
Natural Language Understanding, Generation and Machine
Translation - Week 4 - Introduction to Machine Translation

Antonio León Villares

February 2023

Contents
1 Static Embeddings: Word2Vec 2

1.1 Static Embeddings . 2
1.2 CBOW . 3
1.3 Skipgram . 3
1.4 Evaluating Word2Vec . 8

2 Contextualised/Dynamic Word Embeddings: BERT 9
2.1 Pre-Training and Fine-Tuning . 9
2.2 BERT’s Architecture . 10
2.3 Pre-Training BERT: Masking and Next-Sentence Prediction . 14
2.4 Fine-Tuning BERT . 16

1

Based on:

• Efficient Estimation of Word Representations in Vector Speace, by Mikolov et al.

• BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

• BERT Neural Network - EXPLAINED! by CodeEmporium

1 Static Embeddings: Word2Vec
1.1 Static Embeddings

• What is a static embedding?

– a vector representation of a word, independent of its context
– the sort of embeddings we’ve been using as inputs to our network

• Are static word embeddings complicated to generate?

– no, they use simple linear models
– as such, can be even trained from scratch

• What is the distributional hypothesis?

– similar words occur in similar contexts
– Word2Vec is a set of models, which use the distributional hypothesis to derive static word

embeddings

• Why don’t static embeddings use non-linearities?

– static embeddings have been shown to be able to handle simple linear relationships:

– adding non-linearities hurts this simple, albeit powerful property
– we might learn more complex embeddings, but they won’t make as much sense
– involving a simple linear model is good for:

∗ Interpretability: can more easily “understand” embeddings
∗ Training Speed: since we don’t model complex non-linear relationships, we only really need

one layer, so training speeds up

Page 2

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1810.04805
https://www.youtube.com/watch?v=xI0HHN5XKDo

1.2 CBOW
• What is the CBOW model?

– CBOW stands for Continuous Bag-Of-Words model
– it tries to predict a word given its context (for example, using the 2 previous and following

words)
– for example:

“Lincoln won the [MISSING] in 1860” 7→ “election”

• What is the structure of the CBOW model?

– it contains a single (linear) hidden layer
– the parameter matrix W for this hidden layer is what actually contains the learnt embeddings,

and is shared
– the context vectors, once passed through the hidden layer, are passed through another matrix to

get the output (the predicted central word, given the context)

Figure 1: W is a shared matrix: each context word (encoded as a one-hot vector) gets multiplied by W .
Thus, the embeddings are in the columns of W . In the Mikolov paper, the embeddings for the context
vectors are averaged to give the output. In the slides (and the diagram above), the embeddings are
stacked, and passed through a final parameter matrix W ′ to produce the output prediction.

1.3 Skipgram
• What is the Skipgram model?

Page 3

– unlike with CBOW, Skipgram learns embeddings by predicting context words given a central
word

– for example:

• What is the structure of Skipgram?

– very similar to CBOW
– the main difference is that the output of the network will be an individual context word, given as

a distribution (using softmax)

Page 4

Figure 2

– I much prefer the presentation by Jurafsky and Martin, which can be found in Section 1 of my
FNLP notes

Page 5

https://alv31415.github.io/notes/FNLP/W9-ANNs4NLP.pdf
https://alv31415.github.io/notes/FNLP/W9-ANNs4NLP.pdf

We can look at a concrete example. Consider:

“The quick brown fox jumps”

In CBOW, we’d one-hot encode “brown”, and then generate training sam-
ples of the form (The, brown), (quick, brown), (fox, brown) and (jumps,
brown). Then, we generate the embeddings for “The”, “quick”, “fox”,
“jumps” by multiplying the one-hot encodings by the parameter matrix W .
In Mikolov et al., the resulting embeddings are just averaged to produce an
output for “brown”. In the course, the embeddings are “stacked” and mul-
tiplied by another matrix W ′ to generate the output for ”brown”.

On the other hand, in Skipgram, our training samples will look like
(brown, The), (brown, quick), (brown, fox) and (brown, jumps). When
training the model we pass each of the training samples individually
through the model: firstly through the parameter matrix W to get the em-
beddings of each word, then apply W ′, and then softmax to get a distribu-
tion for the context word.

• What objective function does Skipgram seek to maximise?

– let W be the set of central words
– let C be the set of context words
– let D ⊆ W × C be a corpus of word-context pairs
– for example, if we have a sentence:

“The quick brown fox jumps.”

we’d have:

(brown, the), (brown, quick), (brown, fox), (brown, jumps) ∈ D

– we seek to find parameters θ such that we maximise the likelihood of predicting a context c given
a central word w:

argmax
θ

∏
(w,c)∈D

P (c | w; θ)

• How is this probability computed?

