
Natural Language Understanding, Generation and Machine
Translation - Week 7 - Summarisation

Antonio León Villares

April 2023

Contents
1 Introduction to Natural Language Generation 2

2 Summarisation with LSTMs 5
2.1 The Summarisation Task . 5
2.2 Get To The Point . 6

2.2.1 Dataset . 6
2.2.2 Sequence-to-Sequence Attentional Model . 6
2.2.3 The Pointer-Generator Network . 8
2.2.4 The Coverage Mechanism . 9

3 Evaluating Summarisation: ROUGE 11

4 Summarisation with Pretrained Transformers 13
4.1 BERT . 13

4.1.1 BERT for Summarisation . 13
4.1.2 Evaluating BERT for Summarisation . 15

4.2 T5 . 15
4.2.1 Training T5 . 15
4.2.2 Evaluating T5 for Summarisation . 17

5 Summarisation with Blueprints 17
5.1 Issues with Previous Conditional Generation Models . 17
5.2 Generating Question-Answering Blueprints . 18
5.3 Blueprint Models . 20

5.3.1 End-to-End Blueprint Model . 22
5.3.2 Multitask Blueprint Model . 23
5.3.3 Iterative Blueprint Model . 24

5.4 Evaluating Summarisation with Blueprints . 24

1

Based on:
• Get To The Point: Summarisation with Pointer-Generator Networks, by See et al.

• Text Summarisation with Pretrained ENcoders, by Yang Liu and Mierella Lapata

• Conditional Generation with a Question-Answering Blueprint, by Narayan, S., et al.

• Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer, by Raffel, C., et
al.

1 Introduction to Natural Language Generation
• What is the Natural Langauge Generation task?

– converting linguistic (or non-linguistic) inputs into a linguistic output
– up to now, we’ve mainly considered linguistic inputs only (i.e machine translation)

• What sort of non-lingusitic inputs can be processed by NLG systems?

– databases → report on structure
– news articles → help messages
– log files → summaries of bugs
– images → captions

• Why is NLG useful?

– in essence, it facilitates information access
– nowadays, we have generated a lot of textual data, but a lot of information is also available in

non-textual format
– a single person won’t be able to process all this data, let alone understand it
– moreover, text is easier to understand than numbers/graphs/tables
– NLG is thus everywhere: search engines, question-answering machines, speech synthesisers

Figure 1: The summary is much easier to understand, particularly for non-experts.

Page 2

https://aclanthology.org/P17-1099.pdf
https://aclanthology.org/P17-1099.pdf
https://arxiv.org/abs/2207.00397
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf

Figure 2: The summary is much easier to understand, particularly for non-experts.

Page 3

Figure 3: Image captioning is rather subjective, which showcases the difficulty of evaluation for NLG tasks.

Figure 4: The highlights are executive summaries produced by journalists, typically in a telegraphic manner
which need not be grammatically correct (for example, there are verbs missing).

Page 4

2 Summarisation with LSTMs
2.1 The Summarisation Task

• How do conditional language models differ from standard language models?

– in language models, the next word is predicted given the previous ones:

P (yt | y1:t−1)

– in conditional language models, this prediction is based both on the previous words and some
additional input x:

P (yt | y1:t−1, x)

– for instance, in machine translation, x would be the source sentence to be translated
– in summarisation, x will be the text to summarise

• What is the concrete aim of summarisation?

– given an input text x, generate a summary y, which:
∗ is shorter
∗ contains the key points of x

• What are the 2 types of summarisation?

1. Single-Document: write y from a single document x

2. Multi-Document: write y from multiple documents x1, . . . , xn. Typically, these should have
overlapping content

• When would one use multi-document summarisation?

– when a variety of sources need to be analysed to derive conclusions
– for example, if we want to explain the connection between coffee and breast cancer, we would

check a variety of studies

• Which is easier, single or multi document summarisation?

– generally, single-document summarisation is easier, since there are less sources of information
which need to be coalesced

– one could argue that in multi-document summarisation, more data is available to determine
what the main points are; however, this would require that the models learn about repetition
and paraphrasing

– moreover, with multi-document summarisation, training/decoding takes much longer, since
a lot more tokens need to be considered

• What are the 2 strategies which can be used for summarisation?

1. Extractive Summarisation: use parts of the original text to form a summary (typically by
concatenating sentences)

2. Abstractive Summarisation: use NLG to generate new text which summarises the original

• How do extractive and abstractive summarisation compare?

