Natural Language Understanding, Generation and Machine Translation - Week 1 - Introduction to Machine Translation

Antonio León Villares

January 2023

Contents

1	Cor	nditional Language Modelling
	1.1	General Language Models
	1.2	The N-Gram Language Model
_		
2	Mag	chine Translation With N-Grams
2		chine Translation With N-Grams Defining the MT Model
2	2.1	

1 Conditional Language Modelling

1.1 General Language Models

- What is a language model?
 - a probabilistic model for strings
 - for example, we can train a model for **headline generation**
- What are conditional language models?
 - language models, where language prediction is conditioned on some input
 - for example:
 - * speech recognition (conditioned on speech signal)
 - * machine translation (conditioned on text in another language)
 - * text completion: (conditioned on first words of a sentence)
 - * OCR (conditioned on **images** of text)
 - * image captioning (conditioned on an image)
 - * grammar checking (conditioned on surrounding words)
- How can language models be interpreted as functions?
 - we consider a **finite vocabulary** V
 - a language model can be thought of as a function:

$$P:V^*\to [0,1]$$

where V^* denotes the set of word sequences (or arbitrary length) which can be constructed from V

- we must ensure that all the probabilities outputted by P add up to 1
- this defines a **probability distribution**, whose random variables can be, for example, words at a given position in a sentence (i.e w_1 is the RV representing the first word in the sentence provided)

1.2 The N-Gram Language Model

- How can we define the probability of a sentence?
 - consider a sentence represented by \underline{w} (such that w_i represents the *i*th word in \underline{w}), and assume that $|\underline{w}| = L$
 - using the **chain rule** of probability, we can define:

$$\begin{split} P(\underline{w}) &= P(w_1, \dots, w_L) \\ &\equiv P(w_{1:L}) \\ &= P(w_1) \times P(w_2 \mid w_1) \times \dots \times P(\texttt{} \mid w_{1:L}) \\ &= \prod_{i=1}^{L+1} P(w_i \mid w_{1:i-1}) \end{split}$$

- Why is this representation for a sentence probability?
 - there are (potentially) no limitations for |v| = L

- this model might thus rely on (potentially) **infinite histories**
- How do n-gram models deal with infinite histories?
 - instead of conditioning on the whole history, we use a Markov assumption, and consider on a fixed history
 - for an **n-gram**, we consider windows of width n, such that the nth word is conditioned on the n-1 previous words:

$$\forall i \in [1, L+1], \ P(w_i \mid w_{1:i-1}) \approx P(w_i \mid w_{i-n+1:i-1})$$

- How can n-gram probabilities be estimated?
 - we can use Maximum Likelihood Estimation: given a corpus of word occurrences, we can use counts to estimate n-gram probabilities:

$$P(w_2 \mid w_1) = \frac{Count(w_1, w_2)}{Count(w_1)} \qquad P(w_3 \mid w_1, w_2) = \frac{Count(w_1, w_2, w_3)}{Count(w_1, w_2)}$$

- such a model would **maximise** the **likelihood function**: given some training data \mathcal{D} , this is a function mapping models θ to a probability
- for example, for bigrams:

$$P(\mathcal{D} \mid \theta) = \prod_{w_1, w_2 \in V^2} P(w_2 \mid w_1, \theta)$$

and the MLE estimation is a setting $\hat{\theta}$, such that:

$$\hat{\theta} = \arg\max_{\theta} P(\mathcal{D} \mid \theta)$$

- What are the main issues with n-grams?
 - Data Sparsity: for good models, we require large n, but this can lead to data sparsity: high-order n-grams will barely appear, so MLE estimates will mostly be 0 (these could be structural zeroes (the n-grams are never produced by the language) or sampling zeroes (we haven't yet found them in training))
 - Model Size: to get a good model, we'd require billions of word sequences, which requires a lot of memory
- How can n-grams be used to generate text?
 - if we have a word sequence $w_{1:k}$, we can predict the next word via:

$$\hat{w}_{k+1} = \arg\max_{w_{k+1}} P(w_{k+1} \mid w_{1:k})$$

- this is particularly useful when processing inputs in real-time (word-by-word)

2 Machine Translation With N-Grams

Machine Translation involves converting an input \underline{x} (written in language A) into an output \underline{y} (written in language B), such that the **meaning** is preserved

2.1 Defining the MT Model

• What is the main hurdle in MT?

