
Natural Language Understanding, Generation and Machine
Translation - Week 2 - Simple Neural Language Models

Antonio León Villares

January 2023

Contents
1 Feedforward Neural Networks for Language Modelling 2

1.1 Motivation: Log-Linear Language Models . 2
1.2 Overview of Feedforward Neural Networks . 4

1.2.1 Perceptrons and Activation Functions . 4
1.2.2 Multi-Layer Perceptrons . 5

1.3 FFNNs in NLP . 7
1.3.1 Sentiment Classification . 7
1.3.2 Language Modelling . 9

2 Recurrent Neural Networks for Language Modelling 10
2.1 Motivation: Long Distance Dependencies . 10
2.2 Overview of Recurrent Neural Networks . 10
2.3 Issues with RNNs . 12
2.4 Long Short-Term Memory (LSTMs) . 12

3 Training Neural Networks 16
3.1 Computational Graphs and Backpropagation . 16

3.1.1 Common Gradients . 18
3.2 Training Strategies . 19
3.3 Training FFNNs . 19
3.4 Training RNNs: Backpropagation Through Time . 20

3.4.1 BPTT (Course Slides) . 20

1

Based on:

• Chapter 7, Speech and Language Processing by Jurafsky and Martin

• Sections 4,5 and 6 of Neubig’s “Neural Machine Translation and Sequence-to-Sequence Models: A
Tutorial

• Backpropagation Through Time by Jian Guo

1 Feedforward Neural Networks for Language Modelling
1.1 Motivation: Log-Linear Language Models

• What is an alternative view on language models as functions?

– we initially thought of language models as function from a vocabulary to a probability:

P : V ∗ → [0, 1]

– an alternative is to view P as a function:

P : V n−1 → (V → R+)

that is:
∗ the input is an n-gram history
∗ the output is a distribution over V

– for example, if we feed it x = “the cat sat on the”, P will output a distribution:

P (V | x)

such that, for example, P (V = “mat” | x) is high, whilst P (V = “grill” | x) is low

• What is a log-linear language model?

– a language model which uses features to compute probabilities (instead of counts)
– for a given word et, and given a particular context et−n+1:t−1, we compute a feature vector:

x = ϕ (et−n+1:t−1) ∈ RN

– using this feature vector, we can then compute the probability of et
– log-linear language models use the alternative view on langauge modelling described above

• How is one-hot encoding used in log-linear language models?

– one of the easiest ways to get a feature vector is to use one-hot encoding
– given a vocabulary |V |, we can encode a word wi via:

x = ϕ(wi) = δij = [1 if j == i else 0 for j in range(len(V))]

– we can then encode a history by concatenating the feature vectors of each word in the history:

Page 2

https://web.stanford.edu/~jurafsky/slp3/7.pdf
https://arxiv.org/pdf/1703.01619.pdf
https://arxiv.org/pdf/1703.01619.pdf
http://ir.hit.edu.cn/~jguo/docs/notes/bptt.pdf

• How do log-linear language models compute probabilities?

– log-linear models use learnt parameters to convert feature vectors into a score vector
– the score vector contains values, corresponding to the likelihood of a particular word given a

context
– for example, if we use one-hot encoding to represent a word in V , the score vector is:

s ∈ R|V |

– LLLMs are named thus because to obtain the scores, they use a linear transformation:

s = Wx+ b

where (for one-hot encoded outputs):

W ∈ R|V |×N b ∈ R|V |

– these scores can then be converted into probabilities via the softmax function:

p = softmax(s)

where:
pj =

exp(sj)∑
k exp(sk)

(here p is our probability distribution over V)

Page 3

• In practice, how are scores in LLLMs computed?

– it is wasteful to compute:
s = Wx+ b

(cubic complexity)
– instead, we can exploit the structure of one-hot encoding, and just add together the columns of

W corresponding to non-zero features in x:

s =
∑

{j : xj≠0}

W∗,j + b

s =



a b c d e f

a b c d e f

a b c d e f

a b c d e f

a b c d e f





1

0

0

0

1

0


+ b =



a+ e

a+ e

a+ e

a+ e

a+ e

a+ e


+ b

• What features can be used in LLLMs (beyond one-hot encoding)?

– Context Class: group words which are similar into a class; then, our one-hot features could
correspond to classes (i.e instead of “dog” or “cat”, we’d have a class for “domestic animal”).
This would allow models to generalise better.

– Context Suffix Features: we can encode features, such as suffixes (i.e add a flag whenever
a word ends with “-ing”). This allows us to lean better patterns (i.e the types of words which
typically follow words ending in “-ing”)

1.2 Overview of Feedforward Neural Networks
1.2.1 Perceptrons and Activation Functions

• What is a neural unit?

– a computational “machine”, which accepts a vector input, and outputs an activation via:

x 7→ f(w · x+ b)

• What types of activation functions can units use?