– for each w ∈ W , we learn an embedding vw

– for each c ∈ C, we learn an embedding vc

– if similar words appear in similar contexts, we’d want to maximise the similarity of a central
word with its context word

– this in turn will maximise the similarity of words which appear in similar context
– thus, Skipgram computes:

P (c | w; θ) = exp(vw · vc)∑
c′∈C exp(vc′ · vw)

Page 6

• How is negative sampling used to speed up the training of the model?

– the denominator of P (c | w; θ) is expensive to compute: it involves dot products and sums over
all the context words

– instead, with negative sampling, we randomly generate negative sample words N (i.e words
which don’t appear in the context of our central word)

– we then do many small logistic regression classification tasks with each word in N . For some
c ∈ N and w ∈ W :

P (c | w; θ) = σ(vc · vw) =
1

1 + exp(−vc · vw)

– all these independent logistic classifiers can be used to approximate the large softmax
– the idea is that a given word will appear on very specific contexts, so it won’t co-occur with

most context words
– as such, it is inefficient to use all the context words, when a smaller sample will still be repre-

sentative

• How does negative sampling alter the Skipgram objective function?

– we still have D to be the set of positive sample pairs (i.e words and contexts which occur
together)

– let D′ be the set of negative sample pairs (i.e a representative sample of words and contexts
which don’t occur together)

– let:
P (D = 1 | w, c)

denote the probability that (w, c) ∈ D and:

P (D = 0 | w, c) = 1− P (D = 1 | w, c)

that (w, c) 6∈ D

– then we seek:

argmax
θ

∏
(w,c)∈D

P (D = 1 | w, c; θ)
∏

(w,c)∈D′

P (D = 0 | w, c; θ)

=argmax
θ

∑
(w,c)∈D

log (P (D = 1 | w, c; θ)) +
∑

(w,c)∈D′

log (P (D = 0 | w, c; θ))

=argmax
θ

∑
(w,c)∈D

log (P (D = 1 | w, c; θ)) +
∑

(w,c)∈D′

log (1− P (D = 1 | w, c; θ))

=argmax
θ

∑
(w,c)∈D

log(σ(vc · vw)) +
∑

(w,c)∈D′

log(σ(−vc · vw))

– for the last step, we have used the property of the sigmoid:

1− σ(z) = σ(−z)

• How are the samples for negative sampling selected?

– use weighted unigram frequency:

Pα(c) =
count(c)α∑

c′∈C count(c′)α

Page 7

– typically use α ≈ 0.75, so that uncommon words can be sampled

• How is the Skipgram model trained?

– we optimise the objective function with gradient descent and backpropagation
– we also want to throw out words proportionally to their frequency:

∗ faster training
∗ reduces importance of frequent words (i.e “the”, “is”, “a” aren’t too useful for embeddings)

1.4 Evaluating Word2Vec
• Wich method is better out of CBOW and Skipgram?

– it depends on the task at hand
– CBOW is faster to train, and tends to capture frequent words better (since it is trained to

predict a word given context, it will assign more probability mass to frequent words)
– Skipgram has the benefit that it can generate good embeddings for infrequent words (since

these depend on context), so it can be trained with smaller datasets
– CBOW tends to better capture syntactic information, whilst Skipgram tends to better capture

semantic information (according to Mikolov paper)

• How can the quality of the embeddings be evaluated?

– we already saw that embeddings tend to capture semantic relations fairly well:

– another way of verifying this is question answering: given a word (“question”), find the closest
embedding (“answer”):

Page 8

2 Contextualised/Dynamic Word Embeddings: BERT
2.1 Pre-Training and Fine-Tuning

• What is pre-training?

– training a generic source model on some standard, large dataset
– the training task can be pretty general
– for example, ResNET is pre-trained on classification for ImageNet

• What is fine-tuning?

– we take the pre-trained source model, replace its output layers and train it to suit some
specific task

– the new model is known as the target model

• What is the purpose of pre-training and fine-tuning?

– with pre-training, we can learn good initialisation parameters (i.e parameters which are good
at feature extraction)

– with fine-tuning we leverage the learnt features for a more complex task
– ultimately, this should reduce the training time of the target model

Page 9

• What architecture/training considerations should be made when fine-tuning?

1. Truncate Output: the fine-tuning objective will likely be different from the pre-training
objective (i.e fewer output classes), so the final layers of the architecture might need to be
modified slightly.

