
Natural Language Understanding, Generation and Machine
Translation - Week 5 - Prompting and Evaluating Machine

Translation

Antonio León Villares

February 2023

Contents
1 The Paradigm of Pre-Trained Language Models 2

1.1 Analysing Pre-Trained Language Models . 2
1.1.1 Training Objectives . 2
1.1.2 Auxiliary Objectives . 3
1.1.3 Noising Functions . 3
1.1.4 Representation Directionality . 4
1.1.5 Pre-Training Methods . 4

1.2 Prompting . 6
1.2.1 The T5 Language Model . 6
1.2.2 The Goal of Prompting . 7
1.2.3 Creating Prompts . 8
1.2.4 Answer Search and Mapping . 9
1.2.5 Design Considerations for Prompting . 10
1.2.6 Prompting for Few-Shot and Zero-Shot Learning . 10

2 Evaluating Machine Translation 11
2.1 The Importance of Evaluating Machine Translation Models 11
2.2 Desiderata for Machine Translation Models . 12
2.3 Human Evaluation . 12
2.4 Automatic Evaluation . 14

2.4.1 Naive Approach . 14
2.4.2 The BLEU Score . 16
2.4.3 Model-Based Evaluation: COMET . 19

1

Based on:

• Sections 1,2 and 3 of Pre-Train, Prompt and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing, by Liu et al.

• BLEU: A Method for Automatic Evaluation of Machine Translation

• C5W3L06 Bleu Score (Optional) by Andrew Ng

1 The Paradigm of Pre-Trained Language Models

As we saw last time, BERT lead to a paradigm shift in the NLP com-
munity. But this hasn’t been the first such shift, nor has it been the last:

We focus on firstly generalising and formalising the ideas behind pre-
trained language models, and then delve into how prompting has rev-
olutionised NLP.

1.1 Analysing Pre-Trained Language Models
• Why are pre-trained models so powerful?

– there are large amounts of naturally occurring text data available
– with pre-training, we can learn good general embeddings, which can be cheaply fine-tuned

to fit specific tasks

1.1.1 Training Objectives

• What are the main training objectives during pre-training?

Page 2

https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://aclanthology.org/P02-1040.pdf
https://www.youtube.com/watch?v=DejHQYAGb7Q

– in broad terms, predicting the probability of some text x

– this can be done in 3 ways:
1. Standard Language Model: optimise P (x) based on training corpus (generally done by

predicting tokens in a sequence one at a time).
2. Corrupted Text Reconstruction: reconstruct corrupted text, by predicting the de-

noised words (P (x | x̃), where x̃ is corrupted text). The loss is computed solely based on
the corrupted tokens.

3. Full Text Reconstruction: reconstruct corrupted text, but computes the loss with re-
spect to the whole text (P (x | x̃), where x̃ is corrupted text).

• How does the main training objective influence the applicability of the pre-trained model?

– certain downstream tasks might benefit from different training schemes
– for instance, SLM and FTR are better for text generation
– this is particularly true for prompting, as we will see later on

1.1.2 Auxiliary Objectives

• What are auxiliary objectives?

– beyond the main objective (i.e language modelling, denoising), we can pre-train models to fulfill
an auxiliary objective

– this allows them to learn language features which might be useful in downstream tasks
– for example, in BERT, they use next sentence prediction to ensure that the embeddings are

not only meaningful at the token level, but also at a sentence level (need the embeddings to
correctly encode the meaning of a sentence if we want to be good at NSP)

• Apart from NSP, what other auxiliary tasks are there?

– Discourse Relation: predict rhetorical relations between sentences (i.e is this a question, a
clarification, etc...). Used by ERNIE.

– Image Region Prediction: predict masked regions of an image (useful for visual-linguistic
tasks)

– also:
∗ Sentence Deshuffling
∗ Sentence Distance Prediction
∗ Masked Column Prediction

1.1.3 Noising Functions

• How can tokens be corrupted with noise during pre-training?

1. Masking: as with BERT, use a [MASK] token to replace tokens in the input sequence.
2. Replacement: instead of replacing a token with [MASK], replace with another random token.
3. Deletion: directly remove a set of tokens from the input (typically used with FTR).
4. Permutation: split input into spans, and permute the spans to create the new input.

Page 3

• How does the type of noising affect the learning of the model?

– we can incorporate prior knowledge into the corruption
– for example, if we want a language model which is sensitive to entity prediction, we could

focus on noisifying entities

1.1.4 Representation Directionality

• What is representation directionality?