– extractive summarisation is easier (copying sentences produces grammatically correct sum-
maries); however, it is more restrictive, since it can only copy (no paraphrasing), and the
summaries might not be coherent

– abstractive summarisation is harder (need to understand key points properly to paraphrase),
but is more flexible and human-like

Page 5

2.2 Get To The Point
2.2.1 Dataset

• What is the CNN/Daily Mail Dataset?

– the first dataset which allowed for neural networks to try summarisation (see https://
github.com/abisee/cnn-dailymail)

– contains pairs of news articles (≈ 800 words) and summaries dervied from the story high-
lights (≈ 56 words)

– the pairs were generated using:
∗ 100k stories from CNN
∗ 200k stories from Daily Mail

– the highlights were 3-4 sentences written by journalists (in telegraphic manner), and were
typically independent of each other (little co-referencing between each sentence)

Figure 5: Parts of the highlights (red) are directly from the text, whereas other parts (blue) use paraphras-
ing.

2.2.2 Sequence-to-Sequence Attentional Model

• What is the “Get To The Point” model?

– the first successful neural model for summarisation tasks
– developed in 2017, was state-of-the-art until transformers
– an attentional LSTM-based encoder-decoder model

• What encoder does GTTP use?

– single-layer, bidirectional LSTM
– the inputs were a sequence of words (instead of word-piece tokenisation)
– bidirectionality helped the encoder not forget about the start/end of the inputs
– generated a sequence of hidden states, h1, . . . , hn

• What decoder does GTTP use?

– single-layer, left-to-right LSTM

Page 6

https://github.com/abisee/cnn-dailymail
https://github.com/abisee/cnn-dailymail

– as input, takes:
∗ previous word embedding (during training, the word comes from the summary; during test-

ing, the words is the previous word generated by the decoder)
∗ a decoder state st (generated during decoding)

– needs unidirectionality, since we decoder from left to right

• How did the attention mechanism work for GTTP?

– for the tth decoding step, attention was computed using:

eti = vT tanh(Whhi +Wsst + battn)

at = softmax(et)

– here:
∗ v

∗ Wh

∗ Ws

∗ battn

are parameters learnt by the model
– hi denotes the hidden state of the ith input word

• How did GTTP compute its vocabulary distribution?

– the attention vector was used alongside the encoder hidden states to generate a context
vector:

h∗
t =

n∑
i=1

atihi

– this context vector gets concatenated with the decoder state st, and gets fed through 2
linear layers, to generate a vocabulary distribution:

Pvocab = softmax(V2(V1concat(st, h
∗
t) + b1) + b2)

• What training loss did GTTP use?

– negative log-likelihood
– at each decoding step t, compute:

ℓt = − logPvocab(w
∗
t)

where w∗
t denotes the tth word in the reference summary, and Pvocab computes the probability

of said word under the model
– the final loss is the average over all these losses:

ℓ =
1

T

T∑
t=0

ℓt

• What 2 flaws did the base sequence-to-sequence model have?

1. Fixed Vocabulary: if the encoder received an out of vocabulary word, the summarisation
would be filled with UNK tokens

2. Repetition: the attention mechanism was repetitive, which meant that certain sentences from
the input were repeatedly copied/paraphrased by the model

Page 7

Figure 6: Illustration of the GTTP network.

2.2.3 The Pointer-Generator Network

• What is the Pointer-Generator Network?

– deals with unknown words
– for a given decoding step, decides whether:

∗ we copy (point) a word directly from the input
∗ we generate a word from the vocabulary

• How does the Pointer-Generator Network determine when to copy or generate a word?

– at each decoder step, compute pgen: the probability of generating the next word
– pgen is computed by using:

∗ the context vector
∗ the decoder state
∗ the decoder input at the decoding step

pgen = σ(wT
h∗h∗

t + wT
s st + wT

x xt + bptr)

(σ is the sigmoid function, and wh∗ , ws, wx, bptr are learnable parameters)
– pgen is used to define a probability distribution over an extended vocabulary: the union

between the model’s vocabulary, and all the word’s appearing in the source document:

P (w) = pgenPvocab(w) + (1− pgen)
∑

i : wi=w

ati

where w is a word from the extended vocabulary
– notice that:

∗ if w is out of vocabulary, Pvocab (the decoder probability) is 0
∗ if w doesn’t appear in the source document, then it won’t have an attention weight, so∑

i : wi=w ati = 0

Page 8

2.2.4 The Coverage Mechanism

• What is the purpose of the coverage mechanism?