2. Weight Freezing: to speed up fine-tuning, we can fix the weights at the start of the network,
and only learn new parameters for the final layers.

3. Learning Rate: assuming pre-training learnt good features, a smaller learning rate should
be used.

• How does pre-training and fine-tuning fit into NLP?

– we can pre-train large models on language modelling tasks
– the final layers of the source model should then provide us with powerful embeddings en-

coding textual information
– we can then use these embeddings for our target model (i.e question answering, sentence

completion, etc ...)

• What are contextualised/dynamic word embeddings?

– embeddings learnt from pre-trained models
– the same word can have different embeddings, depending on the context in which it appears
– dynamic embeddings can be fine-tuned to tackle a specific task
– these are much more expensive to train (both in time and memory), which is why fine-tuning

is useful

2.2 BERT’s Architecture
• What is the purpose of BERT?

– BERT stand for Bidirectional Encoder Representations from Transformers
– designed to be pre-trained to learn dynamic embeddings
– for many fine-tuning tasks, we just need to replace the output layer
– achieved stated of the art results in 11 NLP tasks via fine-tuning

Page 10

• Why is BERT said to be bidirectional?

– BERT is pre-trained as a language model
– it learns embeddings by leveraging both left and right contexts
– for comparison, simple RNN language models model language in a left-to-right manner
– we also considered learning bidirectional embeddings with a left and right RNN, and then

concatenating them to produce a final embedding
– however, BERT is truly bidirectional, in the sense that it learns an embedding by considering all

contexts at the same time

• How do BERT’s bidirectional embeddings compete with other models, like GPT and ELMo?

– intuitively, a truly bidirectional embedding should be able to more powerfully represent a word
– in GPT, they use transformers to learn left-to-right context embeddings (each token can only

self-attend tokens to its left)

Page 11

Figure 3: GPT and BERT both use transformers; however, GPT only uses left-to-right self-attention.

– in ELMo, they use independently trained LSTMs to learn left-to-right and right-to-left em-
beddings, which are then concatenated

Figure 4: ELMo and BERT both use bidirectional embeddings; however, ELMo’s left and right embeddings
are learnt independently and then concatenated.

– BERT’s approach makes it so that the learnt embeddings are better for sentence-level tasks,
where a word will depend on both left and right contexts, which themselves should be interde-
pendent

• What is BERT’s model architecture?

– BERT is a multilayer transformer
– the authors devised 2 different BERT’s
– let:

∗ L: number of transformer blocks
∗ H: dimensionality of hidden layer
∗ A: number of self-attention heads

– then:
BERTBASE = BERT(L = 12,H = 768, A = 12) =⇒ 110M parameters

BERTLARGE = BERT(L = 24,H = 1024, A = 16) =⇒ 340M parameters

– BERTBASE was chosen to have the same model size as GPT (for comparison purposes)

Page 12

• What types of input does BERT accept?

– BERT can handle both sentence pairs (i.e 〈question, answer〉) and single sentences in an
unambiguous manner

– each sentence is broken down into a sequence of tokens (out of 30,000 total tokens, represented
as WordPiece embeddings)

– there are 2 special tokens:
∗ [CLS]: first token of any sequence. The hidden state for this token is used as a representation

for classification.
∗ [SEP]: used to separate 2 sentences. A sentence pair is passed as a single sentence, which

is separated by this token.

• How are sentences converted into an input for BERT?

Figure 5: The input representation for a token is a sum over token embeddings (the static embedding
for that token according to WordPiece), segment embeddings (an embedding, corresponding to whether
the token belongs to the first sentence (sentence A) or the second sentence (sentence B)) and position
embeddings (embedding corresponding to the position of the token in the whole input sentence).

• What is the purpose of the segment embeddings?

– we need to know whether a token is part of the first or second sentence
– this is useful for example in question answering or sentence continuation

• What does BERT output (during pre-training)?

– two types of output with different functionality:
1. Ti ∈ RH : the final hidden vector for the ith input token (the transformed version of Ei,

after passing through the transformer)

Page 13

2. C ∈ RH : the final hidden vector of the [CLS] token at the start of the sentence

2.3 Pre-Training BERT: Masking and Next-Sentence Prediction
• How is BERT pre-trained?

– BERT is pre-trained using 2 unsupervised tasks (so no supervised language modelling)
– these are:

1. MLM (Masked Language Modelling): mask some words in the input (using a [MASK] token),
and make BERT predict the word given the context

2. NSP (Next Sentence Prediction): determine whether 2 sentences follow each other.

• Why is MLM used for training BERT?

