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Based on:

e Neural Machine Translation of Rare Words with Subword Units, by Sennrich et al.
e BPE-Dropout: Simple and Effective Subword Regularisation
o Survey of Low-Resource Machine Translation, by Haddow et al.

e THe Social Impact of Natural Language Processing, by Hovy and Spruit

1 Open Vocabulary Models
1.1 The Problem with Closed Vocabulary Models

e How do we currently represent text?

— we assume that all words at training time represent all possible words

— in particular, we've taken the input and output of our models to come from some fixed
vocabulary

— currently, we learn a vectorised representation for words (either one-hot or neural embeddings),
which is used by models to compute a probability distribution over all words in the vocabulary

— these closed vocabularies are often very large (10,000 - 100,000) symbols, so:
* training is expensive - large memory + large training time
* decoding will also be expensive

o Why is the closed vocabulary assumption not valid for NLU/NLG problems?

— language-related problems will be open-vocabulary problems by definition:

1. Language is dynamic: new words are constantly generated, for example by joining old words
together (i.e “antifragile “covidiot”)

2. Proper names (i.e countries, cities, people) or numbers are common, but are part of open
word classes (i.e it is unlikely that N’Djaema is part of a vocabulary, even though it is a
perfectly valid city name which is morphologically simple)

3. Some languages are agglutinative: valid words can be generated by joining together many
morphemes

— this showcases that to build robust machine translation models, we need to shift towards open
vocabulary models

1.2 Previous Approaches to Open Vocabulary Models
1.2.1 Ignoring Rare Words
e What does this approach consist of?

— define a closed vocabulary with n words (for example to cover the top 95% most frequent words
in training)

— remaining words are replaced with a UNK token
e Why is ignoring rare words insufficient?

— left-out words typically carry the most important information
— for instance:
SOURCE: Mr Gallagher has offered a ray of hope.
REFERENCE: Herr Gallagher hat einen hoffnungsstrahl ausgesandt.
TRANSLATION: Herr UNK hat einen hoffnungsstrahl ausgesandt.
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1.2.2 Approximative Softmax

e How are approximative softmax models trained?
— one of the biggest bottlenecks in NMT is large vocabularies, which make computations
(particularly softmax) expensive

— with approximative softmax (suggested in On Using Very Large Target Vocabulary for Neural
Machine Translation), the training data gets split, and a vocabulary is generated for each split

— this defines smaller closed vocabulary, which nonetheless covers the whole partition
— softmax can then be computed over the splits, which is less computationally expensive than
using the whole vocabulary

e How can approximative softmax models be used at test time?

— it is likely that words at test time are spread out over many vocabulary partitions

— hence, a new vocabulary is generated by using some crude method (i.e using a translation
dictionary)

e What are the 2 key limitations of approximative softmax?

1. Not Open: this allows computations over larger vocabularies, but if a word never appears in
training, it will be completely unknown for the model

2. Rare Words: these might be seen once or twice by the model, so it will have little knowledge of
how to translate them

1.2.3 Back-Off Models

e What problems do back-off models seek to solve?

— back-off models for translation were suggested in Addressing the Rare Word Problem in Neural
Machine Translation

— it seeks to prevent the use of UNK when translating rare words, such as proper names
e How can backoff help reduce problems when translating rare words?

— during training, rare words are replaced by using UNK

— when using the system, we can align unknown words with UNK, and use this to fill in the gaps for
the UNK

¢ What are the 4 limitations of the back-off model?

1. 1-1 Mapping: the model assumes that 1 word in the origin corresponds to 1 word in the reference,
so it doesn’t take into account compound words

source Das Raumklima ist sehr angenehm.
reference The indoor temperature is very pleasant.
Bahdanau etal, 2015] 1 he UNK is very nice. X
[Jean et al., 2015] The temperature is very nice. X

2. Transliteration: for languages with different alphabets (i.e cyrillic, japanese), transliteration
might be required to map between the two

3. Alignment: the alignment might not be perfect
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4. Morphology: morphological rich languages (like Turkish) might not work well for these models.
Turkish words can have many different forms depending on the context, and there are a large
number of inflectional and derivational morphemes that can be added to the root word to create
new words.