– the way in which the input tokens are processed to generate representations

• What are the types of directionality representation?

1. Left-to-Right: the representation of the current word depends solely on all the previous
words (for example, with vanilla RNNs).

2. Bidirectional: the current representation depends on all the other words in the input (for
example, BERT).

3. Hybrid: we can use attention masking, to only focus on certain parts of the input

1.1.5 Pre-Training Methods

With the notions of training objectives, noising functions and representation directionality in mind,
we can then make choices about how to perform the pre-training.

• What types of pre-training strategies are there?

– 2 popular strategies
– language modelling, which includes:

∗ Left-to-Right Language Models
∗ Masked Language Models

Page 4

– conditional text generation, which includes:
∗ Prefix Language Models
∗ Encoder-Decoder Models

• What are the standard language modelling architectures?

1. Left-to-Right Language Models:
– a variety of auto-regressive language models, which assigns probabilities to word se-

quences:
P (x) = P (x1)× . . .× P (xn | x1, . . . , xn−1)

– this includes models like GPT-3
– generally used for prompting

2. Masked Language Models:
– this is a bidirectional model, which predicts the current word given surrounding context:

P (xi | x1, . . . , xi−1, xi+1, . . . , xn)

– by design, they’re more powerful than LtRLMs, since these compute probabilities from
left-to-right, which doesn’t make them as effective for down-stream tasks, like classification)

– examples include BERT and ERNIE
– if used in prompting, better for natural language understanding or analysis (i.e classifi-

cation, inference, question answering)

• What are the conditional text generation architectures?

– these are models which are well-suited for translation and summarisation
– given an input x, seek to generate a target y

– this is achieved by firstly encoding x, and then decoding it to generate y

1. Prefix Language Model:
∗ x is encoded with a fully-connected mask (i.e full attention, the full context is attended

to)
∗ y is then decoded in a left-to-right manner
∗ both the encoding and decoding are performed with the same parameters
∗ apart from the standard language modelling objective over y, might enforce a CRT

objective on x, to encourage learning good representations
2. Encoder-Decoder:

∗ identical to a Prefix Language Model, but encoding and decoding are performed
with different parameters

∗ might also enforce CRT objectives on x

∗ used in models like T5 (more later) and BART

Page 5

Figure 1: A summary of the different pre-training architectures.

1.2 Prompting
1.2.1 The T5 Language Model

• What is the T5 language model?

– stands for Text-to-Text Transfer Transformer
– developed by Google as a unified model for every language related task

– every task – including translation, question answering, and classification – was cast as
feeding the model text as input and training it to generate some target text (see their paper)

• How does T5 differ from BERT?

– unlike BERT, T5 outputs text, not a span or an index
– moreover, it attained state of the art performance when released:

Figure 2: The performance of T5. Note that the human performance on SuperGLUE is 89.8 - just 0.9
greater than T5’s performance.

Page 6

https://arxiv.org/abs/1910.10683v3

• Why was the development of T5 important, in terms of using neural models for NLP
tasks?

– the researchers behind T5 tested its performance, under an exhaustive hyperparameter search
– they found that ultimately the differentiating factor in performance is model size (see the table

above - as the number of parameters grows to 11B, the performance keeps improving), and the
quality of the training data

– this was quite disappointing for many NLP researchers: NLP performance seemed to be capped
by size, not ingenuity

– because of this (and other reasons), prompting has become quite popular since 2021

• Why does T5 exemplify one of the main challenges facing NLP?

– the best T5 model required 11 billion parameters (as a reference, the largest BERT model
required 340 million)

– GPT-3.5 (the basis of ChatGPT) required training on arouund 175 billion parameters
– these sizes are prohibitive:

∗ training is extremely costly, and has a high carbon footprint
∗ deploying these systems is a feat of engineering, only available to large companies

– to downsize this model, we require better knowledge distillation, effective techniques for model
pruning and quantisation (using less accurate data types, such as 16-bit floats instead of 32-bit)

1.2.2 The Goal of Prompting

• Intuitively, what is prompting?

– the current paradigm shift in NLP
– since 2021:

pre-train + fine-tune → pre-train + prompt + predict

– with prompts, downstream tasks are reformulated to look more like the tasks solved by LMs
during pre-training

– in particular, the LM is tasked with “filling in the blanks” of the prompts:
∗ sentiment analysis:

I missed the bus today. I felt so .

∗ translation:
English: I missed the bus today. French: .

• How does prompting differ from standard supervised tasks in NLP?

