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Based on the notes by Renaud Lambiotte and Pete Grindrod, Chapter 1

1 Basic Probability

1.1 Basic Rules with Conditional Probability

1.1.1 Proposition: The Chain Rule

Consider a collection of random variables X1, . . . , Xn. Then:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi | Xi+1, . . . , Xn)

where:
P (Xn | Xn+1) = P (Xn)

Proof. This comes from repeated application of the definition of conditional probability:

P (X,Y ) = P (X | Y )P (Y )

1.1.2 Proposition: Bayes’ Rule

P (X | Y ) =
P (Y | X)P (X)

P (Y )

where:

• P (X) is the prior

• P (X | Y ) is the posterior

• P (Y | X) is the likelihood

Proof. This uses the commutativity in conditional probability:

P (X,Y ) = P (Y,X) =⇒ P (X | Y )P (Y ) = P (Y | X)P (X)
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1.1.3 Definition: Odds

The odds of a given random variable X are:

O(X) =
P (X)

P (¬X)
=

P (X)

1− P (X)

The odds of X given Y are:

O(X | Y ) =
P (X | Y )

P (¬X | Y )
∈ [0,∞)

Using Bayes’ Rule, this can be rewritten as:

O(X | Y ) =

P (Y | X)P (X)
P (Y )

P (Y | ¬X)P (¬X)
P (Y )

=
P (Y | X)

P (Y | ¬X)
O(X)

1.2 The Binomial Distribution

1.2.1 Definition: Discrete Random Variables

A discrete random variable (DRV) is a variable which takes a number
of mutually exclusive, distinct values.

If these values are finite, say {α1, . . . , αk}, this describes a multinomial
distribution, with probabilities pk, k ∈ [1, K] whose sum is 1.

1.2.2 Definition: Binomial Distribution

A binomial distribution is a distribution whereby an experiment is re-
peated n times (independently), and each experiment has 2 possible out-
comes (with probability p and 1− p).
If k outcomes are “positive” and n − k are “negative”, the probability of
such an experiment sequence is:(

n
k

)
pk(1− p)n−k
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1.3 Continuous Random Variables

1.3.1 Definition: Updating Beliefs with Continuous Random Variables

Let θ be a continuous random variable (taking values in some set Ω).
The prior distribution of θ is given by some non-negative function:

P (θ) = f(θ)

If we observe new data D, we update our beliefs via the chain rule:

P (θ | D) =
P (D | θ)f(θ)

P (D)
∝ P (D | θ)f(θ)

We call P (D | θ) a model, since it informs about how a model θ perceives
the observed data D.

Since P (D) is just a constant which normalises the distribution, it plays no role in the actual distribution
of θ. If we want to compute a probability distribution, we can just use:

P (θ | D) =
P (D | θ)f(θ)∫

Ω
P (D | θ)f(θ) dθ

1.3.2 Definition: Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a technique to find the θ
most likely to explain the data, by finding the mode of the distribution:

θ∗ = argmaxθ P (D | θ)

If we have n independent observations {xi}i∈[1,n], the likelihood of the data
given θ is given by:

L =
n∏

i=1

P (xi | θ)

In practice, we’d opitmise the log likelihood:

logL =
n∑

i=1

log(P (xi | θ))
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1.4 Definition: Moments of a Continuous Random Variables

Let θ be some distribution. Then, the k-th moment of the distribution is
given by:: 〈

θk
〉
=

∫
Ω
θP (D | θ9f(θ) dθ∫

Ω
P (D | θ)f(θ) dθ

In particular:

• the moment with k = 1 is the expected value of the distribution

• the variance of the distribution is:

σ2
θ =

〈
(θ − ⟨θ⟩)2

〉
=

〈
θ2
〉
− ⟨θ⟩2

1.5 Definition: Improper Distributions

Let f(θ) be a distribution. Then, f(θ) is an improper distribu-
tion if it has infinite probability mass/density, and thus can’t be
summed/integrated to unity.

Improper distributions will still have maxima and be non-negative, so maximum likelihood methods (like
gradient-based methods) can still be applied.