1.3 Subword Neural Machine Translation
Subword NMT is currently the main approach to Open Vocabulary Models.

1.3.1 Motivation

¢ Why can translation based on subwords be useful?
— the main problem with neural machine translation is that despite huge vocabularies, not
every word can be accounted for

— instead, we can try considering morphemes and subwords, since these can be combined to
generate unknwon words:

1. Compounding;:

SOURCE : they charge a carry-on bag
REFERENCE : sie erheben eine Handgepéck

2. Names: names are typically unseen, but by breaking words up into morphemes, we can even
use transliteration to convert names between different languages

SOURCE : Oba
REFERENCE : Obama — O6a

3. Morphological Variation: in agglutinative languages, we can generate new words by joining
morphemes

ORIGINAL : OSMANLILASTIRAMAYABILECEKLERIIMIZDENMISSINIZ
SEGMENTED : OSMAN-LI-LAS-TIR-AMA-YABIL-ECEK-LER-IIMIZ-DEN-MISSINiZ

4. Numbers: things like numbers/dates/techincal terms might need to get written in a specific
format:

SOURCE :  10-12-
REFERENCE : December 10

1.3.2 Byte Pair Encoding for Segmentation

¢ What features are desirable when segmenting words into subwords?

1. Generalisable: ultimately we want to tackle Open Vocabulary Problems, so the segmentation
should be able to cover all words through a small enough vocabulary (even for unseen words)

2. Text Size: if we use extremely high granularity (i.e segment at each character) input and output
text will involve too many tokens, which can slow down learning/decoding; we need large enough
morphemes which can nonetheless encompass every element of a vocabulary

e What is the current approach to subword segmentation?

— approach proposed by Sennrich et al. in Neural Machine Translation of Rare Words with Subword
Units
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— to generate the segmentations, use Byte Pair Encoding (BPE) (proposed by Gage in A New
Algorithm for Data Compression)

— also considered using character-level n-grams to break down words, but BPE worked best
e How does BPE generate subword segmentations?

— we start by considering all characters as subwords
— repeatedly replace the most frequent symbol pair “A B” with “AB”:
LO— LO
LO W — LOW
E LOW — ELOW

— the only hyperparamter to this model is the number of merges to perform

word freq

Tow 5 vocabulary:
lower 2 lowernstid
newest | 6

'widest’ 3

word freq

Tow 5 vocabulary:
lower 2 lowernstid
newest | 6 es

'widest’ | 3

word freq

Tow 5 vocabulary:
Tower 2 lowernstid
newest | 6 es est
'widest’ 3

word freq

low 5 vocabulary:
lower 2 lowernstid
newest | 6 esestlo
'widest’ | 3

. 1: With this vocabulary, even if we’ve never seen the word “lowest”, we’d still be able to break it down
into known subwords, namely lowest.
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— with BPE, we can join characters which frequently occur together, which gives a good compromise
between the granularity and length of the subwords, which makes the segmentations apply well,
even to unknown words

— in practice, this means that the most frequent words will appear whole within the vocabulary,
after which we’ll start seeing subwords
1.3.3 Evaluating BPE

e How does using subword NMT compare with using word-level NMT?

— in the experiments by Sennrich et al., they compared 2 models (subword vs word NMT) for
English-German and English-Russian translation

— subword NMT obtained a significatly higher BLEU in both tasks

228
20.0 20.4
5 i |
L
]
m 10.0
0.0 —
EN-DE EN-RU

Iiword-level NMT (with back-0ff) wean etal, 2015]
subword-level NMT: BPE

. 2: Comparison between BPE Subword NMT and Word-Level NMT with Backoff. The model for
translation was an attentional encoder-decoder network.

e Do the segmentations generated by BPE correlate with “human-like” segmentations?