– traditional supervised NLP tasks consider an input x (i.e text), and predict y (i.e text in machine
translation, label in sentiment analysis, …) by modelling:

P (y | x; θ)

– in prompting, we directly learn the probability of x itself:

P (x; θ)

and use this to predict y

• Why is the prompting approach useful?

Page 7

– with supervised tasks, we require a lot of data, which is often times specific to the task at
hand (i.e predicting sentiment from movie reviews)

– with prompt-based learning, we directly model language, which doesn’t require large supervised
datasets

– we have plenty of unlabelled text data, but not enough labelled text data

• How does prompting determine y?

– this is a 3 step process:
1. Prompt Addition
2. Answer Search
3. Answer Mapping

– we discuss these 3 steps further below

1.2.3 Creating Prompts

• What is prompt addition?

– the process of generating a prompt
– for this, we use a prompting function, to modify the input x:

x′ = fprompt(x)

• How is the prompting function applied?

– this is done in 2 steps
1. Template: templates have 2 “free slots”; an input slot (to “hold” the input), and an answer

slot (to “hold” the model output):

[X] Overall, it was a [Z] movie.

2. Filling: we then fill in the input slot with x:

x = I love this movie. =⇒ fprompt(x) = I love this movie. Overall, it was a [Z] movie.

• What is a cloze prompt?

– a prompt where the answer slot is in the middle

[X] Overall, it was a [Z] movie.

• What is a prefix prompt?

– a prompt where the answer slot lies at the end:

Finnish: [X] English: [Z]

• Can a prompt only have a single input and answer slot?

– no, these can be changed depending on the task at hand

Page 8

Figure 3: Examples of prompting templates for a variety of downstream tasks.

1.2.4 Answer Search and Mapping

• How are answers to the prompt found?

1. Define a set Z of permissible answers
– for language generation, Z could be the entire language
– for classification, Z could be a subset containing adjectives:

Z = {excellent, good,OK, bad, horrible}

2. We define a filling function, which fills the answer slot in x′ with z ∈ Z. For example, if
z = excellent:

ffill(x
′, z) = I love this movie. Overall, it was an excellent movie.

3. Using a pre-trained language model P (·; θ), we can evaluate the best potential answer z ∈ Z:

ẑ = search
z∈Z

P (ffill(x
′, z); θ)

The search function could be a simple argmax, beam search or some form of sampling (generate
outputs which follow the distribution of the LM)

• What is answer mapping?

– it can be the case that the highest scoring answer ẑ isn’t in the format of the desired output
– we need some mapping to a highest scoring output ŷ:

ẑ 7→ ŷ

– for language generation tasks (i.e translation), this mapping can be trivial
– for other tasks (i.e sentiment analysis), we need to map sets of sentiment bearing words to

single classes:
{excellend, great, wonderful} 7→ +

{horrible, disgusting, bad} 7→ −

Page 9

Figure 4: The full prompting paradigm for sentiment analysis: prompt addition, answer searching and answer
mapping.

1.2.5 Design Considerations for Prompting

• What is prompt engineering?

– the creation of prompting functions fprompt(x)

– this is a manual task, which isn’t optimal: out of millions of prompts, how likely are we to select
the best prompt for our task, which helps our model learn the best?

• Can prompts be engineered automatically?

– if we have large corpora, they will likely contain good prompts
– for example, for sentiment analysis, we can easily find corpora with sentences like “X liked Y a

lot”
– we can sample sentences like these, and paraphrase them to generate prompts
– we can then select the prompts which result in the highest accuracy

• Can prompts be continuous and learnt by the model?

– we can add prompts within the embedding space of the model
– these can be initialised with a discrete prompt
– as the model trains, we can also train the prompt parameters, to optimise the template

embeddings

• What is answer engineering?

– similar to prompt engineering, we need to make sure we have a good Z for each task
– we also need to be able to correctly adapt the answer to output mapping

1.2.6 Prompting for Few-Shot and Zero-Shot Learning

• What is few-shot learning?

– a technique in which a model is trained to recognise new classes with only a small number of
examples (often as few as one or a few examples per class)

• What is zero-shot learning?

– like few-shot learning, but we don’t provide the model with any example of unseen classes
– we train the model on a smaller set of known categories, and then use additional information such

as semantic embeddings or attribute labels to infer the classification of new, unseen data
points

• Is prompting effective for zero-shot learning?