– to generate less repetitive summaries
– it penalises repeatedly attending to the same parts of the source text

• What is the coverage vector?

– vector used to encompass which words have been attended to
– at a given decoder step, we sum all the previous decoder attentions:

ct =

t−1∑
τ=0

aτ

– this defines an unnormalised distribution over the attention weights used for each word in the
source documents

– the more attention it has received, the higher its coverage vector score

• How is the coverage vector included in the attention mechanism to prevent repeated
attention?

– to compute attention, we incorporate the coverage vector:

eti = vT tanh(Whhi +Wsst +wcc
t
i + battn)

at = softmax(et)

where wc is a vector of learnable parameters with the same shape as v

– this isn’t sufficient, so the coverage vector is also used to define a coverage loss:

covlosst =

n∑
i=1

min(ati, c
t
i)

where:
∗ if ati << cti, the ith word from the source has already been attended to a lot, so we’ll want to

decrease its attention weight (to minimise covlosst)
∗ if ati >> cti, then a given word hasn’t been attended to much, and thus, can be incorporated

into the summary
– the final loss is a weighted sum of negative log likelihood and covlosst:

ℓt = − logP (w∗
t) +

n∑
i=1

min(ati, c
t
i)λ

where P (w∗
t) is the Pointer-Generator Network distribution

Page 9

Figure 7: The final architecture for the GTTP network.

Figure 8: Results for the different iterations of GTTP. In red, factual errors or nonsensical sentences
from the baseline model. In green, repetitions by the pointer-generator model. In blue, parts of the source
document which are copied into the summary.

• How abstractive is the final model?

Page 10

– as can be seen above, as we add improvements, the model relies more and more on copying
– indeed, they found that the baseline produced more novel n-grams, but these were often erro-

neous

Figure 9: As model complexity increases, it tends to generate n-grams directly from source text.

Figure 10: Example summaries generated by the final model. In blue, novel words generated by the model.

3 Evaluating Summarisation: ROUGE
• What is ROUGE?

– automatic evaluation method for summarisation
– stands for Recall-Oriented Understudy for Gisting Evaluation

• How is ROUGE computed?

– there are a variety of ROUGE metrics which can be computed
– generally, they try to capture the number of overlapping n-grams between the generated sum-

mary and the reference summary
– the recall-oriented ROUGE for a given n-gram is given by:

ROUGE-n =
number of matching n-grams between summary and reference

number of n-grams in the reference

Page 11

– if we have multiple references:

ROUGE-n =

∑
S∈Reference Summaries

∑
gramn∈S Countmatch(gramn)∑

S∈Reference Summaries
∑

gramn∈S Count(gramn)

– the precision-oriented ROUGE for a given n-gram is given by:

ROUGE-n =
number of matching n-grams between summary and reference

number of n-grams in the summary
– we don’t necessarily ahve to focus on n-grams, and can instead consider the longest common

subsequence: the longest sequence of overlap between the summary and the reference:

ROUGE-L-precision =
length of longest common subsequence between summary and reference

number of words in the summary

ROUGE-L-recall =
length of longest common subsequence between summary and reference

number of words in the reference
– recall and precision ROUGE scores can be combined to obtain an F1 score:

F1 =
2

1
precision + 1

recall

Page 12

– typically ROUGE-1, ROUGE-2 and ROUGE-L are reported

• Is ROUGE used a lot today?

– before, summarisation models were extremely poor at generating high-quality text, let alone
summarisations

– in these cases, ROUGE generally correlated well with human judgement (in terms of determinign if
a summarisation was better than another one)

– nowadays, the models are more adcvanced, so even if they generate gibberish (in terms of sum-
marising), they might still obtain a high ROUGE score

– much like with BLEU, ROUGE nowadays can’t be trusted too much

4 Summarisation with Pretrained Transformers
4.1 BERT
4.1.1 BERT for Summarisation

• Why can’t BERT be used directly for summarisation?

– there are 2 main reasons behind why BERT can’t be directly used for summarisation:
1. Information Representation: the representations produced by BERT are created using

sentence-level information (i.e it uses 2 sentences, masks them and then tries to predict
their correct order). However, for summarisation, we require document-level awareness.

