
Natural Language Understanding, Generation and Machine
Translation - Week 3 - Encoder-Decoder Models, Attention and

Transformers

Antonio León Villares

February 2023

Contents
1 RNNs for Translation 2

1.1 Outputs in Target Language . 2
1.2 String Completion . 5

2 The Encoder-Decoder Approach to Translation 6
2.1 Encoder-Decoder Architecture . 6
2.2 Issues with the Encoder-Decoder Paradigm . 8
2.3 Attention . 10

3 The Transformer Architecture 13
3.1 Self-Attention . 13

3.1.1 Basic Self-Attention . 14
3.1.2 Enhancing Self-Attention: Query, Key and Value Vectors 15
3.1.3 Multi-Head Attention . 17

3.2 Transformers . 19
3.2.1 Transformers for Movie Predictions . 22
3.2.2 Transformers for Text Generation . 22

4 Challenges in Neural Machine Translation 23

1

Based on:

• Sections 7, 8 and 9 of Neubig’s “Neural Machine Translation and Sequence-tosequence Models: A
Tutorial

• Attention is All You Need by Vaswami et al.

• Transformers from Scratch, a blog by Peter Bloem

• Visual Guide to Transformers, a video by Hedu AI

• Illustrated Guide to Transformers Neural Network: A step by step explanation, by The A.I. Hacker -
Michael Phi (this explains encoder-decoder transformer architectures)

1 RNNs for Translation
• What is the machine translation task?

– given a source language string x, producing a target language string y

– overall, we are seeking to learn a function:

P (y | x)

– this doesn’t necessarily have to involve languages (i.e English to French), but can be part of
speech tagging or some other sequence-to-sequence task

• What are the benefits of using RNNs for translation?

– the main issues with using n-grams are:
∗ only uses a fixed-length context
∗ requires independence assumption
∗ without smoothing, 0 probabilities are possible

– neural models are universal function approximators, so technically these constraints won’t
affect our task

– RNNs are espcially well-suited, since they can take inputs of arbitrary length

1.1 Outputs in Target Language
• What is the most straightforward way to adapt RNNs for translation?

– as input, take the words in the source language
– use the output of the RNN cells as the translation in the target language

Page 2

https://arxiv.org/pdf/1703.01619.pdf
https://arxiv.org/pdf/1703.01619.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://peterbloem.nl/blog/transformers
https://www.youtube.com/watch?v=mMa2PmYJlCo
https://youtu.be/4Bdc55j80l8
https://youtu.be/4Bdc55j80l8

(a) A standard RNN language model. (b) An RNN for translating German to English.

Figure 1: By using RNN cells, we can directly output a translation.

• In practice, why is this approach not appropriate for the translation task?

– Different Number of Words:

Figure 2: In Spanish, “I love you” gets translated to “Te quiero”. An RNN would need to output dummy
tokens to account for the different in number of words. This will be non-trivial if the target language requires
more words (i.e going from English to Spanish). Moreover, this difference in word number often implies
difference in conveyed meaning (for instance, “Te” doesn’t mean “I”, it refers to “you” -or more accurately,
“to you”)

– Different Word Order/Syntax:

Page 3

Figure 3: In French, “I love you” gets translated to “Je t’aime”. An RNN would not only need to output a
different word for translation (i.e map “love → t’”), but it would also need to know what words will appear
in the future (i.e knowing that “you” will go after “love”, so as to output “t’” when it sees “love”).

Figure 4: Translation chart, with Turkish on the y-axis, and English on the x-axis. blue squares represent
which words in Turkish correspond to which words in English. If word order were to be preserved, we should
see a straight diagonal line.

Page 4

1.2 String Completion
• How can the translation task be modelled as a string completion problem?

– instead of outputting the translation, just generate long strings
– the source language goes in, and once the model observes a <translate> token, it should

generate a corresponding string in the target language

• What issues arise from using a string completion architecture?

– Language Modelling: we are essentially learning a large language model, but for 2 different
languages:

∗ we don’t really care about a LM for the source (we already assume it to be grammatical)

Page 5

∗ the 2 languages probably have extremely different vocabulary (we’d have to understand
different words in different languages) and morphosyntactic structure (gauging this with
a simple RNN cell for both languages is hard)

– Long-Range Dependencies: we might want to translate sentences which are 20 words long,
but when the translation begins, the hidden representation will be mainly conditioned by the last
few words of the source language

2 The Encoder-Decoder Approach to Translation
2.1 Encoder-Decoder Architecture

• What is the structure of an encoder-decoder for MT?