— not necessarily: BPE generates segmentations based solely on statistics
— this means that compounded words won’t necessarily be broken down into its components

— nonetheless, this doesn’t affect translation quality too much

SOURCE : health research institutes
REFERENCE : Gesundheitsforschungsinstitute
WORD-LEVEL (BACKOFF) : Forschungsinstitute
BPE : Gesundheits/forsch/ungsin/stitute

as we can see, BPE splits up “forschungs” and “institute”, but nonetheless obtains a correct
translation; the word-level translation chooses to ignore the “health” part, which is integral to
meaning

e How well do BPE segmentations deal with translating between different alphabets?

— if we just use back-off, this won’t be able to transliterate between alphabets

— even if we use bigrams, and transliterate these, the result won’t always be correct
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— however, BPE seems to handle these cases fine

SOURCE : rakfisk
REFERENCE : pakéucka
WORD-LEVEL (BACKOFF) : rakfisk — UNK — rakfisk
BIGRAMS : ra/kf/is/k — pa/kd/nc/k
BPE: rak/f/isk — pak/d/ncka

e How does BPE deal with segmentations in different languages?
— if we translate between 2 languages, we need to be able to segment both the source and the
reference

— in the examples above, shared BPE was used: develop BPE segmentations using both languages
to initalise the vocabulary

— in the case in which there’s different alphabets (i.e English-Russian) we use a romanised russian
(iedp 1,6 >b,u—1iC—s)
e Why is shared BPE better than using 2 different segmentations for the different languages?
— using shared BPE ensures that the model learns a more robust understanding of language
structure across the different languages

— the model will get a better understanding of which subwords are frequent between the different
languages, thus allowing it to better align these subwords, obtaining more consistent results

— moreover, this allows the model to learn the same embedding for subwords across the different
languages, simplifying the model

— shared BPE has also been used for multilingual translation, where we might have 10-15
different languages, and we don’t want to have a huge separate vocabulary for each language

e« How does using shared and separate BPE affect the segmentations found by BPE?

— if we train separate BPE for English and Russian, we obtain an inconsistent segmentation
between the languages:
rak/f/isk — npa/d/mnck
— here, “rak”seems to get translated into “pra — npa”

— this happens because when using separate BPE in training, we obtain pairs which look like:
p/rak/ri/ti — npa/kpuTt/n

so whilst in the source language “p” doesn’t typically prefix “rak”, in Russian, a lot of words must
begin with “pra — npa”, which means that source and reference have a different number of
segmentations, which difficults a correct alignement and translation

— if we instead use shared BPE, these inconsistencies disappear:
pra/krit/i — npa/kput/n
e Why is BPE still not ideal?

— BPE is essentially hand-engineering the segmentations
— hence for these models, we still require a separate preprocessing step

— ideally, the translation model should learn to automatically make these segmentations, whilst
learning to translate sentences
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1.3.4 BPE-Dropout
e What is BPE-Dropout?

an adaptation for BPE, aimed at regularising the subword segmentation

— “forget”to combine the most frequent words with a given probability

for instance, if we have “un-rel-at-ed” , instead of merging “un” or “ed”, it might choose to merge
“rel-at” — “relat” instead

u-n-r-e-l-a-t-e-d
3 2 ;: { :tteedd u-n_r-e-l-a_t-e_d u-n-r-e-l-a_t-e-d u-n_r_e_l-a-t-e-d
u-n re-l-at-ed u-n re-1_a-t-e_d u_n re_l-a-t-e-d u-n-r_e-l-at-e-d
un re-l-at-ed u-n re_l-at-e_d u_n re-l-at-e-d u-n-r_e-1_at_ed
un re-l-ated un re-l-at-e-d u_n re-l-ate_d un-r-e-l-at-ed
un rel-ated un re_l-at-ed u_n rel-ate-d un re-1_at-ed
un-related un re-lat-ed u_n relate_d un re-1-ated
unrelated un relat_ed un rel_ated

(a) (b)

BPE BPE dropout

. 3: hyphens denote possible merges. in green, all the merges which were performed, whilst in red the
merges which were dropped.

e Why is BPE-Dropout useful?

