Networks - Week 1 - Randomness and Matrices

Antonio Ledn Villares

October 2023

Contents
1 Basic Probability 3
1.1 Basic Rules with Conditional Probability . . . . . . . .. ... .. ... ... . ........ 3
1.1.1 Proposition: The Chain Rule . . . . . . .. .. .. ... .. ... ... ... ...... 3
1.1.2  Proposition: Bayes’ Rule . . . . . .. .. .. 3
1.1.3 Definition: Odds . . . . . . . . . e 4
1.2 The Binomial Distribution . . . . . . . . . . . ... 4
1.2.1 Definition: Discrete Random Variables . . . . . . . . . .. ... ... .. .. ...... 4
1.2.2 Definition: Binomial Distribution . . . . . . . . . . . ... .. ... .. 4
1.3 Continuous Random Variables. . . . . . . . . . . . . . .. . ... e 5
1.3.1 Definition: Updating Beliefs with Continuous Random Variables . . . . . ... .. .. 5
1.3.2 Definition: Maximum Likelihood Estimation . . . . . ... ... ... ... ...... 5
1.4 Definition: Moments of a Continuous Random Variables . . . . . .. ... ... ... ..... 6
1.5 Definition: Improper Distributions . . . . . . . . . . . .. ... ... 6
2 Matrices 6
2.1 Hermitian Matrices . . . . . . . . . . . e e e e 6
2.1.1 Definition: Hermitian Matrices . . . . . . . . . . . . . . . . .o 6
2.1.2  Theorem: Spectral Theorem . . . . . . . . . . . ... ... 7
2.1.3 Definition: Normal Matrices . . . . . . . . . . . . . . e 7
2.2  The Perron-Frobenius Theorem . . . . . . . . . . . . . . . ... .. . ... . 7
2.2.1 Definition: Irreducible Matrix . . . . . . . . . . . . e 7
2.2.2  Definition: Spectral Radius . . . . . . . . . . . ... ... 8
2.2.3 Theorem: The Perron-Frobenius Theorem . . . . . . . . . .. .. ... ... ...... 8
2.2.4  Proposition: Singular Value Decomposition of a Matrix . . . ... ... ... ... .. 9
2.2.5 Proposition: Pseudo-Inverse from SVD . . . . . . .. ... 0oL, 10
2.2.6 Exercises . . . . . .. e 10
2.3 Laplacians of Matrices . . . . . . . .« .. 11
2.3.1 Definition: The Laplacian of a Matrix . . . . . . . . ... ... ... ... .. ..... 11
2.3.2  Proposition: Properties of the Laplacian Matrix . . .. .. ... .. ... ....... 12
3 Markov Chains 13
3.1 Definition: Markov Chain . . . . . . . . . . . .. 13
3.2 Definition: Stationary Markov Chains . . . . . . . . .. . ... .. o 13
3.3 Typesof States . . . . . . . . . e 13
3.3.1 Definition: Ergodic Set . . . . . . . . .. 13
3.3.2 Definition: Absorbing State . . . . . . . ... L 14
3.3.3 Definition: Transient State . . . . . . . . . . . . .. 14
3.4 Evolution of Markov Chain Process . . . . . . . . . . . . . . . . . . ... 14
3.4.1 Definition: Stationary Density . . . . . . . . . ... . oo 15



Poisson Processes

4.1 Definition: Poisson Processes . . . . . . . . . . . e
4.2 Properties of Poisson Processes . . . . . . . . .. L
4.2.1 Proposition: Distribution of Inter-Event Times . . . . . . .. ... ... ... .....
4.2.2 Proposition: Distribution of Number of Events . . . . . . ... ... .. ........
Random Walks
5.1 Definition: Random Walks . . . . . . . . . . .. . oo
5.2  Proposition: Solution to Random Walks . . . . . .. .. .. ... ... .
5.3 Definition: Lévy Flight . . . . . . . . . . . . . e
Power Law Distributions
6.1 Definition: Pareto Distribution . . . . . . . . ... . L
6.2 Proposition: Moments of the Pareto Distribution . . . . . . . .. .. ... ... ... .....
6.3 Definition: Cauchy Distribution . . . . . . . . ... . L o
6.4 Proposition: Properties of Power-Law Distributions . . . . . . .. ... ... ... .......
Information Theory
7.1 Definition: Entropy of Random Variable . . . . . .. ... . ... .. 0 .
7.2 Definition: Joint Entropy . . . . . . . ...
7.3 Definition: Conditional Entropy . . . . . . . . . . .. L
7.4 Definition: Chain Rule of Entropy . . . . . . . . . . ... .
7.5 Definition: Mutual Information . . . . . . . . . . .. ...