2 Matrices

2.1 Hermitian Matrices

2.1.1 Definition: Hermitian Matrices

A Hermitian (or self-adjoint) matrix A is one such that:

A = A∗(= (A)T )

where A denotes the complex conjugate matrix of A.
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2.1.2 Theorem: Spectral Theorem

Let A be Hermitian on the (inner product) vector space Cn. Then, there
exists an orthonormal basis of Cn consisting of eigenvectors of A.
Moreover:

• each eigenvalue λ1, . . . , λn of A is real

• A is diagonalisable: in fact, there exists a unitary matrix P (that
is, a matrix such that P ∗P = I), such that:

P−1AP = P ∗AP = diag(λ1, . . . , λn)

.

More details can be found in these notes for Honours Algebra at the University of Edinburgh.

2.1.3 Definition: Normal Matrices

A matrix is normal if it commutes with its adjoint:

AA∗ = A∗A

By definition, all Hermitian matrices are normal.

Moreover, a matrix is normal if and only if it is diagonalisable.

2.2 The Perron-Frobenius Theorem

2.2.1 Definition: Irreducible Matrix

Let A be a non-negative matrix. Then, A is irreducible if:

∀(i, j), ∃k ∈ N : (Ak)ij > 0
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2.2.2 Definition: Spectral Radius

Let A be a matrix. The spectral radius of A, ρ(A), is the maximum of
the absolute values of its eigenvalues.

2.2.3 Theorem: The Perron-Frobenius Theorem

The Perron-Frobenius Theorem states that real, square matrices with strictly positive entries have a unique
largest real eigenvalue, and whose corresponding eigenvector has strictly positive components.

Let A be a n× n matrix, such that A:

• is irreducible

• non-negative

• has spectral radius ρ(A) = r > 0

Then:

1. r is an eigenvalue of A (called the Perron-Frobenius eigenvalue)

2. r is simple. In particular:

• r has algebraic multiplicity 1 (it is not a repeated eigenvalue)

• r has geometric multiplicity 1 (both right and left eigenspaces
are one-dimensional - this is because geometric multiplicity is
bounded by algebraic multiplicity

3. A has left/right eigenvectors with eigenvalue r, and whose
components are all positive

4. the only eigenvectors whose components are all positive are those
associated to r

5. r is bounded above/below by the maximum and minimum row sums
of A (and also the column sums):

min
i∈[1,n]

n∑
j=1

Aij ≤ r ≤ max
i∈[1,n]

n∑
j=1

Aij
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2.2.4 Proposition: Singular Value Decomposition of a Matrix

Let M be an m × n matrix with complex entries. The singular value
decomposition of M is a factorisation of the form:

M = UΣV ∗

where:

• U is an m×m unitary matrix (whose columns are the
eigenvectors of M∗M , called the left singular vectors of M).

• Σ is an m× n diagonal matrix, with non-negative, real diagonal
elements (whose elements are the square root of the non-zero
eigenvalues of MM∗ or M∗M , called the singular values of M).

• V ∗ is the adjoint of the n× n unitary matrix V (the columns of V
are the eigenvectors of MM∗, called the right singular vectors
of M).

• Is SVD unique?

– the singular values are unique

– however, U, V needn’t be unique

• How can SVD be derived?

– we exploit the fact that MM∗ and M∗M will be real, symmetric matrices, which are diagonal-
isable

– see these notes for extra details

• How is SVD related to eigenvalue decomposition?

– if M is a normal matrix, it is diagonalisable

– this diagonalisation can be doen through the eigenvalue decomposition:

M = UDU∗

where U is a unitary matrix whose columns are the eigenvectors of M , and D is a diagonal
matrix containing the eigenvalues of M

– in this case, the SVD will coincide with the eigenvalue decomposition
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2.2.5 Proposition: Pseudo-Inverse from SVD

Let M be a matrix. Then, its pseudo-inverse is:

M+ = (A∗A)−1A∗

IOf we know the SVD of M , then:

M+ = V Σ+U∗

where Σ+ is the pseudo-inverse of Σ (which can be obtained by replacing
every non-zero diagonal entry by its reciprocal).

2.2.6 Exercises

1. Suppose an n × n matrix A is non-negative and the spectral radius of A is given by the
Perron-Frobenius eigenvalue, r. Let α ∈ (0, r). Then consider:

(I− αA)−1

Show that if this matrix is strictly positive then A is irreducible. Is the converse true?
Show that if the matrix:

exp(A) =

∞∑
i=0

Ai

i!

is strictly positive, then A is irreducible. Is the converse true?