currently, most frequent words are merged together, so highly frequent words appear whole
within the vocabulary

it is thus up to the infrequent words to provide the vocabulary with morphology (i.e how
to combine morphemes like prefixes, suffixes, common character combinations, etc... to generate
words)

the problem is that infrequent words are infrequent, so the model will have less opportunities
to learn how to compose together the subwords in order to understand infrequent words, and
thus, generalise better

with BPE-Dropout, we obtain subwords from frequent words, which will provide a more
reliable, consistent signal, vis a vis word composition

for instance, in the example above, it finds “un”, “relate” and “ed” as subword units, all of which
are more useful than just having “unrelated”as part of the vocabulary

W
)

with BPE-Dropout, the BLEU score is consistently increased by 1

1.4 Character-Level Neural Machine Translation
e What is character-level NMT?

a model learns to translate to and from sequences of characters

this is in contrast to translating sequences of words or subwords

e What are the 3 principal advantages of character-level NMT?

1.

Open Vocabulary: if our vocabulary is composed of characters, it will most likely be open
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2. Segmentation: don’t need to think about complicated heuristics for subword segmentation (for
example, as we saw above, BPE doesn’t necessarily produce the most meaningful segmentations,
and English is a relatively easy language to segment)

3. Neural Networks: NNs are powerful enough to learn directly from character sequences
What is the critical disadvantage of character-level NMT?

— using characters will make input sequences extremely long (in terms of tokens)

— this significantly slows down training and decoding (by x2 — 8 for training alone)

In what sense do character-level models affect the understanding of meaning in translated
sentences?

— when operating with words (and even subwords), we work with units which have self-contained
meaning

— this makes it easy to, for example, align these units together

— there are also clear semantic dependencies between these units (either in generating a coherent
sentence, or a word)

— when operating at the character-level, this meaningfulness is no longer clear:
* what inherent meaning does “a” have?
* how do you even align characters between words from different languages?
x what sort of dependency do the first and fifth character share?

Which approach works best, subword or character level NMT?

— generally, operating over subwords has lead to better results in translation tasks

— however, using characters is an interesting idea which has received attention over recent years
What approaches to character-level NMT have been used?

1. Convolutions
— in Fully Character-Level Neural Machine Translation without Explicit Segmentation they use
convolutions to reduce the sequence length

— an input sequence of characters is converted into a matrix, with columns as the character
embeddings

— a set of different convolutional filters are applied across the matrix

— max pooling and different strides are used to generate segment embeddings: embeddings
which represent a segment of the character sequence (each segment embedding might represent
a group of characters)

— these segment embeddings, unlike segmentations discussed above, can be overlapping
(i.e 2 different segments might represent the same character)

— finally, the segment embeddings are passed through a highway network and a bidirectional
GRU (with attention) to generate translations
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2. Deep LSTms

— in Revisiting Character-Based Neural Machine Translation with Capacity and Compression,
they train very deep attentional LSTM encoder-decoders (also using convolutions, as
above)

— for deep models, the character-level models performs better (although takes x8 to train)

— for shallower models, BPE is best

B EnFrChar A EnFrBPE MW DeEnChar & DeEnBPE
40.0 33
38.0 3
36.0 29
340 27
1x2+2 3x2+4 6x2+8 1x2+2 3x2+4 6x2+8
W CsbEnChar & CsEnBPE B FiEnChar & FiEn BPE
27 20
25 8 5 N
23 16
2 14
1%2+2 3x2+4 6x2+8 1x2+42 3x2+4 6x2+8

. 4: For each translation task, as the character-level model gets deeper, it outperforms the subword-leevel
model, when evaluated on BLEU.

¢ What other alternatives have been proposed, beyond character-level segmentations?