2. Architecture: BERT generates good representations for tokens, but isn’t designed to actually
generate an output (it is just an encoder)

Figure 11: The original BERT encoder.

– these were addressed in Text Summarization with Pretrained Encoders

• How can we adapt BERT to encode document-level information?

– 2 main changes were included:

Page 13

https://aclanthology.org/D19-1387.pdf

1. Class Tokens for Each Sentence: since documents are composed of several sentences, for
the model to be aware of this, each sentence in the document is preceded by a [CLS] token.
BERT learns to encode information for each sentence in the T[CLS].

2. Segment Embeddings: alternating segement embeddings are added to each word of a
sentence. This allows the model to understand that the units composing the documents are
the sentences (since each token in a sentence will have the same segment embedding added)

• How can we adapt BERT for decoding?

– we need to add a transformer decoder at the end of the encoder
– the decoder is trained from scratch during fine-tuning

• Why shouldn’t the encoder and decoder be fine-tuned in the same way?

– intuitively, the encoder has been pre-trained to be fairly good, so during fine-tuning, we shouldn’t
need much changes to the weights

– however, the decoder is completely new, so it should be trained more aggresively
– to do this, we use a learning rate schedule:

η = ξ ·min(step−0.5, step · warmup−1.5)

where step is the current training step, and:
∗ for the encoder, we require a smaller learning rate and a longer warming-up, to get

the encoder used to the fine-tuning tasks, and slowly adapt its weights. For summarisation,
they used:

ξ = 2× 10−3 warmup = 2× 104

∗ for the decoder, we require a larger learning rate and a shorter warming-up, to get
the decoder to more quickly adapt to the fine-tuning task. For summarisation, they used:

ξ = 1× 10−1 warmup = 1× 104

Page 14

• The above architecture is designed for abstractive summarisation. How can we adapt it
for extractive summarisation?

– 2 simple strategies:
1. Text Spans: make the decoder output spans of the input texty, to denote sentences (or

parts of sentences) to use in the summary
2. Classification Task: define a simple classifier, which determines whether a given input

sentence should or should not be in the summary.

4.1.2 Evaluating BERT for Summarisation

• What can be used as baselines when evaluting the summarisation power of BERT?

– we can use the 3 iterations of the GTTP model
– since we are training on news articles from CNN/Daily Mail, we can use the first 3-4 sentecnes

as baseline summaries
– it is common for journalists to summarise the essence of articles in the first few sentences, so this

is a “low-effort” baseline

• How high does BERT score in ROUGE, compared to these baselines?

– BERT scores significantly higher than any of the 4 baselines
– in some cases, the difference is in more than 2 points, which is quite significant
– however, the baseline which takes the first sentences of the article performs better than all the 3

GTTP baselines

• How significant are these results?

– notice, the quality of the simple baseline (using first 3 article sentences) is an artifact of the data,
since it is typical for the first few sentences to be realtively high quality sentences

– moreover, the data is fairly extractive in nature: one can get fairly good summaries by just
copy-pasting

– another issue is that these models are just that: models; thus, they can produce factually
inaccurate summaries, despite sounding fluent and obtaining a high ROUGE score (for example,
imagine instead of writing “Lee Harvey Oswald murdered Kennedy”, it wrote “Kennedy murdered
Lee Harvey Oswald”)

– the best way to evaluate summarisation is ultimately through human intervention

4.2 T5
4.2.1 Training T5

• What is the philosophy of T5 as a language model?

Page 15

– everything is text
– T5 was pretrained and fine-tuned to be able to handle a variety of NLP tasks
– however, unlike with standard NLG, both the input and output must be linguistic

Figure 12: Recap of the capabilties of T5. Recall, the model was developed by Google in Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer

• What dataset was used to pretrain T5?

– the team at Google developed C4: A Colossal Cleaned Crawled Corpus
– it consisted of hundreds of GB of cleaned data which had been crawled from the web

• How exactly was T5 pretrained?