2. Suppose A is normal and invertible. Then there is a unitary U such that A = UΛUT and Λ is
diagonal containing the eigenvalues of A. Let f : R → R be any function that is well-defined
at all of the eigenvalues of A. Define

f(A) = Uf(Λ)UT

where f(Λ) is diagonal; with f applied to each corresponding element of Λ.

(a) Show that if Q is any polynomial:

Q(x) =
∑

qix
i

then:
Q(A) =

∑
qiA

i

(b) Similarly, show that:

Q(A− I) =
∑

qi(A− I)i = UQ(Λ− I)UT

(c) Finally, show that:
Q(A)−1 = UQ(Λ)−1UT

3. Suppose A is normal and its spectral radius is ρ(A) < 1
α for some α > 0. Then, consider:

(I− α)−1 = U(I− αΛ)−1UT

Show that this is the geometric series:

S =
∑

αiAi
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2.3 Laplacians of Matrices

2.3.1 Definition: The Laplacian of a Matrix

Let A be a n× n matrix which is:

• real

• non-negative

• normal

If s = 1 ∈ Rn, then As = (d1, . . . , dn)
T contains the row sums of A.

If we define:
D = diag(d1, . . . , dn)

the combinatorial Laplacian of A is the symmetric matrix:

L = D − A

Notice, the fact that A is real and normal implies that A is symmetric. In particular, since A is normal,
it is diagonalisable, so:

A = UDUT

for some orthogonal matrix U . Then:

AT = UDTUT = UDTU = A

so A is symmetric.
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2.3.2 Proposition: Properties of the Laplacian Matrix

Let L be the Laplacian matrix of some n× n matrix A. Then:

1.
Ls = 0

2. For any w ∈ Rn, we have a quadratic form:

wTLw =
1

2

n∑
i,j=1

(wi − wj)
2Aij

In other words, L is always positive-semidefinite and if w is an
eigenvector of L corresponding to the 0 eigenvalue, then the
components of w must all be equal (so wi = wj for any i, j).

Proof.

1

Ls = Ds−As = 0

2

We compute directly:

wTLw = wT (D −A)w

= wTDw − wTAw

=

n∑
i=1

diw
2
i −

n∑
i,j=1

Aijwiwj

=

n∑
i,j=1

Aijw
2
i −

n∑
i,j=1

Aijwiwj

But now, notice that since A is symmetric:

n∑
i,j=1

Aijw
2
i =

n∑
i,j=1

Aijw
2
j =⇒

n∑
i,j=1

Aijw
2
i =

1

2

n∑
i,j=1

Aij(w
2
i + w2

j )

Hence:

wTLw =
1

2

n∑
i,j=1

(wi − wj)
2Aij
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3 Markov Chains

3.1 Definition: Markov Chain

Consider some structure consisting of n states in discrete time. A
Markov chain is a stochastic process, whereby the probability of ob-
serving a state at time t+ 1, Xt+1 solely depends on the previous state Xt.

3.2 Definition: Stationary Markov Chains

A stationary Markov Chain is a Markov Chain where the transi-
tion probability doesn’t depend on t:

P (Xt+1 = j | Xt)

These stationary transition probabilities can be stored as a transi-
tion matrix with entries:

Tij = P (Xt+1 = j | Xt)

Moreover, we require that:
n∑

j=1

Tij = 1

(from a given state, we must always go to some state, including the same
one)

3.3 Types of States

3.3.1 Definition: Ergodic Set

Let S be a set of states. S is an ergodic set if:

• for any i, j ∈ S, one can reach j from i solely through elements of S

• once an element of S is reached, all subsequent transitions happen
within S
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3.3.2 Definition: Absorbing State

State i is absorbing if it can’t be escaped once reached:

Tii = 1

Absorbing states form a 1-element ergodic set.

3.3.3 Definition: Transient State

A state i is transient if it isn’t part of any erogdic set.

3.4 Evolution of Markov Chain Process

• At some time t + 1, how can we compute the probability of reaching some state j from
the previous state?