Figure 5: The encoder constructs a hidden representation for the input sentence, h4.

Figure 6: h4 is passed to the decoder, providing it with an initial state, with which to compute the hidden
state s1. s1 and h4 are concatenated, and used to create the output y1 (a probability distribution over
target language words).

Page 6

Figure 7: The output y1 corresponds to “of”. We then pass “of” and the hidden state s1 to the next cell.

Figure 8: We can repeat this for each cell in the network, which uses the previous hidden state and output
prediction to generate the current hidden state, and use this hidden state alongside h4 to generate the current
output.

• How can we mathematically formalise the encoder-decoder architecture for translation?

Page 7

– whilst the encoder/decoder don’t have to be RNNs (they don’t even have to have the same
architecture), it is conceptually easier to understand

– let RNNenc denote an RNN cell in the encoder, and RNNdec denote an RNN cell in the decoder.
Moreover, let the input sentence contain N words.

– for the encoder, we compute the ith hidden state hi via:

hi =

{
RNNenc(xi, hi−1), i ∈ [1, N]

0, i = 0

where:
∗ the first word is w1

∗ xi represents the embedding for the ith word, wi

– for the decoder, we compute the ith hidden state si via:

si =

{
RNNdec(yi−1

, si−1), t ≥ 1

hN , t = 0

where y
i

is the embedding for the ith word outputted by the decoder
– to compute the output, we learn weights W, b:

P (ŵi | ŵ1:i−1, w1:N) = P (y
i
) = softmax(Wconcat(si, hN) + b)

where concat(si, hN) is the vector obtained by concatenating si, hN)

• How is the output of the translation model generated?

– to generated y
i
, we can follow one of:

1. Random Sampling: randomly sample from the distribution P (y
i
). This might be useful if

we want the same input to have different outputs (i.e chatbots)
2. Greedy 1-Best Search: simply select argmax(y

i
) (select the word with the highest prob-

ability). This doesn’t guarantee that the generated translation is the most probable.
3. Beam Search: like greedy search, but selecting the n most likely words.

– care must be taken, since neural models will tend to prefer shorter sentences (if we think about
multiplying probabilities, the more words we add, the lower the probability of a sentence)

– as such, we might try to choose sentences which maximise the average log probability per
word

2.2 Issues with the Encoder-Decoder Paradigm
• Why does the encoder hidden representation constitute a bottleneck?

– hN must encode all the information contained in the source language input, independently
of the length of the sentence

– this induces a recency bias: even with LSTMs, RNNs will have a representation bias for the
most recent words

– thus, the starting words in the target language will rely on longer dependencies

Page 8

Figure 9: The hidden state for the first word h1 gets lost in the final hidden state h4. Thus, we are losing
potentially useful information for decoding s1.

– solving this problem with brute force (i.e deeper networks with more parameters) would be waste-
ful: it requires excessive memory and training time

• Why does reversing the order in which the input sentence is “read” not help?

– we can alternatively process from end to start, resulting in a representation that better gauges
the first few words

– in some senses this can be useful: words in certain languages might appear in the same order
(i.e words at the beginning of a French sentence should appear towards the beginning of the
corresponding English sentence)

– however:
∗ we will now lose information about the end of the source sentence
∗ the assumption that words will appear in similar positions in the source and target languages

doesn’t always hold

• How can a bidirectional encoder mitigate the loss of information in the hidden represen-
tation bottleneck?

– we can obtain both forward and backward hidden representations (passing the encoder from
start to end, and from end to start)

– the resulting hidden representations can then be concatenated, to create a bidirectional hid-
den representation

– however, this still causes problems if the sentence is long: information about the middle words
will be lost in both forward and backward representations

• Can the decoder be biridectional?

– no, since the decoder generates the output
– we’d have no right context to pass on to the next state

Page 9

• Can we somehow just directly pass on each of the hidden representations h1, . . . , hN to
the decoder?