1. Byte-Level

— in ByT5: Towards a Token-Free Future with Pre-trained Byte-to-Byte Models they convert
characters into byte strings, according to their unicode code
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— for example, “like” would be represented by the byte sequence:
0x6C, 0x69, 0x6B, 0x65

— using this byte-level tokenisation means that ByT5 can handle a lot more languages/scripts,
and was shwon to be more robust to noise
— however:
% there are a lot of unicode characters, so a large vocabulary size, and thus, longer
trainig
x non-ASCII characters have a longer byte-sequence, which can make them more expensive
to model, thus making the model potentially unfair (it’ll be biased towards ASCII-based
languages)
2. Pixel-Level
— in Robust OpenVocabulary Translation from Visual Text Representations, they propose using
images, and translate based on pixel information

— they process the text in images using different segments at a time (i.e using a sliding window),
which get converted into embeddings using convolutional layers; these embeddings then
get procesed as if they were standard text embeddings

VISUAL EMBEDDER @ convolve slices STANDARD TRANSFORMER

o map to e encoder and

embedding decoder
dimension, e proceed
as usual

extract n slices
according to
o image height (h),
window size (w), 5
and stride (s)

—» _ This __is __a__sentence

(segmented) unicode string

o render to image (n, w,h)

Das ist ein Satz.—{ Das ist ein Satz
unicode input

— this approach is more robust:

* it better handles misspellings (for instance, “langauge”instead of “langauge since the 2
are visually similar)

* picks up on visual similarities (i.e better handles rare Chinese characters)

2 Low Resource Machine Translation

2.1 Low Resource Languages

e What is a low-resource language?

— a multifactored problem
— certain languages are rarely used in NLP tasks, due to lack of availability

— this is caused by a variety of factors, such as lack of resources (intellectual, economical, political)
from the country of origin

— this means that these languages are rarely available for models to learn
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. 5: Data for 500 languages. The y-axis counts the number of annotated resources available for
a particular language (in a given dataset full of annotated data). The x-axis counts the number of
unannotated resources available for a particular langugage (based on the number of wikipedia articles
in a given language). The authors split languages into 5 classes. Class 0 are those languages which are “left
behind”: there is barely little to no annotated data on them, and less than 100 unannotated sources for each
of them. On the other hand, class 5 are the “winners”: languages from countries with a lot of social, economic
and political influence, countries with enough resources to fund language research, countries with powerful
universities, etc ...

Class 5 Example Languages #Langs | #Speakers | % of Total Langs
0 Dahalo, Warlpiri, Popoloca, Wallisian, Bora 2191 1.2B 88.38%
1 Cherokee, Fijian, Greenlandic, Bhojpuri, Navajo 222 30M 5.49%
2 Zulu, Konkani, Lao, Maltese, Irish 19 5.7M 0.36%
3 Indonesian, Ukranian, Cebuano, Afrikaans, Hebrew 28 1.8B 4.42%
4 Russian, Hungarian, Vietnamese, Dutch, Korean 18 2.2B 1.07%
5 English, Spanish, German, Japanese, French 7 2.5B 0.28%

. 6: Distribution of languges between classes. We can see that the underrepresented languages form a
majority of all languages explored here.

2.2 Creating Datasets

2.2.1 Web Crawling on Translated Websites

e What is the easiest way of obtaining high-quality, parallel, multilingual data from the
Internet?
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— tags/attributes can be used to align sentences together, which after some deduplication and
filtering, gives high-quality parallel, multilingual data

e What is the main issue with this approach?

— such websites are not too common

— even the ones that have translations available, probably only have entries in a small subset of
well-known languages (which we already have enough data for)

2.2.2 Web Crawling on Monolingual Websites

e What alternatives are there to using translated websites?

— the Internet has zettabytes (102G B) worth of monolingual data

— there have been many attempts to crawl and access all this data, such as with Common Crawl
or Internet Archieve

— this has resulted in crawling petabytes (10°G' B) of monolingual data
e How can monolingual data be used to generate parallel, multilingual data?

1. Identify the language of the page
2. Align pages (documents) together. This isn’t done for all sites found, but rather by using
heuristics:
— common URLs
— using a translation dictionary and seeing overlap between pages
3. Within aligned documents, try aligning sentences. Again, use heuristics:
— sentences with very different lengths are likely not translations
— use translation models to find possible matches

— project sentences into common embedding space (i.e LASER) and use nearest neighbours
to find parallel sentences

4. Filter sentence alignments to ensure we keep highest quality translations

Translation Model Bilingual Lexicon

Multilingual Sentence
Embeddings

/\/\

. 7: Generating parallel data from monolingual sites. Steps highlighted in red are those that might be
difficult for low resource languages.

e Why is this approach not optimal for low resource languages?