– let pj(t) denote the probability of reaching state j at time t

– then, since we assume that transitions and states are independent:

pj(t+ 1) =

n∑
i=1

pi(t)Tij

– if we want to compute probabilities for all states, we can use matrix multiplication:

p(t+ 1) = p(t)T

where p is a row vector (p1(t), . . . , pn(t))

– even more succintly (depending solely on the initial state):

p(t) = p(0)T t
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3.4.1 Definition: Stationary Density

The non-negative stationary density is a vector:

p∗ = (p∗1, . . . , p
∗
n)

where:
p∗i = lim

t→∞
pi(t)

and:
p∗ = p∗T

• How is the stationary density related to T?

– p∗ is the left eigenvector of T , with eigenvalue 1

• Under what conditions does an eigenvalue of unity exist for T?

– if the set of n states is ergodic, then T will have an eigenvalue 1

• What special type of eigenvalue is 1?

– for a transition matrix T with an erogdic set of states, the eigenvalue 1 will be the Perron-
Frobenius Eigenvalue

– the stationary density is the Perron-Frobenius Eigenvector (which we know has all positive
components, as expected)

• How does the difference between p∗ and p(t) vary as t → ∞?

– the discrepancy decays exponentially

– it depends on the second eigenvalue with the largest modulo:

∝ |λ2|t

– in general, speed of convergence depends on the difference or ratio of λ2 and r (the Perron-
Frobenius eigenvalue, which won’t always be 1)

• What is the spectral gap?

– the value 1− λ2

– if the spectral gap is large, the Markov chain converges rapidly
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4 Poisson Processes

4.1 Definition: Poisson Processes

A Poisson Process is a model for events which occur discretely, and in
apparent random fashion.

In particular, consider a window of time ∆t, with probability of an event
happening during the window of q. Then, the event rate is given by:

λ =
q

∆t

For λ to be well-defined, we require that:

• q → 0 as ∆t → 0

• as ∆t → 0 we don’t allow multiple events to happen in a single time
window

4.2 Properties of Poisson Processes

4.2.1 Proposition: Distribution of Inter-Event Times

4.2.2 Proposition: Distribution of Number of Events

5 Random Walks

Random walks are useful in modelling trajectories in space, which can, for example, extract information from
the structure of networks
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5.1 Definition: Random Walks

Consider a one-dimensional space (i.e the real line). A random walker
performs a jump whose length and direction are random variables.

In particular, the probability density of transition is denoted f(r), such
that the probability that a walker at x arrives in

[x+ r, x+ r +∆r

in 1 jump is:
f(r)∆r

Moreover, we must have that:∫ ∞

−∞
f(r) dr = 1

5.2 Proposition: Solution to Random Walks

Let p(x, t) denote the probability of a random walker being at x after t
steps. Then, if f(r) has finite mean and variance:

p(x; t) =
1

(2πDt)1/2
e−

(x−vt)2

4Dt

where D, v are constants.

Proof. Assuming that jumps are independent events, the probability of reaching x at time t from any other
x′ is:

p(x; t) =

∫ ∞

−∞
f(x− x′)p(x′; t− 1) dx′

Notice, this looks exactly like a convolution between f, p. If we apply the Fourier transform, we can convert
this into a product:

p̂(k; t) = f̂(k)p̂(k; t− 1)

where:

ĝ(k) =

∫ ∞

−∞
g(x)e−ikx dx

Now, at the start of the walk (t = 0) we know for certain where the random walker is, so we can model:

p(x; 0) = δ(x)
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where δ is the Dirac distribution. But the Fourier Transform of δ is:

p̂(k; 0) = 1

so it follows that:
p̂(k; t) = f̂(k)p̂(k; t− 1) =⇒ p̂(k; t) = [f̂(k)]t

Now, if we take the Inverse Fourier Transform:

p(x; t) =
1

2π

∫ ∞

−∞
[f̂(k)]teikx dk

Whilst the function depends on f̂ , the behaviour of the random walk as t grows only depends on some of its
properties.

In particular, if the mean and variance of f are finite, the solution converges to:

p(x; t) =
1

(2πDt)1/2
e−

(x−vt)2

4Dt

Notice, it is expected that a Gaussian profile appears: after all, a random walk is nothing but a sum of
independent steps, drawn from a smooth distribution f with finite mean and variance. That is, the Central
Limit Theorem applies!

5.3 Definition: Lévy Flight

A Lévy Flight is a non-diffusive spatial process: f doesn’t have finite
variance, so large jumps are possible.