– if we just ask BERT to predict a word at a given index, the self-attention mechanism would allow
it to just “copy”

– with masking, we substitue word occurrences with the [MASK] token, which forces context-based
prediction:

I like playing football during the summer. =⇒ I like [MASK] football [MASK] the summer.

• How is masking applied when pre-training BERT?

– we randomly select 15% of the input tokens, and mask them
– for each token to be masked:

∗ use the [MASK] token (80% of the time)

My dog is hairy. =⇒ My dog is [MASK].

∗ replace with a random token (10% of the time)

My dog is hairy. =⇒ My dog is apple.

∗ leave the token unchanged (10% of the time)

My dog is hairy. =⇒ My dog is hairy.

Page 14

– with Ti we then have to predict what the masked token’s value was before masking

• Why can’t we apply the [MASK] token for each of the masked tokens?

1. Always [MASK]
– creates a mismatch between pre-training and fine-tuning (since [MASK] won’t be seen

during fine-tuning)
– if our objective is just to predict the token before masking, we won’t learn a good represen-

tation for other words (we only care about “unmasking”)
2. [MASK] + Random Token

– BERT would learn that an observed word is never correct
– thus, the transformed embeddings it produces won’t correspond to the observed word

3. [MASK] + Same Token
– BERT would learn to trivially copy tokens

– by combining the 3 masking strategies, BERT won’t know which word it is asked to predict, or
which words have been randomly replaced

– this forces it to keep a distributional contextual representation of every possible token

• What is the NSP task?

– we consider 2 sentences A,B: 50% of the time, B follows A, and 50% of the time it is randomly
selected

Page 15

– BERT then needs to predict which of the 2 cases occurs:

– understanding sentence continuity is important for downstream tasks, like question answering
and natural language inference

• On what data is BERT pre-trained?

– BooksCorpus: 800M words
– English Wikipedia: 2,500M words

2.4 Fine-Tuning BERT
• What sort of inputs and outputs can be used for fine-tuning?

– Inputs:
∗ sentence pairs for paraphrasing
∗ hypothesis-premise pairs in entailment
∗ question-passage pairs in question answering
∗ text-∅ pair in text classification or sequence tagging

– Outputs:
∗ answer span in QA (i.e given a question and a piece of text, find the start and end tokens

corresponding to the answer)
∗ sequence of labels in named entity recognition
∗ [CLS] representation can be fed to output layer for classification (i.e entailment, sentiment

analysis)

Page 16

Figure 6

• What is the GLUE benchmark?

– a set of NLU tasks
– BERT obtained state of the art results in 11 of these tasks

Figure 7: MNLI,QNLI,WNLI: natural language inference; QQP: question equivalence; SST-2: sentiment;
CoLA: linguistic acceptability (whether sentence is grammatical); STS-B: semantic similarity; MRPC: para-
phrasing; RTE: entailment.

– we can see that BERTLARGE significantly outperforms BERTBASE , especially when little data is
available

• How does feature extraction differ from fine-tuning?

– in fine-tuning, we replace the output layer, in order to obtain some representating geared
towards the specific task at hand

– however, this isn’t always possible: not all tasks can be tackled with a transformer encoder
architecture, and require task specific architecture

– tackling such tasks can be done with feature extraction: use the features learnt by pre-trained
BERT a feature representations for the inputs of the specific tasks

Page 17

– the features need not only be the output embeddings: we can consider hidden representations
in intermediate layers

Figure 8: Performance of BERT using fine-tuning and feature extraction. Notice, with feature extraction, we
can consider rich representations constructed from many intermediate layers. These results are for CoNLL-
2003, a Named Entity Recognition task.

• How has BERT impacted the NLP world?

– BERT caused a paradigm shift towards the pre-training + fine-tuning approach, which has lead
to many state of the art results

– however, this is challenging:
∗ pre-training requires a lot of computational and memory resources
∗ fine-tuning, whilst quicker, still requires large memory capabilities

– as such, achieving state of the art results is a game that only a few can play, although it prompts
us to come up with smarter ideas for architectures, objective functions, evaluation, etc...

Page 18

	Static Embeddings: Word2Vec
	Static Embeddings
	CBOW
	Skipgram
	Evaluating Word2Vec

	Contextualised/Dynamic Word Embeddings: BERT
	Pre-Training and Fine-Tuning
	BERT's Architecture
	Pre-Training BERT: Masking and Next-Sentence Prediction
	Fine-Tuning BERT