Page 2

16
16
16
16
16

16
17
17
18

18
19
20
20
20



Based on the notes by Renaud Lambiotte and Pete Grindrod, Chapter 1

1 Basic Probability

1.1 Basic Rules with Conditional Probability

1.1.1 Proposition: The Chain Rule

Consider a collection of random variables X4, ..., X,. Then:

n

P(Xy,..., Xn) = [[P(Xi | Xita,..., Xa)

where:

Proof. This comes from repeated application of the definition of conditional probability:

P(X,Y)=P(X | Y)P(Y)

1.1.2 Proposition: Bayes’ Rule

where:
e P(X) is the prior
e P(X |Y) is the posterior
e P(Y | X) is the likelihood

Proof. This uses the commutativity in conditional probability:

PX,Y)=PY.X) = PX|Y)P(Y)=PY | X)P(X)
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1.1.3 Definition: Odds

The odds of a given random variable X are:

PX) __PX)

O(X) = P(-X) 1-PX)

The odds of X givenY are:

PX 1Y)
X|Y)=——7—~
O(X |¥) = By € 0.9
Using Bayes’ Rule, this can be rewritten as:
PY | X)P(X)
_ P(Y) _ PV X)
P(Y)

1.2 The Binomial Distribution

1.2.1 Definition: Discrete Random Variables

A discrete random variable (DRV) is a variable which takes a number
of mutually exclusive, distinct values.

If these values are finite, say {aq, ..., o}, this describes a multinomial
distribution, with probabilities py, k € [1, K| whose sum is 1.

1.2.2 Definition: Binomial Distribution

A binomial distribution is a distribution whereby an experiment is re-

peated n times (independently), and each experiment has 2 possible out-
comes (with probability p and 1 —p).

If k outcomes are “positive” andn — k are “negative”, the probability of
such an experiment sequence is:

<Z> pFa—p)*
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1.3 Continuous Random Variables

1.3.1 Definition: Updating Beliefs with Continuous Random Variables

Let 0 be a continuous random variable (taking values in some set ).
The prior distribution of 0 is given by some non-negative function:

P(0) = f(0)

If we observe new data D, we update our beliefs via the chain rule:

P11 D) = “5 DI o (D 0)£)

We call P(D | 0) a model, since it informs about how a model 6 perceives
the observed data D.

Since P(D) is just a constant which normalises the distribution, it plays no role in the actual distribution
of 8. If we want to compute a probability distribution, we can just use:

P(D [ 0)f(9)

WW)E P(D | 0)f(6) db

1.3.2 Definition: Maximum Likelihood Estimation

Mazimum Likelihood Estimation (MLE) is a technique to find the 6
most likely to explain the data, by finding the mode of the distribution:

0* = argmax, P(D | 0)

If we have n independent observations {xi}ie[l,n], the likelihood of the data

given 0 1s given by:
L=]]P:|0)
i=1
In practice, we’d opitmise the log likelthood:

log £ = Zlog (x;]0))
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1.4 Definition: Moments of a Continuous Random Variables

Let 6 be some distribution. Then, the k-th moment of the distribution is
given by::
<0k> _ JoOP(D | 09f(0) db
JoP(D]6)f(0) do

In particular:

o the moment with k = 1 is the expected value of the distribution

e the variance of the distribution is:

ap = (0= (0))*) = (6) - (0)°

1.5 Definition: Improper Distributions

Let f(0) be a distribution. Then, f(0) is an improper distribu-
tion if it has infinite probability mass/density, and thus can’t be
summed/integrated to unity.