— in the steps outlined above, we need robust language information: translation dictionaries,
translation models, etc ...
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— we have really good tools, which we have tried and tested multiple times, for common languages
like English or Spanish
— however, with low resource languages, these aren’t widely available or as robust

— thus, the above technique are error prone, and can lead to a large amount of false positive

alignments
Parallel
CCAligned ParaCrawl v7.1 WikiMatrix
#languages 137 41 85
Source CC 2013-2020 selected websites Wikipedia
Filtering level document sentence sentence
Langid FastText CLD2 FastText
Alignment LASER Vec/Hun/BLEU-Align LASER
Evaluation TED-6 WMT-5 TED-45
. 8: Examples of aligned datasets based on monolingual data.
Parallel
CCAligned ParaCrawl v7.1 WikiMatrix
#langs audited / total 65/119 21/38 20/78
%langs audited 54.62% 55.26% 25.64%
#sents audited / total 8037/ 907M 2214/ 521M 1997 / 95M
%sents audited 0.00089% 0.00043% 0.00211%
C 29.25% 76.14% 23.74%
X 29.46% 19.17% 68.18%
g wL 9.44% 3.43% 6.08%
g NL 31.42% 1.13% 1.60%
offensive 0.01% 0.00% 0.00%
porn 5.30% 0.63% 0.00%

. 9: Native speakers were asked to evaluate the parallel data generated within these datasets. C denotes the
percentage of sentence pairs which were correct. X denotes the percentage of setnence pairs which weren’t
correct. WL denotes the percentage of sentence pairs which had a wrong translation language. NL denotes the
percentage of sentence pairs which were aligned with text which didn’t conform a language. As can be seen,
CCAligned and WikiMatrix obtain fairly poor results. What is most worrisome is that these datasets were
used for training low resource models for quite a few years, despite the low data quality.

2.3 Back Translation
¢ What is the aim of back translation?

— back translation was suggested in Improving Neural Machine Translation Models with Monolingual
Data
— say we have a source language S, and a target language T’

— we have a large amount of monolingual data for S, T, and just a few examples of parallel data
between S and T
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— then, with back translation:

1. Using the parallel data, train a simple translation model 7, which translates T — S
2. Using T, generate synthetic training samples, by converting the monolingual data in T'

3. We then train a back translation model from S — T, by using both the synthetic parallel
data, alongside the high quality parallel data

4. This can be iterated to progressively improve the translation quality

— when tested, back translation models obtained better performance than simpler phrase-based
models

— this allows training robust models by using just a few parallel training samples and a lot of
monolingual data

— having high quality parallel data is still important: the back translation model might fail if
the syntehtic-pair generation system is too weak

English Swahili Swahili English

Paralel | eceaaa.

Parallel + Synthetic

English A 4 Swahili

= e

2.4 Transfer Learning
2.4.1 Parallel Data

e How can transfer learning be used when parallel data is available?

— we can pretrain a model on high resource languages, with the desired target language

— we fine-tune by using the low resource parallel data

High Resource Low Resource

Initialise
de-en »| sw-en
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e What factors affect the quality of translation when using transfer learning?
— initially (Transfer Learning for Low-Resource Neural Machine Translation) showed that this
worked well for low resource Turkic languages

— in Trivial Transfer Learning for Low-Resource Neural Machine Translation they showcase how in
fact, source and target don’t need to be linguistically related

— in Choosing Transfer Languages for Cross-Lingual Learning, they extensively investigated the
effect of pretraining languages, and determined that the most important factors were:

x data size
x quality of pretrained model
x lexical overlap between subwords

2.4.2 mBART

e Why were large pretrained models not used for machine translation before 20207
1. Architecture: large pretrained models like BERT are encoders (i.e good at encoding embeddings,
not so good at generating), whereas MT requires an encoder-decoder architecture
2. Time: pretrained models require many parameters, making them prohibitively expensive for
training and decoding

¢ What is mBART?