Page 10

– prompting provides a simple framework for zero-shot learning
– in a recent paper by Alexandra Birch (our lecturer!), they explore this
– they create different templates for translation, and explore how adding line breaks affects zero-

shot learning:

Figure 5: Results from the Birch paper. The � symbol represents the location of the line break. w/ denotes
that the line break was added. The scores are COMET scores, which we’ll see in the next section.

• What is interesting about these results?

– notice, the templates are fundamentally identical
– however, they obtain drastically different results
– a human wouldn’t struggle with this difference

• Does few-shot learning improve the model capabilities?

– yes, but we see that after around 10 samples, performance stabilisies:

2 Evaluating Machine Translation
2.1 The Importance of Evaluating Machine Translation Models

• Why is model evaluation important?

– many facilities nowadays rely on well-engineered systems
– not being able to properly evaluate these systems can be dangerous
– for example, we need to make sure that self-driving cars are completely safe, as malfunctioning

can have serious consequences

• Why is evaluating machine translation models important?

1. Understanding System Changes
– having an evaluation metric allows us to compare different models

Page 11

https://arxiv.org/pdf/2301.07069.pdf

– we can see whether new ideas lead to better models
– we can verify whether new ideas change the model in an expected way

2. Personal Implications:
– machine translation is everywhere, so we need to ensure that performance is correct
– for example:

∗ when Google switched from n-gram to neural systems, their filters for harmful content
didn’t work, since the generated output was completely different

∗ when translating menus, understand allergies is crucial (i.e need to properly identify and
translate words like “celiac”)

∗ multinational corporations need to be able to translate legal requirements, product
specifications and designs to different languages

2.2 Desiderata for Machine Translation Models
• What are the 2 main use cases of machine translation?

1. Assimilative: understanding phrases in a different language (i.e entry requirements for a country)
2. Disseminative: generating phrases in a different language (i.e translating lunch menus)

• What 2 dimensions are crucial when evaluating machine translation?

1. Adequacy: how well does the translation convey the meaning of the original sentence?
2. Fluency: how fluent is the output? Is it grammatical? How correct is the word choice?

– adequacy and fluency are typically measured in a scale, from 1 to 5:

2.3 Human Evaluation
• Why are human evaluations of translation not ideal?

– the same sentence can be translated in many different ways:

Page 12

– moreover, human evaluators will often disagree about the fitness of a translation:

Figure 6: Scores assigned by a group of evaluators. Each histogram corresponds to a different translation-
model. We can see that for all the models, some evaluators believe it has a poor performance, whilst others
think it performs really well.

• How can agreement between evaluators be measured?

Page 13

– we can use Cohen’s kappa:
κ =

P (A)− P (E)

1− P (E)

where:
∗ P (A): proportion of times evaluators agree
∗ P (E): proportion of times evaluators would agree by chance

– the higher the κ, the more agreement there is
– in MT, P (E) can be computed, for example, as the proportion of times in which 2 evaluators

which assign a random score agree. If we have a score from 1 to 5, we’d have that:

P (E) =
1

5
× 1

5
=

1

25

• Empirically, how high is agreement in translation?

– agreement on fluency and adequacy tends to be low but positive
– agreement on rating (which translation is better?) is slightly higher
– adequacy and fluency are abstract and difficult to measure

• What is the 100-point Likert scale?

– a scale, from 1 to 100, to rate the quality of a translation, created during the Workshop/Con-
ference on Machine Translation

– more fine-grained, so allows better statistical analyses
– for instance, if an annotator tends to rate everything highly, we can normalise values to be

centered at 0, and remove outliers
– tends to score higher intra-annotator agreemenet and inter-annotator agreemenet

2.4 Automatic Evaluation
• Why is automatic evaluation necessary?

– human evaluation is expensive and time-consuming
– if we want to evaluate incremental changes to our system, using human evaluation is unfeasible
– moreover, in systems like Google Translate, we need to evaluate translations in more than 100

languages

• What is the key difficulty in implementing automatic machine translation evaluators?

– we need to create a system which, given reference translations can rate the generated trans-
lation

– doing this in a systematic, albeit “human-like” manner is complex: we can easily process different
word orders, word choices, etc ... when determining whether a translation is good

2.4.1 Naive Approach

• What is precision?

– the proportion of words in the generated translation, which are also part of the reference
translation

Page 14

– more generally:
precision =

TP

TP + FP

where TP is the number of true positives (words which are in both generated and reference
translations) and FP is the number of false positives (words in generated translation which
aren’t in reference translation)

• What is recall?