Improper distributions will still have mazima and be non-negative, so mazimum likelihood methods (like
gradient-based methods) can still be applied.

2 Matrices

2.1 Hermitian Matrices

2.1.1 Definition: Hermitian Matrices

A Hermitian (or self-adjoint) matriz A is one such that:
A= (= (A))

where A denotes the complex conjugate matriz of A.
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2.1.2 Theorem: Spectral Theorem

Let A be Hermitian on the (inner product) vector space C". Then, there
exists an orthonormal basis of C" consisting of eigenvectors of A.
Moreover:

e cach etgenvalue \{, ..., \, of A is real

e A is diagonalisable: in fact, there exists a unitary matriz P (that
is, a matriz such that P*P = 1), such that:

PYAP = P*AP = diag(\y, ..., \n)

More details can be found in these notes for Honours Algebra at the University of Edinburgh.

2.1.3 Definition: Normal Matrices

A matriz is normal if it commutes with its adjoint:
AA* = A*A

By definition, all Hermaitian matrices are normal.

Moreover, a matrix is normal if and only if it is diagonalisable.

2.2 The Perron-Frobenius Theorem

2.2.1 Definition: Irreducible Matrix

Let A be a non-negative matriz. Then, A is irreducible if:

V(i,5), Ik EN : (A% >0
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2.2.2 Definition: Spectral Radius

Let A be a matriz. The spectral radius of A, p(A), is the maximum of
the absolute values of its etigenvalues.

2.2.3 Theorem: The Perron-Frobenius Theorem

The Perron-Frobenius Theorem states that real, square matrices with strictly positive entries have a unique
largest real eigenvalue, and whose corresponding eigenvector has strictly positive components.

Let A be an X n matriz, such that A:
e is irreducible
e non-negative
e has spectral radius p(A) =r >0
Then:

1. ris an eigenvalue of A (called the Perron-Frobenius eigenvalue)

2. r is stmple. In particular:

e 1 has algebraic multiplicity 1 (it is not a repeated eigenvalue)

e r has geometric multiplicity 1 (both right and left eigenspaces
are one-dimensional - this is because geometric multiplicity is
bounded by algebraic multiplicity

3. A has left/right eigenvectors with eigenvalue r, and whose
components are all positive

4. the only eigenvectors whose components are all positive are those
associated to r

5. 1 is bounded above/below by the maximum and minimum row sums
of A (and also the colummn sums):

n

n
min A <r < mazx A
i€[1,n] ]Z_; Yv—=" = i€[1,n] = ij
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2.2.4 Proposition: Singular Value Decomposition of a Matrix

Let M be an m X n matriz with complex entries. The singular value
decomposition of M is a factorisation of the form:

M=UXV*
where:

e U is an m X m unitary matriz (whose columns are the
eigenvectors of M*M, called the left singular vectors of M ).

e X is an m X n diagonal matriz, with non-negative, real diagonal
elements (whose elements are the square root of the non-zero
eigenvalues of MM* or M*M, called the singular values of M ).

e V* is the adjoint of the n X n unitary matrixV (the columns of V
are the etgenvectors of M M*, called the right singular vectors
of M ).

e Is SVD unique?

— the singular values are unique

— however, U, V needn’t be unique

e How can SVD be derived?

— we exploit the fact that M M* and M*M will be real, symmetric matrices, which are diagonal-
isable

— see these notes for extra details
e How is SVD related to eigenvalue decomposition?
— if M is a normal matrix, it is diagonalisable
— this diagonalisation can be doen through the eigenvalue decomposition:

M =UDU*

where U is a unitary matrix whose columns are the eigenvectors of M, and D is a diagonal
matrix containing the eigenvalues of M

— in this case, the SVD will coincide with the eigenvalue decomposition
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2.2.5 Proposition: Pseudo-Inverse from SVD

Let M be a matriz. Then, its pseudo-tnverse is:
Mt = (A*A)~LA*
10f we know the SVD of M, then:
Mt =VZtU*

where X1 is the pseudo-inverse of 3 (which can be obtained by replacing
every non-zero diagonal entry by its reciprocal).