– the main issue with this approach is that we don’t know the input length
– thus, we can’t really concatenate all the hidden layers (we’d be passing variable length vectors)
– an alternative would be adding or taking a mean - but this again would lose information
– for example, “natürlich” translates to “of course”; as such, it shouldn’t care about words like

“john”, “has” or “fun”
– we’d need to find a way of assigning weights to each of the hidden representations

2.3 Attention
• What is attention?

– intuitively, when we look at text or an image, depending on the task, we put our focus on
different parts

– attention in our encoder-decoder architecture allows us to assign weights to each of the
hidden representations h1, . . . , hN

– thus, when predicting an output in the target representation, we no longer rely on the last
hidden representation hN ; instead, we can use a weighted sum to create a context vector:

ci =

N∑
j=1

αijhj

– we then use the context vector to make output predictions:

P (y
i
) = softmax(W [si; ci] + b)

Page 10

– ci will have the same dimension as the hidden representations, independently of the input length
– intuitively, this allows us to focus on the source words which will be relevant for the target

translation

Figure 10: We can see that “natürlich” is the most heavily weighted for the first output, which makes sense,
as it translates to “of course”, and it will be the start of the target sentence.

Figure 11: By using attention, we can see that we obtain “alignments” (not technically). Looking at the
attention history: “natürlich” corresponds to “of course”; “hat” corresponds to “has”; “john” corresponds
to “john”; and “spaß” corresponds to “fun”.

• What is a simple way of computing attention?

Page 11

– we can compute:
aij = si · hj =⇒ αi = softmax(ai)

– this gives us an attention vector, which is a distribution over hidden representations in
the encoder

– by taking the dot product, we are using a similarity measure: hidden representation hj are
favoured when they are similar to si

– for example, we expect that “john”’s hidden representation in the encoder and decoder to be
pretty similar

Figure 12: Words in French and English, alongside their corresponding attention score (lighter indicates
higher weighting).

• How can we learn an attention vector?

– the similarity argument above only works to a certain extent: for example, if the encoder and
decoder have different architectures, their representations will likely be extremely different for
the same word

– we need to learn weights, so that attention can be fine-tuned:
1. Bilinear Functions: we can learn a parameter matrix, which allows our encoder-

decoder architectures to be independent (i.e different dimension for representation vector):

aij = si · (V hj)

2. FFNs: we can use a feed-forward neural network to learn attention scores:

aij = FFN(si, hj)

– after computing the scores, we pass ai through softmax to obtain our distribution
– naturally, this additional expressivity comes at the cost of having to learn additional param-

eters

Page 12

• How does using a bidirectional encoder benefit attention?

– in practice, hi doesn’t represent wi, but rather wi in the context of w1:i−1

– however, we are losing information about wi+1:N

– if we use a bidirectional encoder, hi contains both the forward and backward representations,
so attention might be better at understanding contexts

• How can attention be improved (beyond learning further weights)?

– Intuitive Priors: we can improve accuracy of attention by selecting sensible priors, based on:
∗ Position Bias: languages with similar word order should be aligned similarly, so encourage

this behaviour for attention.
∗ Markov Condition: assume that if 2 target words are contiguous, source words should also

be contiguous. This discourages large jumps in translation, and encourages local behaviour.
∗ Fertility: certain words tend to be translated into multiple words (“cats” → “les chats”).

We can penalise when particular words aren’t attended too much (or when they are attended
too much), to avoid repeating the same behaviour.

∗ Bilingual Symmetry: words aligned when translating English to French should be aligned
when translating French to English. We can enforce this, by ensuring that the alignment
matrices are similar in both directions.

– Hard Attention: instead of soft attention (i.e probabilities), use binary decisions, to focus
on particular contexts

– Supervised Attention: with hand annotated data for alignments, we can train attention models
to predict these alignments.

Notice, we sometimes call si the query, and the hidden representation
h1, . . . , hN the keys.
The idea is that we try to find the query which best matches the key.

3 The Transformer Architecture
3.1 Self-Attention

• What is self-attention?

– we have used attention to determine which hidden representations in the encoder are useful
for the decoder

– self-attention is a modification of attention, which operates entirely as part of the encoder
– it allows us to learn a contextualised embedding for xi, by attending to each of the other

inputs xj

– these self-attended embeddings are powerful enough, that encoder-decoder architectures are
no longer necessary

– this is useful: RNNs, being recursive, might be inefficient

• Why is self-attention useful for NLP?

– it can gauge different word meanings, based on context (i.e “bank” can refer to a financial
institution or the land which is next to a river) and incorporate it to known embeddings

– it can model dependencies between words in a sentence (i.e it can enforce subject-verb agree-
ment, gender, etc...)