Page 4

– sigmoid:
σ(z) =

1

1 + e−z

– hyperbolic tangent:

tanh(z) =
ez − e−z

ez + e−z

– rectified linear unit:
ReLU(z) = max(z, 0)

• Why is ReLU preferred as an activation function?

– both σ and tanh suffer from saturation: when the magnitude of z is large, σ(z) ≈ tanh(z) ≈ 1
or σ(z) ≈ −1/tanh(z) ≈ −1

– this is problematic, since then the network will find it harder to learn (the gradients of the
functions with respect to the input will be small)

– ReLU doesn’t suffer fromt his saturation problem

1.2.2 Multi-Layer Perceptrons

• How can we form a layer of units?

– to augment the expressive power of units, we can stack them to create a layer
– when an input x is passed to the layer, it is processed by each unit
– the output of the layer is thus another vector
– the weights of the unit can be stored as a matrix and a vector respectively:

x 7→ f(Wx+ b)

where f is applied elementwise

• What is a multi-layer perceptron?

– we can join multiple layers together, to form a multilayer perceptron
– MLPs are universal approximators: given enough units, they can approximate any function
– the activation vector of the ith layer is given by:

a[i] = f [i](W [i]a[i−1] + b[i])

where the square superscrips denote the layer of the parameter/activation
– MLPs are also known as feedforward neural networks, since the output of the previous layer

is fed forward down the network

Page 5

• What is a hidden layer in a MLP?

– the layers which are between the input and output layers of the MLP

• What is the purpose of the non-linearities f [i] in FFNNs?

– without non-linearities, MLPs would just output a linear combination of the inputs x

– they would be no different from LLLMs
– the non-linearities ensure that the MLPs have more representational power

Page 6

1.3 FFNNs in NLP
1.3.1 Sentiment Classification

Figure 1: We can convert an input phrase (i.e “dessert was great”) into a set of simple features (for example,
using word count, count of positive words, count of “no”). Then, a simple MLP can be used to predict the
sentiment of the phrase.

Page 7

Figure 2: A more complex sentiment analyser could use pretrained word embeddings directly. A pooling
function can then be used to create an input vector encompassing the information from all the embeddings
(for example, taking the mean or an elementwsie maximum).

Page 8

1.3.2 Language Modelling

Figure 3: We can use MLPs as language models. For example, if we use a context of 3 words, we’d get
this structure. Each context word is first converted into an embedding, to get an embedding layer h1.
These embeddings typically come from a pretrained model, so they’ll be fixed. The embeddings can then
be passed through the hidden layer:

h2 = f(Wh1 + b1)

Finally, we pass it through the output layer, in order to get a probability distribution over vocabulary words:

y = softmax(Uh2 + b2)

• What benefits do neural models have over n-gram language models?

– the main benefit comes from being able to learn complex features from embeddings
– embeddings allow the network to generalise better: similar embeddings will generally occur in

similar contexts (i.e in combinations with other words)

Page 9

– for instance, words like “cow”, “horse”, “goat” might cooccur with “consume”, “chew”, “”ingest”
– neural models can easily gauge these relationaships
– for a simple n-gram model, we’d need to make these relationships explicit, which involves either

heavily expanding the corpus, or finding a way to effectively learn word classes

2 Recurrent Neural Networks for Language Modelling
2.1 Motivation: Long Distance Dependencies

• What are long-distance dependencies?

– language often contain long-distance dependencies between words, which allow us to include
more contextual information

– for example:

Figure 4: Gender must be consistent in a sentence, independently of what happens in between the gendered
words.

Figure 5: The adjective “red” is used to describe “roses”, no matter how much additional information we
might provide about the location of the flowers.

• Can n-grams or FFNNLMs capture these long dependencies?

– despite being integral in language and communication, n-grams and FFNNLMs can only used a
fixed context window

– hence, they miss out on a lot of crucial sentence structure
– for example, with a context window of 3, we’d have to predict “red” from “the kitchen are”, which

is something that not even humans could do

2.2 Overview of Recurrent Neural Networks
• What is a Recurrent Neural Network?

– a NN specifically designed to handle sequential data
– it uses a recurrent structure, whereby the input to a hidden layer comes from both the previous

hidden layer, and a training input:

h[t] =

{
f(Wxhx

[t] +Whhh
[t−1] + bh), t ≥ 1

0, otherwise

Page 10

– notice, the parameters of the network are fixed: we only learn
∗ Wxh: a matrix from the current input x[t] to the current hidden layer
∗ Whh: a matrix from the previous hidden layer h[t−1] to the current hidden layer
∗ bh: a bias for the current hidden layer

– the value 0 at t = 0 can also be thought of as a parameter, and is an initial state which the
network can learn

– these parameters form what are known as an RNN cell

• How can RNNs be visualised?

