
Natural Language Understanding, Generation and Machine
Translation - Week 8 - Parsing

Antonio León Villares

April 2023

Contents
1 Parsing with Encoder-Decoder Networks 2

2 Neural Parsing with LSTMs 3
2.1 Architecture . 3
2.2 Results . 4

3 Neural Parsing with Transformers 8
3.1 Architecture . 8

3.1.1 Factored Attention Heads . 9
3.1.2 Computing Span Scores . 10
3.1.3 Decoding . 11

3.2 Results . 11

4 Unsupervised Parsing 12
4.1 The Need for Unsupervised Parsing . 12
4.2 Unsupervised Parsing via Constituency Tests . 13

4.2.1 Constituency Tests . 13
4.2.2 Grammaticality Model . 14
4.2.3 Parsing Algorithm . 15
4.2.4 Refining the Grammaticality Model . 15
4.2.5 Results . 16
4.2.6 Visualising Parses: Before and After Refinement and After Refinement + URNNG . . 17

1

Based on:

• Grammar as a Foreign Language, by Vinyals et al.

• Constituency Parsing with a Self-Attentive Encoder, by Kitaev and Klein

• Unsupervised Parsing via Constituency Tests, by Cao et al.

• Unsupervised Recurrent neural Network Grammars, by Yoon et al.

• Movie Summarisation via Sparse Graph Construction, by Papalampidi, Keller and Lapata

1 Parsing with Encoder-Decoder Networks
• How can encoder-decoder networks be used for parsing?

– generally, encoder-decoder networks can be used for any task, where we operate over se-
quences of symbols

– in parsing, we generally operate over parse trees
– however, parse trees can be easily linearised

Page 2

https://arxiv.org/pdf/1412.7449.pdf
https://arxiv.org/pdf/1805.01052.pdf
https://arxiv.org/pdf/2010.03146.pdf
https://arxiv.org/pdf/1904.03746.pdf
https://arxiv.org/pdf/2012.07536.pdf

– this converts a parse tree into a sequence of symbols, over which we can operate

• In general, what other structures can encoder-decoder networks operate over?

– any structured representation which can be linearised into a symbol sequence is fair game:
∗ formal languages (i.e Python)
∗ databases
∗ tables
∗ graphs
∗ images

– whether encoder-decoder networks are suitable for this is another question altogether

2 Neural Parsing with LSTMs
Here we discuss the encoder-decoder network proposed by Vinyals et al. in Grammar as a Foreign Language,
which is based on LSTMs.

2.1 Architecture
• How are parse trees further processed for the LSTM network?

– to simplify the sequence, we can remove the terminals:

– when we parse out the sequence, we can always fill in the gaps with the words in order. For
example, when the LSTM outputs Pro) as the first branch of the tree, we can assume that this
corresponds to the first word of the input sequence: Pro You)

– to make closing brackets easier to recognise by the network, we can annotate them:

• What is the structure of the encoder-decoder network?

– the basic structure uses the typical encoder-decoder LSTM architecture:

Page 3

https://arxiv.org/pdf/1412.7449.pdf

– however, they made the following observations to improve on this:
1. End of Sequence Symbol: every output parse tree is terminated with an end-of-

sequence token (since we need to delimit where these variable length sequences end)
2. Reverse Input String: if the input string is reversed (“John has a dog.” → “. dog a has

John”), there is a small performance improvement (the parse tree isn’t reversed)
3. Deeper Network: 3 LSTM encoder-decoder blocks were used
4. Attention: was incorporated between encoder and decoder
5. POS Replacement: all POS tags were replaced with XX, which surprisingly improved F1

performance
6. Pretrained Embeddings: word2vec embeddings were used as inputs
7. Large Amount of Training Data: without a lot of training data, the model performed

poorly (it requires a lot of data to correctly gauge the idiosyncrasies which define parse
trees)

– the final architecture looked thus:

Figure 1: Processing the input sentence “Go.”.