Page 13

3.1.1 Basic Self-Attention

• How can we understand self-attention mathematically?

– self-attention is nothing but a linear combination (weighted sum) of input vectors
– given an input sequence of N vectors x1:N , we can obtain an output sequence via:

y
i
=

N∑
j=1

wijxj

– a simple way of computing the weights is by using a dot product of the inputs:

zij = xi · xj =⇒ wi = softmax(zi)

– if 2 inputs are similar (similar embeddings, which typically implies appearing in similar
contexts), then they’ll be weighted highly according to the dot product

Figure 13: The self attention mechanism. For each input xi, we take a weighted sum of the context inputs
to generate the output y

i
. In red, we have the attention weights.

• What issues does this naive implementation of self-attention have?

1. Lack of Parameters: what self-attention focuses on is entirely dependent on the embeddings
learnt; without trainable parameters, the attention mechanism won’t understand important
features

2. Input Ordering: in NLP, sequence ordering is imperative for understanding. However, self-
attention treats the inputs as a set: 2 input sequences with the same input vectors will generate
the exact same weights, independently of input order (this is known as permutation equiv-
ariance)

• How can we compute the attention weights efficiently?

– say we have N embeddings, such that xi ∈ RK

– we can create an embedding matrix X ∈ RN×K , with xT
i as the ith row of X

Page 14

– the matrix:
Z = XXT ∈ RN×N

is a symmetric matrix, such that:
Zij = xi · xj = zij

– hence, the ith row/column zi contains the self-attention weights for input xi (before applying
softmax)

– if we then want to compute the output:

Y = softmax(Z)X

where yT
i

is the ith row of Y

3.1.2 Enhancing Self-Attention: Query, Key and Value Vectors

• How can we introduce parameters into the self-attention structure?

– notice, an individual input vector xi ∈ Rd is used three times within the basic self-attention
mechanism:

1. Query Vector: when computing wi,j = xi · xj , the weights for its own output y
i

2. Key Vector: when computing wj,i = xj · xi, the weight of xi for some other output y
j

3. Value Vector: as a vector in the linear combinations for each output:

y
j
=

N∑
i=1

wj,ixi

– to make attention more flexible, we can learn 3 parameter matrices:
1. a query matrix, Wq ∈ Rdk×d

2. a key matrix, Wk ∈ Rdk×d

3. a value matrix, Wv ∈ Rdv×d

– this allows us to learn multiple representation for the same inputs, depending on their role
– for each output, we can think of the key vectors as trying to match the query vectors, in order

to maximise the representation of the value vector

• Mathematically, how do the query, key and value matrices affect the self-attention mech-
anism?

– with the query matrix, we can learn a query vector representation:

q
i
= Wqxi

which is the representation used to extract the attention weights for xi when computing y
i

– with the key matrix, we can learn a key vector representation:

ki = Wkxi

which is the representation used to extract the attention weights for xi when computing y
j

– with the value matrix, we can learn a value vector representation:

vi = Wvxi

which is the representation used by xi when computing outputs

Page 15

– putting all this together:
zij = q

i
· kj =⇒ wi = softmax(zi)

and the output is:

y
i
=

N∑
j=1

wijvj

Figure 14: The enhanced self-attention mechanism. In red is the query vector (converting x2 into q
2
, for the

weights of y
2
); in blue is the key vector (converting x3 into q

3
, for the weights of y

2
); and in green is the

value vector (converting x3 into v3, for the weighted sum of y
2
)

• Why should attention weights be scaled?

– much like the sigmoid, the softmax function can saturate: it is sensitive to large inputs (this
forces all probabilities to be nearly 0)

– as such, the attention weights should be scaled:

zij =
q
i
· kj√
dk

where dk is the dimension of the query/key vectors
– the idea behind this is that the weighted sum is a dot product, and these tend to increase with

the vector dimension
– by scaling, we make sure that the inputs to the softmax don’t get too large

To understand why a factor of
√
dk was chosen, consider a vector with c

in all its entries. The magnitude of such a vector will be c
√
dk.

Page 16

3.1.3 Multi-Head Attention

• What is multi-head attention?