— mBART was introduced in Multilingual Denoising Pre-training for Neural Machine Translation

— a pretrained model using a monolingual corpus, containing 25 languages from the Common
Crawl

300 H monolingual (GB)

0
En Ru Vi Ja De Ro Fr Fi Ko Es Zh It NI Ar Tr Hi Cs Lt Lv Kk Et Ne Si Gu My

e How was mBART pretrained?

— pretrain on all the multilingual data on denoising tasks:

x Masked Token Prediction: given an input sentence, predict the token that would appear
in place of a mask

* Sentence Order: given 2 sentences, determine in which order they appear

— it also had to predict the text language
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Where did __ from ? </s>Who __ | __ </s> <En>

__ BB . </s> %N __</s><da>

S
Who am | ? </s> Where did | come from ? «</s> <En>

<En>Who am | ? </s> Where did | come from ? </s>

EFN U» & . </s> £ BB . </s><Ja>

<Ja>Fh U & . </s>FLBHB . </s>

— pretraining took weeks, over 100s of GPUs

How was mBART fine-tuned?

— for fine-tuning, the parallel data was used for translation

*

Who am | ? </s> <En>

T3 82?2 </s><da>

}

<Ja>FA (E s ? </s>

— notice, the resulting model learns to represent all languages at once

How does mBART perform on high/low-resource languages?

— mBART was compared with both high resource and low resource languages

— as a baseline, they considered a randomly initialised mBART model
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Languages En-Gu En-Kk En-Vi En-Tr En-Ja En-Ko
Data Source =~ WMT19 WMT19 IWSLT15 WMT17 IWSLT17 IWSLT17
Size 10K 91K 133K 207K 223K 230K
Direction «+ - « - — — — - — - « -
Random 00 00 08 02 236 248 122 95 104 123 153 163
mBART25 03 01 74 25 361 354 225 178 191 194 246 226
Languages En-N1 En-Ar En-It En-My En-Ne En-Ro
Data Source IWSLT17 IWSLT17 IWSLT17 WAT19 FLoRes WMT16
Size 237K 250K 250K 259K 564K 608K
Direction <« — — — — — — — — — — —
Random 34.6 293 275 169 31.7 280 233 349 76 43 340 343
mBART25 433 348 376 21.6 398 340 283 369 145 74 378 377
Languages En-Si En-Hi En-Et En-Lt En-Fi En-Lv
Data Source  FLoRes ITTB WMT18 WMT19 WMT17 WMT17
Size 647K 1.56M 1.94M 2.11M 2.66M 4.50M
Direction — — — — — — — — — — —
Random 7.2 12 109 142 226 179 18.1 121 21.8 202 156 129
mBART25 137 33 235 208 278 214 224 153 285 224 193 159

Languages Cs Es Zh De Ru Fr

Size 1IM 15SM 25M 28M 29M 4IM

Random 16.5 332 350 309 315 414

mBART25 18.0 34.0 333 305 313 410

— for all low resource languages, pretraining mBART leads to a significant performance improvement

— for high resource languages, pretraining doesn’t benefit performance significantly

e How has mBART been extended?

— developed mBART50 (Multilingual Translation with Extensible Multilingual Pretraining and Finetuning):

1. Languages: can handle 50 different languages

2. Many-to-Many Translation: new fine-tuning allows for many-to-many translation

— used as a baseline for most low resource translation tasks

2.4.3 Multilingual Models

¢ What are multilingual models?

— currently, we’ve mainly operated using many-to-1 (i.e bunch of languages to English) or 1-to-many
models (i.e English to bunch of languages)

— multilingual models seek to define a many-to-many translation paradigm (i.e from Uzbek to
Urdu, instead of Uzbek-English, English-Urdu)

e What approaches have been used for multilingual models?

1. An Analysis of Massively Multilingual Neural Machine Translation for Low-Resource Languages:
use a small number of related languages for many-to-many translation

2. Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges: use a
large amount of languages (103)
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e What 2 concepts do multilingual models have to balance?

— Knowledge Transfer: being capable of translating between so many languages means that the
model will learn to better understand the structure of language

— Knowledge Interference: needing to tranlsate between languages will degrade performance
(need to better generalise; if certain languages have specific features which aren’t shared between
other languages, there’ll be a performance drop)

o How does the performance of multilingual models vary when used for high/low resource
languages?