– inspired by BERT, T5 was pretrained in masked token prediction
– T5 used WordPiece tokens
– in particular, it converts 15% of the words in a sentence into sentinel tokens
– any set of consecutively masked words get replaced by a single sentinel token
– the model then needs to learn to predict what the masked tokens are

Figure 13: Here, “for”, “inviting” and “last” were selected for masking. Since “for” and “inviting” are
consecutive, they get replaced by a single sentinel token <X>. As an input during pretraining, the model
obtains the masked input sentence. The target is an equivalent sentence, but with the masked words now
visible, whereas the non-masked words are replaced with the sentinel token. An additional sentinel token
<Z> is added to mark the end of the target sentence.

• How was T5 fine-tuned?

Page 16

https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf

– a variety of common NLP tasks were used for fine tuning, including GLUE (which includes tasks
like lingusitic acceptability, sentiment analysis, etc...), abstractive summarisation with CNN/Daily
Mail, machine translation, etc ...

– the tasks were framed as question-answering, whereby the input was prefixed with a prompt
– for example, in translation from English to German:

4.2.2 Evaluating T5 for Summarisation

• How well does T5 perform in summarisation tasks?

– a variety of versions of T5 were used for summarisation, using progressively larger, more resource-
intensive models

– whilst there was an improvement over BERT (for larger models, the difference could be greater
than 2 ROUGE), arguably the difference wasn’t that large

– moreover, the difference between different T5 models wasn’t that impressive either, despite the
exponential cost increase of handling such large models

5 Summarisation with Blueprints
5.1 Issues with Previous Conditional Generation Models

• Why aren’t the curent models not ideal at summarisation?

– whilst LSTM/Transformed-based models are fluent, they have 2 key problems:
1. Faithfulness: there is no guarantee that the outputted summary is consistent with the

reference text. In particular, if we have multi-document summarisation, the models
can hallucinate information.

2. Output Control: we have no way of controlling the summaries (i.e we can’t define how long
we want them to be, or what parts of the text to focus on)

– overall, these systems should be able to correctly synthesise a lot of information together, and
making up information does more harm than good (for example, if we want to explore how
opinions on the influence of coffee on breast cancer is, we should expect that a model understands
how these opinions have varied over time, and hosuldn’t make up information)

Page 17

Figure 14: Systems from 2020 were bad at generating summaries consistent with the original text. In red,
factual mistakes generated by some of the systems.

• Why is it difficult to fix these issues?

– neural networks are powerful, but they are black-box models
– we don’t have access to ways of tweaking how these systems operate directly

• What attempts have been made to fix the issues with conditional generation?

– Data-to-text Generation with Entity Modeling: change the way in which entities (i.e “Sheldon
Cooper”) are represented

– Sticking to the Facts: Confident Decoding for Faithful Data-to-Text Generation: reduce halluc-
cinations by ignoring tokens generated by the decoder with low confidence

– Hierarchical Learning for Generation with Long Source Sequences: encode documents hierarchi-
cally (token, word, sentence, document levels)

– Generating Long Sequences with Sparse Transformers: define sparse self-attention, to prevent
the attention mechanism from attending to all the tokens in the input

– Data-to-text Generation with Macro Planning and Planning with Learned Entity Prompts for
Abstractive Summarization: introduce planning compoennts, which provide structure to the gen-
erated summaries. This is the approach we explore here.

5.2 Generating Question-Answering Blueprints
• What is the core idea of planning?

– we provide the summarisation system with a template, which it can fill in to generate the
summaries

• How does planning work by using entity chains?

– we can identify entities within the summary task

Page 18

https://aclanthology.org/P19-1195.pdf
https://arxiv.org/pdf/1910.08684.pdf
https://arxiv.org/pdf/2104.07545.pdf
https://arxiv.org/pdf/1904.10509.pdf
https://arxiv.org/pdf/2102.02723.pdf
https://arxiv.org/pdf/2104.07606.pdf
https://arxiv.org/pdf/2104.07606.pdf

– we can then ask the summarisation model to fill in the gaps (this was suggested in Planning with
Learned Entity Prompts for Abstractive Summarization)

– however, this has a problem: entities by themselves don’t embody content (i.e “Titanic” can
refer to a boat or a movie)

– if we don’t see the document, and only see the entities, we won’t know what the summary will be
about

– without context, entities lack specificity

• What alternative is there to planning, to ensure that content information is better re-
flected?

– we can frame the planning process as a question-answering task
– this is motivated by the Questions Under Discussion (QUD) theory of discourse structure
– we have a partially structured set of question, which discourse participants are mutually

committed to resolving
– implicit questions in the discourse get converted into what we speak about
– for example, if someone comes into a lecture theatre, a lecturer will anticipate typical questions

that a newcomer might have, and answer them preemptively (name, course structure, etc...)