– self-attention allows us to contextualise embeddings, and helps keep track of dependencies
between the words in an input

– however, all this information is compressed into a single output y
i

– with multi-head attention, we can make our model focus on the different parts of an input
– for example, if we had 3 heads:

∗ one head could focus on the subject of a verb
∗ another head could focus on the object of a verb
∗ the last head could attend to the referents of pronouns

For example, consider the phrase:

“Mary gave roses to Susan”

With standard self-attention, we know that xmary and xsusan will influ-
ence ygave by different amounts (based on their similarity to xgave), but not
in different ways.
With multi-head attention, we can potentially encode who gave the
roses and who received the roses within ygave.

Figure 15: An intuitive way of understanding multi-head attention is through images. When we look at
a picture, we don’t immediately focus on the whole picture: we might initially look at a person, then its
background, the sides, etc ...

• How is multi-head self-attention implemented?

– if we want to use r attention heads, we just need to learn 3r parameter matrices:

∀h ∈ [1, r], W h
q ,W

h
k ,W

h
v

– for each vector input xi ∈ Rd, each attention head produces an output yh
i

(so each input
generates a matrix output Yi ∈ Rd×r)

– the r outputs can then be concatenated into a large vector (in Rrdv), which can then be passed
through a linear layer to recover an output vector y

i
:

xi 7→ {yh
i
}h∈[1,r] 7→ concat{yh

i
} 7→ y

i

Page 17

– explicitly, for the ith head let Qi,Ki, Vi denote the matrices containing the queries, keys and
values (so for example the jth row of Qi is the result of applying W i

q on the jth input xj). Then,
self-attention for the ith head is computed as:

self-attentioni = softmax

(
QiK

T
i√

dk

)
Vi

– the multihead attention is obtained via:

[self-attention1, . . . , self-attentionh]W
O

where WO is the output matrix
– it is important to note that in all these computations, bias terms could be included (i.e when

computing queries, keys, values, and when computing the multihead attention output)

• What 2 forms of multihead attention are there?

1. Narrow Self-Attention: given an input x ∈ Rd, our attention matrices will be:

Wh
q ∈ Rdk× d

r ,W h
k ∈ Rdk× d

r ,W h
v ∈ Rdv× d

r

where each Wh
q ,W

h
k ,W

h
v focuses on a section of xi with d/r elements (so when we concatenate

them, we obtain back a vector of dimension d)

Figure 16: With 3 attention heads acting on a 9 dimensional vector, each of the 3 query matrices focuses on
a separate third of the vector. The results then get concatenated back to generate the final query vector.

2. Wide Self-Attention: given an input x ∈ Rd, our attention matrices will be:

Wh
q ∈ Rdk×d,W h

k ∈ Rdk×d,W h
v ∈ Rdv×d

each of the r matrices focus on the whole input. Due to the random weight initalisation,
the different heads should (theoretically) learn to attend different parts of the input

• Which of the 2 multihead architectures is mostly used?

– in practice, wide self-attention is the most used, since it has more expressive power
– however, narrow self-attention is less expensive to train (we are dealing with smaller matrices),

and is useful in the sense that, practically, every word shouldn’t be attending to every other word

Page 18

3.2 Transformers
• How is multihead self-attention used in transformer blocks?

– transformer blocks use multihead self-attention to create models which are much more
efficient than traditional RNN architectures

– a transformer block has the following structure:
1. a multihead self-attention layer
2. a residual layer (this adds the input matrix to the output matrix of the self-attention layer)
3. a layer normalisation layer
4. a MLP, which is applied to each input individually (i.e apply the same MLP to each row

vector)
5. another residual layer
6. a final layer normalisation

– the structure itself isn’t too important: all that matters is to pair self-attention with the non-
linearities of the MLP, alongside the benefits to training of residual (prevent overly large/small
gradients) and normalisation layers (faster training)

• How can input ordering be enforced in the inputs?

– up to now, we have simply let xi be the embedding of the ith input
– however, alongside self-attention, this produces a position equivariant model
– two common solutions exist:

1. Position Embeddings: create embeddings, which represent a particular position within
the input. This works well, and is easy to implement, but during training we’d need to see
sentences of every possible length, to make sure that all position embeddings are trained on.