— in Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges
they compare how a bilingual model (English-to-many, many-to-English) performs compared to
a multilingual model

— 2 different multilingual models are used:

* the original data distribution, where high resource and low resource data appears in the
same proportions

* an oversampled data distribution, where low resource languages are upsampled, so that
they constitute the same proportion of training data as high resource languages

Bilingual En—Any translation performance vs dataset size

A

N \\.'\j' _- o
' \ﬂ N A

Bilingual Any—En translation performance vs dataset size

. 10: BLEU scores for the bilingual model. Scores are arranged from left to right, based on language presence
in training (low resource languages to the right, high resource languages to the left).

Page 19


https://arxiv.org/abs/1907.05019

En—Any translation performance with multilingual baselines

® = Over-sampling @ = Original Data Distribution

Any—En translation performance with multilingual baselines

® = QOversampling @ = Original Data Distribution

. 11: Difference between BLEU scores for the bilingual and multilingual models. Scores are arranged from left
to right, based on language presence in training (low resource languages to the right, high resource languages
to the left). In blue, the performance of the multilingual model with the original data distribution; in green,
the performance after using upsampling.

— these results showcase that:

1. Negative Interference: seems to significantly affect high resource models, and low resource
models with the original data distribution

2. Positive Transfer: seems to significantly benefit low resource languages, particularly during
encoding, and when using upsampling

— more recently, we’ve been able to show that even high resource languages benefit from multilingual
models:
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MMT | Model cs-en de-en  ha-em  is-en  ja-em ru-em  zh-en | Avg  Incremental A

X Bilingual 288 415 159 303 19.7 40.2 ME | 302 —
X + Backitranslation 283 8.0 283 345 111 38.0 jog | 313 +1.1
X + Finetuning 304 4218 30.3 335 M6 395 3ol | M2 +2.9
1/ + Multilingual 321 43.8 36.1 o4 267 406 369 | 365 +2.3
W + Ensemble 323 44.5 37 3wy 172 40.9 378 | 371 +(0.6
v + Reranking 327 44.4 382 405 278 41.4 380 | 376 +0.5
X WMT20 Winner 299 43.8 — — 26.6 39.2 309

A over WMTZ0 +2.8 +0.6 — — +1.2 +2.2 +1.1

MMT | Model en-cs en-de en-ha enis en-ja en-ru  en-zh | Avg Incremental A

X Bilingual 331 38T 147 258 254 258 400 | 281 —
X + Backtranslation  33.1 39.6 231 294 261 5.7 424 | 313 +2.3
X + Finetuning 357 39.5 233 %4 7 26.0 430 | 321 +0.7
I + Multilingual 364 408 246 312 M7 26.8 436 | 333 +1.2
s + Ensemble 368 41.1 250 315 199 6.9 436 | 337 +0.4
v + Reranking 372 41.1 255 328 287 274 436 | 339 +0.2
v + Postprocessing 39.8 42.6 255 345 298 288 482 | 356 +1.7
X WMT20 Winner 36.8 8.8 — — 284 255 47.3

A over WMT2Z0 +3.0 +3.8 — — +1.4 +3.3 +0.9

. 12: The largest performance improvement from the bilingual baseline is in low resource languages, like
czech, hausa or icelandinc. However, even high resource languages, like chinese or russian benefit from the
multilingual model. Results from Facebook AT’'s WMT21 News Translation Task Submission.

2.5 Evaluating Low Resource Machine Translation

e Why is automatic evaluation of low resource MT systems particularly challenging?

— in short, because most automatic evaluation systems (like BLEU) are mainly designed for high
resource languages

— as such, it is harder for them to intuitively evaluate low resource languages (i.e which can be more
morphologically rich)

— how comparable are BLEU scores for low resource languages with scores for high resource languages?
e What is the best way of evaluating low resource translations?

— currently, the best way is human evaluation

— for this, researchers need to be able to better connect with different language communities

3 NLP and Ethics
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