• How can we use QUD to generate plans?

Page 19

https://arxiv.org/pdf/2104.07606.pdf
https://arxiv.org/pdf/2104.07606.pdf

– we convert the implicit questions into explicit, and use these to define the plan (which we call
a blueprint)

– for example, if we ask “What is the Titanic known for?”, our blueprint will be a set of questions
which will help structure the summary

Figure 15: Example blueprint for the question “What is the Titanic known for?”. This blueprint constitutes
our plan. The questions and answers can be generated from a variety of documents.

• What is the point of having a blueprint?

– it allows better human supervision, with regards to what the model is learning
– we can look at the blueprint, and correct any faulty answers
– based on the corrected blueprint, a summary can be generated, which should be more factually

correct, and adapted to our requirements

Figure 16: Certain Q/A pairs can be corrected (or even eliminated from the blueprint). Afterwards, a
summary can be generated.

5.3 Blueprint Models
• How can question-answer pairs be generated to create blueprints?

Page 20

– we follow a 6 step process
– it aims to generate pairs which are:

∗ non-repeating
∗ maximally different
∗ capable of encompassing as much content information as possible

– for this:
1. Generate Answers: we can use trained models to identify noun phrases and named

entities. These can be used as candidate answers for the questions.

2. Generate Questions: based on the answers above, we can generate corresponding ques-
tion. To do this, we can use models trained on the SQuAD dataset, which focuses on question
answering

3. Duplicate Check: these models tend to overgenerate questions, so we can reduce this
number by firstly removing duplicate question-answer pairs.

4. Round-Trip Consistency Check: we can remove questions which don’t produce con-
sistent answers. For this, we can pose the question to the question-answering model; if it
doesn’t produce the expected answer (selected in 1), we remove the question-answer pair.

5. Rheme-Based Selection: the rheme of a sentence is the part which provides new infor-
mation. We can perform a rheme check, to ensure that we prioritise questions which seek
out new information:

6. Coverage: the last filter prioritises informative question-answer pairs, by selecting those
which are non-overlapping (and thus produce the widest coverage of information):

Page 21

– overall, for a given text we thus obtain a set of high quality question-answer pairs which contain
the most information about the text:

5.3.1 End-to-End Blueprint Model

• How does an End-to-End Blueprint Model incorporate blueprints into summarisation?

– it generates the blueprint and summary in one go
– from the input sequence, a blueprint is generated

Page 22

– then, from the blueprint, the output summary is produced (similarly to how in T5 a prompt
prefixes the input to specify the task at hand)

– both the blueprint and the output summary are returned

• What are the flaws of an End-to-End Blueprint Model?

– the generated output is too long (blueprint + summary are outputted all at once)

5.3.2 Multitask Blueprint Model

• How does a Multitask Blueprint Model incorporate blueprints into summarisation?

– a multitask blueprint model can give 2 outputs:
∗ the set of answers, alongside an output summary
∗ the set of answers, alongside their corresponding questions (the blueprint)

– this reduces the output sequence length, by generating the output and blueprint separately
during inference

• What are the flaws of a Multitask Blueprint Model?

– blueprint and output are no longer jointly trained; thus, the output solely relies on the an-
swers, which might reduce generation quality

– if we want the blueprint, we need to run the model twice (once for the summary output, once
for the blueprint), but blueprints might vary between runs

Page 23

5.3.3 Iterative Blueprint Model

• How does an Iterative Blueprint Model incorporate blueprints into summarisation?

– the summary will no longer be generated in one go
– each output sentence (and its corresponding blueprint question-answer pairs) are generated

one at a time
– the output sentence at time t depends on t − 1 previous output sentences, alongside the

blueprint at time t

– since sentences are generated incrementally, this means we can potentially output summaries
of any length which we desire

– we also get that each sentence has its associated blueprint, so we can control performance through
that aswell

• What are the flaws of an Iterative Blueprint Model?