Figure 6: RNNs can also be used to output the computed value at each time step

• Theoretically, how do RNNs solve the long-dependency problem?

Page 11

– the output of an RNN will be a distribution:

P (xi+1 | x1, . . . , xi) = softmax(Wh[i] + b)

where as above:
h[i] = f(Wxhe

[i] +Whhh
[i−1] + bh)

– here, e[i] is the embedding for the word xi

– the idea is that across the network, h[i−1] encodes all the previous information fed to the network
(i.e the previous words x1, . . . , xi−1, and their interpretation, like “the subject of this sentence is
male”)

– thus, RNNs can compute P (xi+1 | x1, . . . , xi) without relying on a Markov assumption, and
thus can (potentially) operate over extremely long contexts

2.3 Issues with RNNs
• How do the vanishing gradient/exploding gradient problems impact RNNs?

– generally, for deep networks (i.e with many layers), gradients tend to vanish: since backprop-
agation multiplies many gradients together, if these gradients are all < 1, by the time we get to
the end of the algorithm, the gradient with respect to certain parameters will be near 0

– due to the recurrent structure of RNNs, they can be though of as very deep networks, and thus
are prone to the vanishing gradient problem

– in particular, unless:
dh[t−1]

dh[t]
= 1

then the gradients will either diminish to 0, or explode to infinity

2.4 Long Short-Term Memory (LSTMs)
• What is an LSTM cell/unit?

– enhances the RNN cell structure, by adding 3 “gates” and a memory cell
– the memory cell combines the output from the standard RNN cell, alongside the gates, to create

the output for the LSTM cell
∗ input gate: modulates how much of the input xi is passed on to the memory cell
∗ output gate: modulates how much of the memory cell output is passed on to the output

layer

Page 12

∗ forget gate: modulates how much of the recurrent input is passed on to the memory
cell

– these gates are nothing but neural units, with learnable parameters

• What are the inputs and outputs of the LSTM gates?

– the 3 gates and the memory cell all receive the input xi, alongside the hidden recurrent output
from the previous cell

– the 3 gates have a sigmoid activation: they output a number between 0 and 1, which controls
the information flow

• How does information flow in an LSTM cell?

Page 13

1. The input, output and forget gates receive an input and output a value between 0 and 1:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf)

ot = σ(Wxoxt +Whoht−1 + bo)

2. Compute what the standard RNN output would be:

ut = f(Wxuxt +Whuht−1 + bu)

For LSTMs, we typically use a tanh activation.
3. The memory cell then combines the information - it modulates the RNN output ut using the

input gate, and modulates the previous memory output using the forget gate:

ct = it � ut + ft � ct−1

4. Finally, the recurrent hidden output is computed, by applying a non-linearity to the memory cell
output, and modulating it using the output gate:

ht = ot � g(ct)

Again, we’d use a g = tanh activation typically.
5. The LSTM cell then passes on the memory cell value ct, alongside the recurrent hidden output ht

• How do LSTMs reduce the pitfalls of standard RNNs?

1. Information Control: the LSTM can modulate what information it deems important. For
example, as a sentimend analyser, it can focus on adjectives, and ignore filler words like “and”,
“the”, “this”. In particular, LSTMs can retain information over arbitrarily long contexts, and can
decide when information should be outputted, and what information can be forgotten.

2. Vanishing Gradient: notice, the memory cell is linear, so it can’t have vanishing gradients(
∂ct

∂ct−1
= 1

)

Figure 7: With standard RNNs, gradients vanish as we go back through the network.

Page 14

Figure 8: With LSTMs, we can preserve srong signals when necessary, so gradients won’t vanish, and long-
range dependencies can be better learnt.

• Where are LSTMs used?

1. Language Modelling: LSTMs achieve better performance than RNNs at modelling language
2. Machine Translation: using an encoder-decoder architecture, LSTMs can be used to com-

press the source text, which can then be decoded in a different language

3. Sequence Labelling: such as POS tagging/parsing, semantic role labelling and opinion
mining.

4. Sequence-to-Sequence Mapping: beyond MT, the encoder-decoder architecture can be
used for question answering, summarisation and sentence compression/simplification

Page 15

3 Training Neural Networks
3.1 Computational Graphs and Backpropagation

• What is a computational graph?

– a representation of the computations involved in a NN
– it breaks down the complex operations of the network into its constituent steps:

• What is a loss function?

– a function indicating how well the network is learning
– to train a network, we try to optimise the loss function

• What is the purpose of a computational graph?

– the final node in the computational graph represents the loss function to optimise
– to optimise it, we use gradient descent:

θ ← θ − η∇θL

where θ are the parameters of the network, and ∇θL is the gradient of the loss with respect to
these parameters

– the computational graph, through the backpropagation algorithm, allows us to compute this
gradient efficiently

• How does the backpropagation algorithm compute gradients?