2.2.6 Exercises

1. Suppose an n x n matrix A is non-negative and the spectral radius of A is given by the

Perron-Frobenius eigenvalue, r. Let « € (0,7). Then consider:

(I—aA)™!

Show that if this matrix is strictly positive then A is irreducible. Is the converse true?

Show that if the matrix:

exp(4) = Z m
i=0

is strictly positive, then A is irreducible. Is the converse true?

2. Suppose A is normal and invertible. Then there is a unitary U such that A = UAU” and A is
diagonal containing the eigenvalues of A. Let f: R — R be any function that is well-defined

at all of the eigenvalues of A. Define
f(A)=Ufmu*

where f(A) is diagonal; with f applied to each corresponding element of A.

(a) Show that if @) is any polynomial:

Q) =) ¢’

then:

Q(A) = Z%‘Ai
(b) Similarly, show that:
QA-T)=> q(A-T) =UQA - NU"

(¢) Finally, show that:
Q)M =UQ(n) U

3. Suppose A is normal and its spectral radius is p(A4) < é for some « > 0. Then, consider:
I—a) ' =Ul—-ar)'U"

Show that this is the geometric series:

S = Zaw
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2.3 Laplacians of Matrices

2.3.1 Definition: The Laplacian of a Matrix

Let A be an x n matriz which is:
e real
e non-negative
e normal

Ifs=1€R", then As = (dy, . ..,d,)" contains the row sums of A.

If we define:
D = diag(dy, . ..,d,)

the combinatorial Laplacian of A is the symmetric matriz:

L=D—-A

Notice, the fact that A is real and normal implies that A is symmetric. In particular, since A is normal,
it is diagonalisable, so:
A=UDU"

for some orthogonal matriz U. Then:
AT =UDTUT =UD"U = 4

so A is symmetric.
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2.3.2 Proposition: Properties of the Laplacian Matrix

Let L be the Laplacian matriz of somen x n matriz A. Then:
1.
Ls=0

2. For any w € R™, we have a quadratic form:

1 n
w Lw 2Z(wi—wj)2Aij

2,j=1

g
=]
h
g
I
|

In other words, L is always positive-semidefinite and if w is an
etgenvector of L corresponding to the 0 eigenvalue, then the
components of w must all be equal (so w; = w; for anyi,j).

Proof.
@

Ls=Ds—-As=0

®

We compute directly:

wlLw =

[
P
!

|
=

g

Il
= !
&
S
=N

' \
™ ‘
S
E
§

Hence:
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3 Markov Chains

3.1 Definition: Markov Chain

Consider some structure consisting of n states in discrete time. A
Markov chain is a stochastic process, whereby the probability of ob-
serving a state at timet + 1, X,y solely depends on the previous state X;.

3.2 Definition: Stationary Markov Chains

A stationary Markov Chain is a Markov Chain where the transi-
tion probability doesn’t depend on t:

P<Xt+1 = ] | Xt)

These stationary transition probabilities can be stored as a transi-
tion matrix with entries:

Tj=PXep1 =7 Xe)

Moreover, we require that:

(from a given state, we must always go to some state, including the same
one)

3.3 Types of States
3.3.1 Definition: Ergodic Set

Let S be a set of states. S is an ergodic set if:
e foranyi,j € S, one can reach j from i solely through elements of S

e once an element of S is reached, all subsequent transitions happen
within S
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3.3.2 Definition: Absorbing State

State 1 is absorbing if it can’t be escaped once reached:

T =1

Absorbing states form a 1-element ergodic set.

3.3.3 Definition: Transient State

A state i is transient if it isn’t part of any erogdic set.

3.4 Evolution of Markov Chain Process

e At some time ¢t + 1, how can we compute the probability of reaching some state j from
the previous state?