2.2 Results
• What potential problems could this architecture have?

Page 4

1. Invalid Trees: it could be the case that the output trees are wrong (for instance, if there is a
mismatch in the number of brackets). However, in practice it was found that this only occurred
in 0.8-1.5% of the sentences. Even if it were to widely occur, this could be easily fixed in post
processing.

2. Generating the Best Tree: it could be the case that this network, whilst outputting the best
symbol at each step doesn’t necessarily generate the best tree. This can be fixed by using beam
search, much like in machine translation, to ensure that the output tree is (heuristically) the
best.

• What different corpora were used for training?

1. WSJ: treebank with ≈ 40k manually annotated sentences (these are gold-labels)
2. BerkeleyParser Corpus: ≈ 90k sentences from WSJ and several other treebanks + ≈ 7M sen-

tences from news appearing on the web, tagged by using the high quality BerkeleyParser
3. High-Confidence Corpus: ≈ 90k sentences from WSJ and several other treebanks + ≈ 11M sen-

tences from news appearing on the web, tagged by using 2 high quality parsers (BerkeleyParser,
ZPar). This includes only those sentences in which both parsers agreed on the tree, and they re-
sampled to match the distribution of sentence lengths of the WSJ training corpus (since shorter
sentence lengths are easier to parse).

• What results did the LSTM encoder-decoder achieve?

Figure 2: F1 scores for neural parsing using LSTMs. +D indicates that dropout was used. The results in
the lower half of the table are for parsing performed with different iterations of the BerkeleyParser. Note
that the current state of the art is at 95-96.

– notice, using just WSJ with a naive encoder-decoder results in poor results; however, upon adding
attention or using ensemble methods (train a bunch of LSTMs, and use a classifier to decide
on tree) leads to significant performance improvements

– using the larger datasets for training also leads to performance improvements (even above those
obtained by the high-quality parsers)

Page 5

Figure 3: Here, the BerkeleyParser, baseline LSTM and LSTM with attention were evaluated one a single
sentence, for sentences of varying lengths. Notice, by just using attention we obtain significantly higher F1

scores, particularly as sentence length increases. Moreover, the performance degradation seems to be lower
for the LSTM with attention as sentence length increases.

• Why is this such an impressive result?

– the LSTM was nothing special: it is a general encoder-decoder model
– it nonetheless seems to capture syntactic structure very well, and can “understand” the structure

of the trees (i.e closing brackets), without any explicit change to its architecture
– its performance rivals, and even outperforms, that of specialised systems, like BerkeleyParser
– moreover, it’ll be much faster at inference (a probabilistic chart parser, such as CYK, has
O(n3) complexity)

• What information does the attention matrix revel with regards to how the LSTM is
processing the input sentence to generate the parse tree?

Page 6

Figure 4: Circles on nodes denote the current output being decoded in the tree, whereas the arrow denotes
where the model is attending. This showcases 4 consecutive steps in the decoding process. The columns
each denote the attention vector for each word in the input.

– this shows how the model focuses on a single word as it is decoding
– it considers the input sequence monotonically, from left to right
– sometimes the model skips words
– each time a terminal is consumed, the attention pointer moves to the right

Page 7

3 Neural Parsing with Transformers
Here we discuss the transformer-based neural parser developed in Constituency Parsing with a Self-Attentive
Encoder

3.1 Architecture
• Why are transformers well-suited for neural parsing?

– self-attention is an integral part of transformers
– this allows models to understand a word, based on which words it attends to from the input
– thus, the transformer learns which sort of relations exist between input words, which provides a

more natural way of understanding the syntactic relationship between these words
– this is greatly beneficial, as this model requires less training data than the LSTM-based model,

and obtains better results

• What are the 3 main features of the transformer-based neural parser?

1. Factored Attention Heads: these generate separate representations for position and content
information. This results in a context aware summary vector, which encompasses word, POS
tag and position information.

2. Span Scores: the embedding layers are combined to produced span scores: they assign scores
to “chunks” of words (i.e “I have a dog”, then there’d be attention scores for “I”, “I have”, “have
a”, “have a dog”, etc...)

3. Decoding: for decoding, the span scores are used alongside CYK (an efficient parsing algorithm,
see my FNLP notes) to generate the output tree. This ensures that generated trees are always
valid.