– the proportion of words in the reference translation which are also part of the generated
translation

– more generally:
recall =

TP

TP + FN

where FN is the number of false negatives (words in reference translation which aren’t in the
generated translation)

• What is the F1 score?

– the harmonic mean between precision and recall:

F1 =
2× precision× recall

precision+ recall

• Why is precision alone a bad metric for evaluating machine translation?

– completely nonsensical translations can attain perfect precision:

Reference: The cat is on the mat
Candidate: the the the the the the the the

– this gives perfect precision, since every word in the candidate (“the”) is part of the reference

• Why is a naive F1 score a bad metric for evaluating machine translation?

– a high F1 score can only be attained with both a high precision and a high recall
– nonetheless, it can still be fooled, for instance, by just permuting the words in the reference

translation:

Reference: The cat is on the mat
Candidate: Cat the on mat is the

– this has a precision of 1 and a recall of 1, so F1 = 1

– other translations, which make a lot more syntactic sense won’t be as good:

Reference: The cat is on the mat
Candidate: There is a cat on the mat

which obtains:
precision =

5

7
≈ 0.71 recall =

5

6
≈ 0.83 F1 ≈ 0.77

– in other words, we are not accounting for word order

Page 15

2.4.2 The BLEU Score

• What is the BLEU score?

– an automatic machine translation evaluator
– considers:

∗ many different (possible) references
∗ word choice in candidate, compared to references
∗ word ordering in candidate, compared to references
∗ length difference between candidate and references

– computed via:

BLEU = BP × exp

(
N∑

n=1

wn log pn

)
where:

∗ N is the maximum number of n-grams to consider, when comparing the candidate with the
references

∗ BP is a brevity penalty, which penalises output sentences which are shorter than reference
sentences:

BP =

{
1, c > r

e1−
r
c , c ≤ r

where c is the length of the candidate translation, whilst r is the effective reference
corpus length (the length of the reference translations that best match the length of the
candidate translation being evaluated)

∗ wn > 0 is some positive weighting, such that:
n∑

n=1

wn = 1

∗ pn ≥ 0 is the modified n-gram precision

• What is the modified unigram precision?

– we saw above that candidate translations which just repeated a word from the reference
translations would get perfect precision:

Reference: The cat is on the mat
Candidate: the the the the the the the the

– the modified unigram precision resolved this, by clipping the number of times a candidate
word can be used in counts when determining precision

– for instance, in the example above, “the” appears only twice in the reference, so “the” will be
counted at most twice when computing precision, for any candidate sentence. As a result, the
modified unigram precision for this candidate is:

p1 =
2

7

– formally, we define the clipped count of a word as:

Countclip(w) = min(Candidate_Count(w),Max_Ref_Count(w))

where Max_Ref_Count(w) is the maximum number of times w appears in any of the refer-
ence translations (if we have “There is a cat on the mat” as another reference, we’d still have
Max_Ref_Count(the) = 2, since “the” appears twice in the original reference)

Page 16

– the modified unigram precision for a single word w is computed as:

p1(w) =
Countclip(w)

Candidate_Count(w)

– the modified unigram precision for a candidate sentence is:

p1 =

∑
w∈Candidate Countclip(w)∑

w∈Candidate Candidate_Count(w)

• How is modified unigram precision adapted for n-grams?

– we can defined the modified n-gram precision for a candidate via:

pn =

∑
n-gram ∈Candidate Countclip(n-gram)∑

n-gram ∈Candidate Candidate_Count(n-gram)

– Candidate_Count and Countclip work in the exact same way, but now for general n-grams

Consider the following:

Reference 1: The cat is on the mat.
Reference 2: There is a cat on the mat.
Candidate: The cat the cat on the mat.

If we want to compute p2, we need to consider counts and clipped
counts of each bigram in the candidate:

Bigram Countclip Candidate_Count

the cat 1 2

cat the 0 1

cat on 1 1

on the 1 1

the mat 1 1

For instance, “the cat” only appears once in each of the references, but
twice in the candidate. Similarly, “cat the” never appears in any of the ref-
erences, but appears once in the candidate.
With these counts, we can then compute:

p2 =
1 + 0 + 1 + 1 + 1

2 + 1 + 1 + 1 + 1
=

4

6

• What is the purpose of the brevity penalty?

– shorter sentences are likely to have high precision

Page 17

– for instance, if a candidate translation is just “of the”, it will obtain a 1 for modified precision
so long as any of the references contain “of the” aswell

– the brevity penalty penalises short translations, to ensure that a candidate is as close to the
references as possible

• Why is there no penalty for sentences which are longer than the references?