2. Position Encodings: instead of learning position vectors, we pick some function:
f : N → Rk

which maps positions within a sentence to a vector. For example, in Attention is All You
Need, the authors use:

f(pos, i) =


sin

(pos

10000i/k

)
, i is even

cos
(pos

10000(i−1)/k

)
, i is odd

Page 19

https://paperswithcode.com/method/layer-normalization
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf

where:
∗ pos ∈ N denotes the position of the input vector within the input sequence
∗ i ∈ [1, k] is the index of the component in the input vector

If f is well-chosen, the model should be able to deal with sequences of unseen length, al-
though we don’t know how well this will be, and picking a good encoding is a complicated
hyperparameter.

– once we have a vector which encodes position (be it through a position embedding or a position
encoding), we add them to the input vectors

• How do transformers differ from RNNs for sequence-to-sequence tasks?

– a RNN used RNN cells to recursively process an input sequence of arbitrary length
– a transformer is a neural architecture which uses a set of transformer blocks to process

sequential input all at once
– however, unlike with RNNs, the input sequence must be fixed in length
– for example, we must enforce that we only process sentences with at most 50 words
– if we have a longer sentence, we truncate it; if we have a shorter sentence, we add padding
– however, in general transformers are more powerful and efficient than RNNs (since they don’t

rely on recurrence)

• How do encoder and decoder transformers differ?

– in encoder transformers, the multihead self-attention operates over the whole input se-
quence

– in the decoder, there are 2 multihead self-attentions:
∗ the first multihead self-attention operates over the outputs which have been generated

until now. A self-attention mask is applied, which prevents the self-attention mechanisms
to attend to future outputs (more is mentioned below).

∗ the second multihead self-attention combines the representations from the encoder, and
the representations generated by the decoder in the previous head. Specifically, it uses the
encoder representations as queries and keys, whereas the output representations as
values.

Page 20

Figure 17: The encoder transformer processess all of the inputs using self-attention. The decoder first
processes the outputs which have been generated until now, and then combines these with the encoder
representations. After a linear layer, softmax is applied, to obtain the output probabilities.

Page 21

3.2.1 Transformers for Movie Predictions

Figure 18: We can use transformers to classify movie reviews as either positive or negative. To each word
embedding we add its position embedding to generate the input sequence. In the last layer, we apply global
average pooling to convert the output sequence into a single vector.

3.2.2 Transformers for Text Generation

• What is an autoregressive model?

– a model which predicts future events from past ones
– for example, text generation is autoregressive: given w1:t, we want to predict wt+1

• Can transformers be used for autoregressive modelling?

– not immediately
– RNNs could be used directly for language generation, because the tth cell could only “see”, the

t− 1 previous cells
– however, transformers can see the whole input, so predicting the next element of the input

sequence would be trivial

• How can transformers be adapted for text generation?

– we need to make it so that the attention weights are 0 for all words beyond wt

– to do this we can use a mask:

Page 22

https://blog.paperspace.com/global-pooling-in-convolutional-neural-networks/
https://blog.paperspace.com/global-pooling-in-convolutional-neural-networks/

Figure 19: The raw attention weights above the diagonal get multiplied by −∞. When applying softmax,
this will then convert them into 0 weights. This makes it so that attention only applies to preceding elements
in the sequence.

– once we have the masked attention weights, we can just use a standard transformer:

4 Challenges in Neural Machine Translation
• Large Vocabularies: neural MT typically struggle with large vocabularies: translation is difficult

if there are many rare words. One way to ammend this is to use characters/subwords, or use
translation dictionaries to handle low-frequency phenomena

• Optimisation: we have focused on finding a target sentence which is most likely given the source;
in practice, we care more about the accuracy of the generated sentence.

• Multi-Lingual Learning: it can be beneficial to train a MT model to translate between many
different languages (not just 2). Alternatively, a pre-trained model in 2 languages can be used as a
model for 2 different languages.

Overall, sequence-to-sequence models have many applications beyond MT:

• dialogue systems

• text summarisation

Page 23

• speech recognition

• speech synthesis

• image captioning

• image generation

Page 24

	RNNs for Translation
	Outputs in Target Language
	String Completion

	The Encoder-Decoder Approach to Translation
	Encoder-Decoder Architecture
	Issues with the Encoder-Decoder Paradigm
	Attention

	The Transformer Architecture
	Self-Attention
	Basic Self-Attention
	Enhancing Self-Attention: Query, Key and Value Vectors
	Multi-Head Attention

	Transformers
	Transformers for Movie Predictions
	Transformers for Text Generation

	Challenges in Neural Machine Translation