Figure 5: The transformer parser encodes using the self-attention mechanisms, and generates a parse
tree by using a chart decoder. Notice, here POS tags are used, and special start/end tokens are appended
to each input sequence.

Page 8

https://arxiv.org/pdf/1805.01052.pdf
https://arxiv.org/pdf/1805.01052.pdf
https://alv31415.github.io/notes/FNLP/W6-CYKParse.pdf

3.1.1 Factored Attention Heads

• How are factored attention heads used for neural parsing?

– the transformer parser is composed by 8 transformer blocks

– each transformer block uses factored self-attention heads

Page 9

Figure 6: Sketch of how factored self-attention heads are employed in the parser. Factored attention
is a common design pattern for transformer models.

– the idea is to learn separate representations for content (word and tag) and position information
– position information is very important for parsing, since the model needs to understand span of

texts and the interplay of words at different position
– word, tag and position are encoded by using separate embeddings (learnt independently)
– a self-attention distribution is learnt for both the word+tag and position encodings, by

using separate query and key vectors
– the distributions are combined to generate a single attentional distribution
– finally, separate representations for the 2 types of informations are produced, by using the different

value vectors, alongside the unified attentional distribution
– the context aware summary vector is obtained by concatenating these 2 content and

position representations

• What benefits does using factored self-attention provide?

1. Interpretability: attentional results are more interpretable, since we can obtain separate
distributions for content and position information

2. Reduced Complexity: the model will require less parameters (no longer have to model
interactions between the 2 types of information; the paper makes it much clearer, but essentially
we learn block-sparse parameter matrices)

3.1.2 Computing Span Scores

• How can span scores be computed from the context aware summary vectors?

– let y
k

be the context aware summary vector for the kth input word
– it can be split into 2 parts:

Page 10

∗ −→y k for the upper half
∗ ←−y k for the lower half

– we can compute a span vector for a span (i, j) via:

v = [−→y j −−→y i;
←−y j+1 −←−y i+1]

where the first half of the span vector corresponds to content information of the words defining
the span, whilst the second half of the span vector corresponds to position information of the
words after the words defining the span

– this is purely heuristic: the context words tend to have useful information for defining a good
constituent span

– to compute the span score, a small network is used:

s(i, j, ·) = M2ReLU(LayerNorm(M1v + c1)) + c2

where M1,M2, c1, c2 are learnable parameters.

3.1.3 Decoding

• How is decoding performed in this model?

– say we have a candiate parse tree T

– we can assign a score to T , by scoring each of its constituents:

s(T) =
∑

(i,j,I)∈T

s(i, j, I)

where s(i, j, I) is the span score for a constituent located between position i and j with label
I (i.e POS tags, NP, VP, D, etc ...)

– at inference, select the tree which obtains the highest score:

T̂ = argmax
T

s(T)

– we can efficiently compute this using CYK, which will give an optimal output sequence (unlike
with beam search for LSTMs)

3.2 Results
• How well does the transformer parser perform?

– this transformer parser was trained solely on the WSJ corpus
– a bunch of additions were compared for the model (using factored self-attention, using CharLSTM

(which generates embeddings for the POS tags) and using ELMo (a pre-trained language model
similar to BERT) to generate the word, position and tag embeddings)

– the transformer model was also compared with other neural parsers

Page 11

Figure 7: Results for the transformer-based neural parser. It obtains significantly higher test set performance
than all previous models. Notice the drastic difference in development performance when using a pretrained
language model to generate embeddings.

4 Unsupervised Parsing
4.1 The Need for Unsupervised Parsing

• Why are annotated treebanks inconvenient?

– expensive
– cumbersome to create
– unavailable for most languages
– requires trained syntactician to annotate them

• Why would unsupervised parsing be useful?

1. Treebank Scarcity: annotated treebanks are rare, and difficult to generate; on the other
hand, unannotated text data is freely available

2. Low-Resource: there are only treebanks in a few dozen languages - but there are around 6,000
total languages (many of which barely have any online data, let alone written data)

3. Preliminary Annotation: unsupervised parsers can be used to preliminarily annotate
treebank data, allowing us to generate larger treebanks

• What are the challenges with unsupervised parsing?