– we first do a forward pass though the network, with which we compute L

– using the chain rule, we then do a backward pass: we move back through the computational
graph, and compute gradients

– once we reach the start of the network, we will have computed the gradients of L with respect to
all the parameters of the network

Page 16

Figure 9: For instance, consider a loss given by:

L(a, b, c) = c(a+ 2b)

We can decompose this to create computational nodes:

L = ce e = a+ d d = 2b

Doing a forward pass to compute L(3, 1,−2) gives us that L = −10.

Page 17

Figure 10: To then do a backward pass, we start at the final node, where we can easily compute:

∂L

∂e
= c

∂L

∂c
= e

The next node computes the gradient of e, which depends on a and d:

∂e

∂a
= 1

∂e

∂d
= 1

Then, we can compute the gradient of L with respect to d:

∂L

∂d
=

∂L

∂e

∂e

∂d
= c

Continuing like this, we eventually get to compute the loss L with respect to the inputs, at which point we
will have computed all the relevant gradients necessary to train the network!

3.1.1 Common Gradients

• Binary Cross-Entropy Loss:

L(ŷ, y) = −[y log ŷ + (1− y) log(1− ŷ)] =⇒ ∂L

∂ŷ
= −

(
y

ŷ
+

y − 1

1− ŷ

)
• ReLU

dReLU(z)

dz
=

{
0, z ≤ 0

1, z ≥ 0

• Logistic Sigmoid
dσ(z)

dz
= σ(z)(1− σ(z)

• Hyperbolic Tangent
d tanh(z)

dz
= 1− tanh2(z)

Page 18

3.2 Training Strategies
• What is stochastic gradient descent?

– stochastic gradient descent updates the weights after seeing each training sample:

– this is benefitial, since it can find good solutions quickly
– however, it can be unstable, an dparticularly influenced byt he most recent training samples

• What is mini-batch learning?

– in mini-batch learning, we update the weights after seeing some mini-batch of training
samples

– we could update the weights after seeing all the training data (batch training), but this takes
very long

– mini-batch training is a good compromise between full SGD and batch training: using small
batches allows quicker convergence, and the use of many training samples makes the algorithm
more stable

3.3 Training FFNNs
• What loss is typically used when training a FFNN LM?

– we use cross-entropy loss
– if our network predicts a vectorised distribution ŷ, and the “true” distribution is y (here, a one-hot

encoded version of the word to predict) then:

L(ŷ, y) = −
K∑

k=1

yk log ŷk

Page 19

– but notice, if we use the one-hot encoded y, this is just (assuming that the correct class is some
class c):

L(ŷ, y) = − log ŷc

– if we use softmax to get the distribution:

L(ŷ, y) = − log
exp(zc)∑K
j=1 exp(zj)

where z is the vector outputted by the network before passing through softmax

3.4 Training RNNs: Backpropagation Through Time
• What can’t we apply straightforward backpropagation to train RNNs?

– Wxh,Whh, bh are used throughout the network
– however, the gradient of L with respect to Wxh at step t might differ to the gradient to that at

step t− τ

– because of this, we need to compute:

∂L

∂Whh(t)

∂L

∂Wxh(t)

∂L

∂bh(t)

for each timestep t

– then, the final gradients will be the sum of all these gradients across each timestep

3.4.1 BPTT (Course Slides)

I personally find these slides confusing: I don’t like the use of ∆ or δ, and the introduction of many unnecesary
new variables, or the need to sum over the whole training set (that’s what the ps mean). Also, note that
LSTMs can also be trained using BPTT, but the addition of the gates makes training slightly more complex.

Instead, consider this great blog post on BPTT: it uses sensible matrix “names”, keeps on all the partial
derivatives, and gives concise explanations

Page 20

https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

Figure 11: Here, the δ represent derivatives. For example:

δpk = − ∂C

∂ypk

∂ypk
∂netpk

Moreover, wkj , vji are entries of the matrices W = Whh, V = Wxh

Page 21

Figure 12: Similarly, uji is an entry of the matrix U = W , the output matrix for the RNN.

Page 22

	Feedforward Neural Networks for Language Modelling
	Motivation: Log-Linear Language Models
	Overview of Feedforward Neural Networks
	Perceptrons and Activation Functions
	Multi-Layer Perceptrons

	FFNNs in NLP
	Sentiment Classification
	Language Modelling

	Recurrent Neural Networks for Language Modelling
	Motivation: Long Distance Dependencies
	Overview of Recurrent Neural Networks
	Issues with RNNs
	Long Short-Term Memory (LSTMs)

	Training Neural Networks
	Computational Graphs and Backpropagation
	Common Gradients

	Training Strategies
	Training FFNNs
	Training RNNs: Backpropagation Through Time
	BPTT (Course Slides)