– we no longer have a global plan
– it will be slow: the iterative process depends on the previous sentences, so we will spend more

time decoding

5.4 Evaluating Summarisation with Blueprints
• What datasets were used to evaluate the blueprint summarisation models?

– 3 datasets, used to test summarisation in different contexts:
1. AQusMuse (AQUAMUSE: Automatically Generating Datasets for Query-Based Multi-Document

Summarization): long-form question answering, simulates a asearch enginer; the answer
is based on multiple retrieved documents

2. WikiCatSum (Generating Summaries with Topic Templates and Structured Convolutional
Decoders): topic-focused multi-document summarisation, generats Wikipedia abstracts

3. SummScreen (SummScreen: A Dataset for Abstractive Screenplay Summarization): dia-
logue summarisation for TV shows (i.e CSI, The Big Bang Theory)

– the blueprint models were compared with a LongT5 baseline (a T5 model trained to handle longer
token sequences - 4096 to be exact)

Page 24

https://arxiv.org/pdf/2010.12694.pdf
https://arxiv.org/pdf/2010.12694.pdf
https://arxiv.org/pdf/2010.12694.pdf
https://arxiv.org/pdf/2010.12694.pdf
https://arxiv.org/pdf/2104.07091.pdf

Figure 17: Distributions for the different datasets. In the top left, the number of tokens present within the
input documents. In the top right, the number of tokens present in the reference summaries. In the bottom
left, the number of sentences present in the reference summaries. In the bottom right, the number of words
in both the reference summaries and the generated blueprints. Notice how muhc longer the blueprints are
than the reference summaries.

• How well do the models perform on ROUGE?

– whilst we know that ROUGE isn’t the best evaluation metric (particularly with modern models), it
can nonetheless be useful for evaluation

– the 4 models were evaluated using ROUGE-L
– except for AquaMuse, the multitask model obtained the best results (even above the LongT5

model)
– however, generally, all the models tended to obtain similar ROUGE scores

• How can we use the question-answer structure of the blueprints to evaluate summarisation
quality?

– we can evaluate how grounded the summaries are, by seeing whether the output summary
can be used to correctly answer the generated blueprints

Page 25

– if the outputs can do this successfully, this indicates that they are more grounded: they have
been able to correctly distil information

Figure 18: Results for the 3 blueprint models on each of the 3 datasets. Notice how the multitask model
performs significantly worse. This is to be expected: summaries are generated by only looking at answers,
since questions and answers are learnt separately in this model, so we shouldn’t expect high groundedness.

• How can entailment be used to quantify the quality of the summaries?

– we can quantify whether the output summaries are faithful to the input, by using textual
entailment (that is, can I infer a piece of text from some other piece of text?)

– we can test:
∗ whether the blueprint entails the summary output
∗ whether the input text entails the summary output

– a higher entailment indicates higher faithfulness

Page 26

• How is entailment calculated?

– we can use textual entaiment models, which have been trained on public data:

F (s) =
1

n

n∑
i=1

E(D, si)

where:
∗ E is the entailment model
∗ n is the number of sentences in the summary
∗ D is the input document(s)
∗ si is the ith sentence in the generated summary

– empirically, F (s) correlates well with human ratings

• How faithful were the blueprint summaries found to be?

– generally, blueprint models obtained better scores than LongT5
– in SumScreen, the iterative model performed significantly better (although performance was

relatively poor througout)

• How can we make the blueprint models more controllable?

– we still haven’t been able to modulate the length of summaries produced
– with the iterative model, this is possible

Page 27

– we can choose to stop generating summary sentences, or select only some of the summary sentences

Page 28

Figure 19: A comparison between summaries between LongT5 and the iterative model for a CSI: Las Vegas
episode. Notice, LongT5 includes factually incorrect information in its summary (in red). The iterative
model doesn’t do this; moreover, it provides useful details, in the form of named entities.

Page 29

	Introduction to Natural Language Generation
	Summarisation with LSTMs
	The Summarisation Task
	Get To The Point
	Dataset
	Sequence-to-Sequence Attentional Model
	The Pointer-Generator Network
	The Coverage Mechanism

	Evaluating Summarisation: ROUGE
	Summarisation with Pretrained Transformers
	BERT
	BERT for Summarisation
	Evaluating BERT for Summarisation

	T5
	Training T5
	Evaluating T5 for Summarisation

	Summarisation with Blueprints
	Issues with Previous Conditional Generation Models
	Generating Question-Answering Blueprints
	Blueprint Models
	End-to-End Blueprint Model
	Multitask Blueprint Model
	Iterative Blueprint Model

	Evaluating Summarisation with Blueprints