1. Gold’s Theorem: in simple terms, implies that a full grammar for a natural language can’t
be learned just from raw text; this makes unsupervised parsing particularly challenging.
However, children are capable of gauging syntactic structure with little supervision (using tex-
t/speech/images, but definitely no parse trees), which indicates that decent unsupervised models
can be potentially learnt.

2. Evaluation: it is unclear how to evaluate unsupervised models, particularly when parsing, since
even syntacticians might disagree on a particular parse tree. This can be somewhat fixed if we
take annotated treebanks as “gold labels”.

Page 12

4.2 Unsupervised Parsing via Constituency Tests
We discuss the model proposed by Cao et al. in Unsupervised Parsing via Constituency Tests.

• How can constituency tests be used for unsupervised parsing?

– constituency tests allow us to determine whether a span of words form a constituent
– these are based on the fact that long spans of words can often times be substituted by shorter

forms:

“John’s friend bought a book, but John’s friend didn’t read the book
↓

“John’s friend bought a book, but he didn’t read it

– constituents can be used to segment sentences into spans, such as NP, VP, D, etc..., which
can then be used to generate a parse tree

• Why are pre-trained language models important for unsupervised parsing?

– when we perform constituency tests, we need to verify that we have produced a grammatical
sentence

– hopefully, pretrained language models have an inherent syntactic structure, which can
be used to assess grammaticality in an unsupervised manner

4.2.1 Constituency Tests

• What is a constituent?

– a constituent refers to a syntactic unit that is composed of one or more words and functions as
a single unit within a sentence

• What are constituent tests?

– a set of tests (involving substitution and replacement) which constituents must pass (see this for
some other examples)

– for this paper, they used 5 constituency tests
– for example, if given the sentence:

“by midday, the London market was in full retreat”

and we wanted to check whether “the London market” is a constituent, we’d break the sentence
into parts at either side of the span:

∗ A : “by midday”
∗ B : “the London market”
∗ C : “was in full retreat”

and we’d apply:

Page 13

https://arxiv.org/pdf/2010.03146.pdf
https://alv31415.github.io/notes/FNLP/W6-CYKParse.pdf

– this shows that “the London market” is indeed a constituent, since the examples are grammatical
– on the other hand, if we tried using “market was” as a constituent, we’d obtain nonsensical

examples. For example, with substitution, we’d obtain:

“by midday, the London it/ones/did so in full retreat ”

4.2.2 Grammaticality Model

• What is the purpose of the grammaticality model?

– testing if after applying a constituency test, we obtain a grammatical sentence
– for this, we can use pre-trained language models

• How can we use the pre-trained models to assess gramamticality?

– a bunch of non-ideas:
1. Perplexity: if a sentence has high perplexity according to the model, this could indicate

low grammaticality. In practice, the difference between gramamtical and ungrammatical
sentences isn’t too significant.

2. Prompting: we can prompt the model (i.e “is this sentence grammatical”). However,
prompting hadn’t been developed when this paper was developed (although nowadays with
ChatGPT we can easily ask if a sentence is grammatical or not)

3. Incremental Prediction: we can feed chunks of the sentence to the model, and see if it
generates an output similar to that of the sentence

– however, in the paper they opted for fine-tuning the pre-trained language model for the task
of predicting wehther a sentence was grammatical or not

– as we’ll discuss, they had to further enhance the model via a refinement step in order to get
good results

• How can we train the grammaticality model, if we don’t have data on whether a sentence
is grammatical or not?

– the key idea is that we can generate examples of ungrammatical sentences
– we have a plethora of (unannotated) sentences, which we know are grammatical
– we can apply a series of corruptions to the sentence, which will make it ungrammatical
– we can then fine-tune the LM to predict whether a sentence was real or predicted
– for this task, they used 5M sentences in English from the Gigaword dataset; they fine-tuned

RoBERTa, a variant of BERT

Page 14

4.2.3 Parsing Algorithm

• How does the unsupervised parsing algorithm operate?