6 Power Law Distributions

Power Law distributions are defined by properties whose probability density changes as powers.
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6.1 Definition: Pareto Distribution

The Pareto Distribution is a power-law distribution defined by:

p(x) = Cx−α

where:

• x > xmin, and xmin is the minimum value taken by the random
variable

• α > 1

• C is a normalisation constant

C = (α− 1)xα−1

such that: ∫ ∞

xmin

p(x) dx = 1

• How do power law distributions differ from Gaussian distributions?

– Gaussian distributions are more “balanced”, with very little probability density assigned to
its tails

– on the other hand, power law distributions have:

∗ a vast majority of instances with small values

∗ few (but not negligible) very large values

– power-law distributions are said to have a “fat tail”, as it is more populated than other
distributions (like the exponential distribution)

• How are power laws related to Zipf’s Law?
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– Zipf’s Law gives a relationship between frequency and ranking of certain phenomena (typically
languages - see these notes on NLP)

– turns out that Zipf’s Law is just a specific instance of a power-law distribution

– beyond linguistics, power-law distributions can also be used to model individual wealth and
city populations (for example)

6.2 Proposition: Moments of the Pareto Distribution

Let β > α− 1. Then, the βth moment of the Pareto distribution is:〈
xβ

〉
=

∫ ∞

xmin

xbetap(x) dx= α−1
α−1−β

xβ
min

Clearly, such moments are undefined when β > α− 1

6.3 Definition: Cauchy Distribution

The Cauchy Distribution is proportional to:

1

1 + x2

and behaves asymptotically like the Pareto distribution with α = 2.

• Does the Cauchy Distribution have a well-defined mean?

– notice, when α = 2, the mean of the Pareto Distribution diverges

– since theCauchy Distribution behaves asymptotically like thePareto Distribution, it doesn’t
have a defined mean (or variance)

– in particular, this menas tha tthe CLT doesn’t apply

6.4 Proposition: Properties of Power-Law Distributions

1. Scale Invariance:
p(c1x) = c2p(x)

In other words, the properties of the sytem aren’t affected by a change
in units.

2. Log-Log Plot:
log(p(x)) = logC − α log(x)
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7 Information Theory

7.1 Definition: Entropy of Random Variable

The entropy of a random variable (denoted H) is a measure of the
uncertainty we have about the variable, before observing it:

H(X)0−
∑
x

p(x) log(p(x))

• What is the minimum value of entropy?

– when the RV is deterministic (P (X = x0) = 1 for some x0), we get that H(X) = 0

– this corresponds with the notion that there is no uncertainty

• When does entropy achieve its maximum value?

– if p(x) is uniformly distributed such that:

p(x) =
1

n

then H is maximised, and:
H(X) = log(n)

7.2 Definition: Joint Entropy

Let X, Y be a pair of discrete random variables with joint distribution
p(x, y). Then, their joint entropy is:

H(X, Y ) =
∑
x

∑
y

p(x, y) log(p(x, y))

7.3 Definition: Conditional Entropy

Let X,Y be a pair of discrete random variables with joint distribution p(x, y). Then, their conditional
entropy:

H(X | Y ) =
∑
y

p(y)H(X | Y = y) =
∑
x

∑
y

p(x, y) log(p(x | y))
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7.4 Definition: Chain Rule of Entropy

The joint entropy and conditional entropy are related by the chain
rule:

H(X, Y ) = H(X) +H(Y | X)

7.5 Definition: Mutual Information

Let X, Y be a pair of discrete random variables with joint distribution
p(x, y). Then, their mutual information is the amount of information
gained on X by knowing the value of Y :

I(X, Y ) = H(X)−H(X | Y ) = H(X) +H(Y )−H(X, Y )

Alternatively:

I(X, Y ) =
∑
x

∑
y

p(x, y) log

(
p(x, y)

p(x)p(y)

)

• To what does mutual information get reduced if Y is perfectly informative; that is, it tells
us everything about X?

– in such a case, H(X | Y ) = 0, and:
I(X,Y ) = H(X)

• intuitively, what does mutual information aim to measure?

– the non-linear correlations between random variables

– it measures the cost of assuming that 2 variables are independent (when in fact they aren’t)
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