariance:

$$p(c_1x) = c_2p(x)$$

In other words, the properties of the sytem aren't affected by a change in units.

2. Log-Log Plot:

$$\log(p(x)) = \log C - \alpha \log(x)$$

7 Information Theory

7.1 Definition: Entropy of Random Variable

The entropy of a random variable (denoted H) is a measure of the uncertainty we have about the variable, before observing it:

$$H(X)0 - \sum_{x} p(x) \log(p(x))$$

- What is the minimum value of entropy?
 - when the RV is **deterministic** $(P(X = x_0) = 1 \text{ for some } x_0)$, we get that H(X) = 0
 - this corresponds with the notion that there is **no uncertainty**
- When does entropy achieve its maximum value?
 - if p(x) is **uniformly distributed** such that:

$$p(x) = \frac{1}{n}$$

then H is maximised, and:

$$H(X) = \log(n)$$

7.2 Definition: Joint Entropy

Let X, Y be a pair of **discrete random variables** with joint distribution p(x, y). Then, their **joint entropy** is:

$$H(X,Y) = \sum_{x} \sum_{y} p(x,y) \log(p(x,y))$$

7.3 Definition: Conditional Entropy

Let X, Y be a pair of **discrete random variables** with joint distribution p(x, y). Then, their **conditional entropy**:

$$H(X \mid Y) = \sum_{y} p(y)H(X \mid Y = y) = \sum_{x} \sum_{y} p(x, y) \log(p(x \mid y))$$

7.4 Definition: Chain Rule of Entropy

The joint entropy and conditional entropy are related by the chain rule:

$$H(X,Y) = H(X) + H(Y \mid X)$$

7.5 Definition: Mutual Information

Let X, Y be a pair of **discrete random variables** with joint distribution p(x, y). Then, their **mutual information** is the amount of information gained on X by knowing the value of Y:

$$I(X,Y) = H(X) - H(X | Y) = H(X) + H(Y) - H(X,Y)$$

Alternatively:

$$I(X,Y) = \sum_{x} \sum_{y} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

- To what does mutual information get reduced if Y is perfectly informative; that is, it tells us everything about X?
 - in such a case, $H(X \mid Y) = 0$, and:

$$I(X,Y) = H(X)$$

- intuitively, what does mutual information aim to measure?
 - the **non-linear correlations** between random variables
 - it measures the cost of assuming that 2 variables are independent (when in fact they aren't)