— let p;(t) denote the probability of reaching state j at time ¢

— then, since we assume that transitions and states are independent:
n
pit+1) =Y pi(t)Ty
i=1

— if we want to compute probabilities for all states, we can use matrix multiplication:
p(t+1) =p0)T

where p is a row vector (p1(),...,pn(t))

— even more succintly (depending solely on the initial state):

p(t) = p(0)T"
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3.4.1 Definition: Stationary Density

The non-negative stationary density is a vector:

p* - (pyfv 200 7p:;)

where:
p; = lim p;(?)

t—o00

and:

How is the stationary density related to 77

— p* is the left eigenvector of T', with eigenvalue 1

Under what conditions does an eigenvalue of unity exist for 77
— if the set of n states is ergodic, then T will have an eigenvalue 1
e What special type of eigenvalue is 17

— for a transition matrix 7" with an erogdic set of states, the eigenvalue 1 will be the Perron-
Frobenius Eigenvalue

— the stationary density is the Perron-Frobenius Eigenvector (which we know has all positive
components, as expected)

e How does the difference between p* and p(t) vary as t — co?

— the discrepancy decays exponentially

— it depends on the second eigenvalue with the largest modulo:
0.8 |>\2|t

— in general, speed of convergence depends on the difference or ratio of A\ and r (the Perron-
Frobenius eigenvalue, which won’t always be 1)

e What is the spectral gap?

— the value 1 — \g

— if the spectral gap is large, the Markov chain converges rapidly
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4 Poisson Processes

4.1 Definition: Poisson Processes

A Poisson Process is a model for events which occur discretely, and in
apparent random fashion.

In particular, consider a window of time At, with probability of an event
happening during the window of q. Then, the event rate is given by:

q
A= —
At
For X\ to be well-defined, we require that:
e g—>0asAt — 0

e as At — 0 we don’t allow multiple events to happen in a single time
window

4.2 Properties of Poisson Processes

4.2.1 Proposition: Distribution of Inter-Event Times

4.2.2 Proposition: Distribution of Number of Events
5 Random Walks

Random walks are useful in modelling trajectories in space, which can, for example, extract information from
the structure of networks
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5.1 Definition: Random Walks

Consider a one-dimensional space (i.e the real line). A random walker
performs a jump whose length and direction are random variables.

In particular, the probability density of transition is denoted f(r), such
that the probability that a walker at x arrives in

[z+r,z+r+ Ar

w1 jump s:
f(r)Ar

Moreover, we must have that:
(o)
/ f(r)ydr=1

5.2 Proposition: Solution to Random Walks

Let p(x,t) denote the probability of a random walker being at x aftert
steps. Then, if f(r) has finite mean and variance:

‘ 1 _ (z=vt)?
p(z;t) = We 4Dt

where D, v are constants.

Proof. Assuming that jumps are independent events, the probability of reaching x at time ¢ from any other
x' is:

p@#%:[%f@*x%wﬂtfhdf

Notice, this looks exactly like a convolution between f,p. If we apply the Fourier transform, we can convert
this into a product:

p(k;t) = f(k)p(kst — 1)
where:

mm:/meamwx

— 00

Now, at the start of the walk (¢ = 0) we know for certain where the random walker is, so we can model:

p(z;0) = 0(x)

Page 17


https://alv31415.github.io/notes/Analysis/W11-Fourier.pdf

where ¢ is the Dirac distribution. But the Fourier Transform of ¢ is:
p(k;0) =1

so it follows that:

Blk;t) = f(R)pkst —1) = plk;t) = [f(K))'
Now, if we take the Inverse Fourier Transform:

pmwzi/mmmwm%

27 J_ o

Whilst the function depends on f , the behaviour of the random walk as ¢ grows only depends on some of its
properties.

In particular, if the mean and variance of f are finite, the solution converges to:

1 _ (w—wt)?
4Dt

p(x;t) = 7(27rDt)1/2€

Notice, it is expected that a Gaussian profile appears: after all, a random walk is nothing but a sum of
independent steps, drawn from a smooth distribution f with finite mean and variance. That is, the Central
Limit Theorem applies!

5.3 Definition: Lévy Flight

A Lévy Flight is a non-diffusive spatial process: f doesn’t have finite
variance, so large jumps are possible.