– long candidate translations are already inherently penalised by precision itself
– the longer a sentence, the greater the denominator of the modified precision

• How well does BLEU correlate with human judgement in MT?

– at the system level (i.e when evaluating the quality of a batch of translations together), BLEU
seems to correlate moderately with human evaluation

– however, at the text level (i.e judging the translation of each sentence individually), this corre-
lation is low

Figure 7: Correlation between BLEU evaluation and human evaluation. Figure from A Structured Review
of the Validity of BLEU, by Ehud Reiter

• How well does BLEU correlate with human judgement of NLG?

– for natural language generation, the correlation is low, both at system and text levels:

Page 18

https://files.core.ac.uk/pdf/1/161992722.pdf
https://files.core.ac.uk/pdf/1/161992722.pdf

• Why is BLEU just a crude measure?

1. Word Importance: BLEU will treat determiners and puncutation the same as names and
content words, when the latter should be more important for a good translation

2. Surface-Level Features: BLEU focuses on lexical and syntactic elements of text, which
aren’t the most important factors for human-level translation (i.e synonyms, different syntactic
structures, etc...). As such, it might not be a good proxy for adequacy and fluency.

3. Bad References: BLEU is biased towards reference translations, so it will assign higher scores
to candidates which are most similar to these (even if the references might be written in an
awkward manner)

4. Interpretability: BLEU scores aren’t too comparable, since BLEU scores don’t have an
intrinsic meaning; the evaluation for an English to French translation won’t necessarily be
comparable to those of an English to Chewa (a language in Zambia)

• Despite these pitfalls, why was BLEU so widely used?

– it is a simple metric, which is easy to compute

2.4.3 Model-Based Evaluation: COMET

• Why is the BLEU score no longer as useful?

– BLEU came out in 2002, when machine tranlsation systems were rather simple
– nowadays, MT systems are so good that BLEU can no longer distinguish between different

systems
– we need a more sensitive measure

• What is the COMET evaluation metric?

– COMET (Crosslingual Optimized Metric for Evaluation of Translation) is a trained metric:
we learn a model which scores translations

– use transformers to pre-train a cross-lingual language model
– we then fine-tune the model using human evaluations (we have 16 years of such data from

WMT (Conference on Machine Translation, previously known as Workshop on Machine Transla-
tion))

Page 19

Figure 8: The fine-tuning process for COMET. As inputs it takes a hypothesis (the candidate transla-
tion), a source (the original text which is translated) and a reference (the reference translation). The
fine-tuning objective is then to predict the human evaluation score (i.e a number from 1-100).

• How well does COMET correlate with human understanding?

– COMET has obtained state of the art results for correlation with human judgement

Figure 9: Comparison between the correlation of BLEU and COMET with human judgement. Each data
point corresponds to a pair of machine translation systems. The x-axis corresponds to the difference
in the scores assigned by BLEU/COMET for each system pair. The y-axis corresponds to the difference
in the scores assigned by human evaluators for each system pair. A perfect diagonal line would correspond
to perfect agreement between human evaluation and automatic evaluators. We can see that the COMET is
a lot more correlated with humans, whilst BLEU seems to contradict human judgement for a lot of systems
(represented by points which are in the red rectangles).

• Do COMET scores still have problems?

Page 20

– the main issue with COMET is that scores aren’t bounded
– in particular, they are much less interpretable than BLEU scores
– similar to BLEU, they are also not comparable

Takeaway Points:

• MT (and NLG) are both important and difficult

• Good MT systems are adequate and fluent

• BLEU provides automatic evaluation, by considering n-gram
overlap between candidates and references - however, this has
many problems

• Trained metrics, like COMET, correlate better with humans
skeptical of claims of human-level accuracy in MT - no metric is
perfect

Page 21

	The Paradigm of Pre-Trained Language Models
	Analysing Pre-Trained Language Models
	Training Objectives
	Auxiliary Objectives
	Noising Functions
	Representation Directionality
	Pre-Training Methods

	Prompting
	The T5 Language Model
	The Goal of Prompting
	Creating Prompts
	Answer Search and Mapping
	Design Considerations for Prompting
	Prompting for Few-Shot and Zero-Shot Learning

	Evaluating Machine Translation
	The Importance of Evaluating Machine Translation Models
	Desiderata for Machine Translation Models
	Human Evaluation
	Automatic Evaluation
	Naive Approach
	The BLEU Score
	Model-Based Evaluation: COMET