– we define 2 functions:
∗ a transformation function, which given a sentence span, applies constituency tests to

the sentence:
c : (sent, i, j) 7→ sent'

∗ a judgement function, which given a sentence, determines whether it is grammatical or
not (this has parameters θ):

gθ : sent 7→ [0, 1]

– then, the unsupervised parsing algorithm works as follow:
1. For each sentence, we can consider a span (i, j)

2. If C is our set of constituency tests, we evaluate the span on each c ∈ C, and average the
grammaticality score of the results:

sθ(sent, i, j) =
1

|C|
∑
c∈C

gθ(c(sent, i, j))

3. We can score a given tree, by adding the scores of it spans, and then choose the highest
scoring binary tree by using CYK:

t∗(sent) = argmax
t∈T (len(sent))

∑
(i,j)∈t

sθ(sent, i, j)

where T (len(sent)) denotes the set of binary trees with len(sent) leaves

4.2.4 Refining the Grammaticality Model

• Why is refining the grammaticality model important?

– whilst the grammaticality model works well with the true/corrupted prediction task, its
scores aren’t fully accurate

– for instance, it sometimes thought that some spans were invalid, simply because it was very sure
that other spans were a lot more valid

– moreover, sometimes spans tended to have fairly similar scores, which made syntactic discrimina-
tion difficult

– with refinement, they were capable of obtaining more reliable span scores

• How does refinement work?

1. Select a batch B of sentences, and parse them
2. Treat the generated trees as pseudo gold-labels (i.e correct parse trees). We can define an

optimisation problem, by maximising the binary cross entropy over span scores:∑
(i,j)∈t∗(sent)

log(sθ(sent, i, j)) +
∑

(i,j) ̸∈t∗(sent)

log(1− sθ(sent, i, j))

According to the paper/slides, this induces that spans in the generated trees (i.e constituents)
get a higher grammaticality score, whereas spans outside of the tree will get a reduced gram-
maticality score

3. Repeat for the next batch of sentences. Over time, gθ will learn to be more discriminative about
the features which make a span more or less grammatical.

Page 15

• What additional benefit does refinement have?

– refinement operates over all spans in the tree
– hence, we can learn about wider context (i.e how all spans compose together to generate a tree)

as opposed to only focusing on assessing the suitability of a single span

4.2.5 Results

• How well does the unsupervised parser perform?

– performance was compared with:
∗ previous unsupervised neural models
∗ baselines, where branching was monotonic (i.e each sentence was parsed as a left branching,

balanced or right branching tree)
– since this model can only parse binary trees (due to CYK), the percentage of binary trees is

also included, to signal what the highest possible score could’ve been

Figure 8: Both mean and max over a number of runs is reported (since these models can be sensitive to
initialisation). Notice, there is a drastic performance improvement upon including refinement. The highest
F1 score that could’ve been achieved is 84.3. Notice how poor these results are when compared to supervised
parsing, where we obtain 90+ performance.

• How were these results further improved?

– Unsupervised RNNG is a variant of Recurrent Neural Network Grammar proposed by Kim et
al. in Unsupervised Recurrent Neural Network Grammars

– URNNG can be trained by using trees from some other unsupervised parser, followed by
fine-tuning with an LM objective

– combining URNNG with this unsupervised parser leads to results comparable to supervised
models

Page 16

https://arxiv.org/pdf/1904.03746.pdf

4.2.6 Visualising Parses: Before and After Refinement and After Refinement + URNNG

Page 17

	Parsing with Encoder-Decoder Networks
	Neural Parsing with LSTMs
	Architecture
	Results

	Neural Parsing with Transformers
	Architecture
	Factored Attention Heads
	Computing Span Scores
	Decoding

	Results

	Unsupervised Parsing
	The Need for Unsupervised Parsing
	Unsupervised Parsing via Constituency Tests
	Constituency Tests
	Grammaticality Model
	Parsing Algorithm
	Refining the Grammaticality Model
	Results
	Visualising Parses: Before and After Refinement and After Refinement + URNNG