6 Power Law Distributions

Power Law distributions are defined by properties whose probability density changes as powers.
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6.1 Definition: Pareto Distribution

The Pareto Distribution is a power-law distribution defined by:
p(z) =Cz™
where:

® T > Tpin, And Ty 1S the minimum value taken by the random
variable

o o >1
o (' is a normalisation constant

C=(a—1)z*"!

/ p(z) de =1

such that:

e How do power law distributions differ from Gaussian distributions?
— Gaussian distributions are more “balanced”, with very little probability density assigned to
its tails
— on the other hand, power law distributions have:

* a vast majority of instances with small values
* few (but not negligible) very large values

— power-law distributions are said to have a “fat tail”, as it is more populated than other
distributions (like the exponential distribution)

Power Law vs. Normal Distribution of Human Height

I
I
I
I
0.075 !
1
1
Mean of both !
I
distributions |
2 0.050 !
Z I
=
5 |
A Power-Law 1
1
Distribution |
0.025 .
1
1 Normal
: Distribution
1
0.000 EPVORSE— &
|
0 25 50 75 100 125 150 175 200 225
Height (cm)

e How are power laws related to Zipf’s Law?
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— Zipf’s Law gives a relationship between frequency and ranking of certain phenomena (typically
languages - see these notes on NLP)

— turns out that Zipf’s Law is just a specific instance of a power-law distribution

— beyond linguistics, power-law distributions can also be used to model individual wealth and
city populations (for example)

6.2 Proposition: Moments of the Pareto Distribution

Let B > a— 1. Then, the Bth moment of the Pareto distribution is:

B = betap(z) do=—2=1 22
<x > = X a—1—8"min
7

min

Clearly, such moments are undefined when 3 > o — 1

6.3 Definition: Cauchy Distribution

The Cauchy Distribution is proportional to:

1
1+ 22

and behaves asymptotically like the Pareto distribution with o = 2.

e Does the Cauchy Distribution have a well-defined mean?

— notice, when o = 2, the mean of the Pareto Distribution diverges

— since the Cauchy Distribution behaves asymptotically like the Pareto Distribution, it doesn’t
have a defined mean (or variance)

— in particular, this menas tha tthe CLT doesn’t apply

6.4 Proposition: Properties of Power-Law Distributions

1. Scale Invariance:
p(Clx) = Czp@)

In other words, the properties of the sytem aren’t affected by a change
m units.

2. Log-Log Plot:

log(p(z)) = log C — alog(z)
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7 Information Theory

7.1 Definition: Entropy of Random Variable

The entropy of a random variable (denoted H ) is a measure of the
uncertainty we have about the variable, before observing it:

Zp ) log(p())

e What is the minimum value of entropy?

— when the RV is deterministic (P(X = xg) = 1 for some (), we get that H(X) =0

— this corresponds with the notion that there is no uncertainty
¢ When does entropy achieve its maximum value?

— if p(x) is uniformly distributed such that:

then H is maximised, and:

7.2 Definition: Joint Entropy

Let XY be a pair of discrete random variables with joint distribution
p(z,y). Then, their joint entropy is:

=> Y pla,y)log(p(x,y))

7.3 Definition: Conditional Entropy

Let X,Y be a pair of discrete random variables with joint distribution p(x,y). Then, their conditional

entropy:
H(X |Y) Zp HX |Y =y)=> > px,y)logp | y))
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7.4 Definition: Chain Rule of Entropy

The goint entropy and conditional entropy are related by the chain
rule:
HX,)Y)=H(X)+ H(Y | X)

7.5 Definition: Mutual Information

Let XY be a pair of discrete random variables with joint distribution
p(x,y). Then, their mutual information is the amount of information
gained on X by knowing the value of Y :

I(X,Y)= H(X) - H(X | Y) = HX) + HY) — HX,Y)

Alternatively:

I(X,Y) = ; > plx,y)log (M)

p(z)p(y)

e To what does mutual information get reduced if Y is perfectly informative; that is, it tells
us everything about X7

— in such a case, H(X | Y) =0, and:
I(X,Y) = H(X)

e intuitively, what does mutual information aim to measure?

— the non-linear correlations between random variables

— it measures the cost of assuming that 2 variables are independent (when in fact they aren’t)
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