- sentence length can vary, since some words might not have a direct translation, or might be included just for structure
- for example:

"Me gusta jugar al fútbol"

"I like playing football"

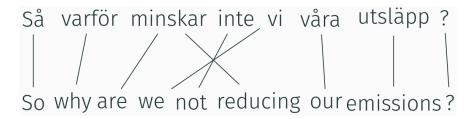
here, the article "al" appears before the noun, which would sound weird in English ("I like playing the football")

- these nuances can become even more pronounced when language systems are different (i.e in Japanese/Chinese, language involves morphemes and concepts):

"日本語が話せます"

"I can speak Japanese"

- How can a MT model account for varying sentence length?
 - we consider 2 (connected models):
 - * an **alignment model**, which predicts which words align with which (we assume that each word in y gets aligned with exactly one word in x)



- * a **translation model**, which gives translation probabilities for the aligned words. For example, if we consider bigrams we could compute:
 - · $P(So \mid Så)$
 - $\cdot P(\text{why} \mid \text{varf\"{o}r})$
 - · $P(\text{are} \mid \text{våra})$
- How can we incorporate the alignment into an n-gram model for translation?
 - say we want to translate \underline{x} into y
 - we can store the alignments as a vector \underline{a} , such that:

$$a_i = \begin{cases} 0, & y_i \text{ doesn't align with any word in } \underline{x} \\ j, & y_i \text{ aligns with } x_j \end{cases}$$

- then, our model involves predicting the alignment \underline{a} , and the translation \underline{y} , from \underline{x} ; probabilistically (using the chain rule alongside an assumption of independence):

$$P(\underline{y}, \underline{a} \mid \underline{x}) = P(\underline{y} \mid \underline{x}, \underline{a}) P(\underline{a} \mid \underline{x})$$

$$= P(|\underline{y}| \mid \underline{x}) \prod_{i=1}^{|\underline{y}|} P(y_i \mid y_{1:i-1}, \underline{x}, \underline{a}) \prod_{j=1}^{|\underline{a}|} P(a_j \mid a_{1:j-1}, \underline{x})$$

where:

- * $P(|\underline{y}| \mid \underline{x})$ is a model for **sentence length**: it tells us the desired length of the translated sentence, given the the original sentence (notice, this doesn't have an alignment term, since $|y| = |\underline{a}|$)
- * $\prod_{i=1}^{|\underline{y}|} P(y_i \mid y_{1:i-1}, \underline{x}, \underline{a})$ is the **translation model**
- * $\prod_{i=1}^{|\underline{a}|} P(a_i \mid a_{1:j-1}, \underline{x})$ is the alignment model
- notice, since \underline{a} is a **latent variable**, if we want a **conditional language model**, we need to **marginalise** the alignments:

$$P(\underline{y}\mid\underline{x}) = \sum_{a} P(\underline{y},\underline{a}\mid\underline{x})$$

- if we then have a dataset \mathcal{D} with N translation pairs, the **likelihood** will be:

$$\begin{split} P(\mathcal{D} \mid \theta) &= \prod_{n=1}^{N} P(\underline{y}^{(n)} \mid \underline{x}^{(n)}) \\ &= \prod_{n=1}^{N} \sum_{\underline{a}^{(n)}} P(|\underline{y}^{(n)}| \mid \underline{x}^{(n)}) \prod_{i=1}^{|\underline{y}|} P(y_{i}^{(n)} \mid y_{1:i-1}^{(n)}, \underline{x}^{(n)}, \underline{a}^{(n)}) \prod_{j=1}^{|\underline{a}^{(n)}|} P(a_{j}^{(n)} \mid a_{1:j-1}^{(n)}, \underline{x}^{(n)}) \end{split}$$

- What is the MT workflow, according to this model?
 - for simplicity, lets consider a **bigram** model:

$$P(|\underline{y}| \mid \underline{x}) \prod_{i=1}^{|\underline{y}|} P(a_i \mid |\underline{x}|) P(y_i \mid x_{a_i})$$

(notice, we have combined the 2 product terms into 1)

- for concreteness, lets consider the example above where we try to translate Swedish (\underline{x}) to English (y):
 - 1. Sample possible lengths for English sentences, conditioned on the Swedish text $(P(|y| \mid \underline{x}))$
 - 2. For each English word, we can draw an **alignment** with a Swedish word $(P(a_i \mid |\underline{x}|); \text{ typically drawing uniform samples})$
 - 3. For each English word, sample a possible translation $(P(y_i \mid x_{a_i}))$
- How is this MT scheme related to HMM?
 - we can think of words in Swedish as a set of **states**
 - we can think of words in English as a set of tags
 - MT is then a HMM, where the **transition probabilities** correspond to **alignment probabilities**, and **emission probabilities** correspond to **translation probabilities**

2.2 Expectation Maximisation for Alignments

- Why can't we directly use maximum likelihood estimation to predict the translation probabilities?
 - for MLE, we need to count bigram occurrences
 - however, to be able to count, we need to have the **alignments**
 - $-\underline{a}$ is known as a **latent variable** we don't have its value from the data
- What are expected counts?

- since we don't have the alignments, we can't formally count bigram occurrences
- instead, we can use **expected counts**: for a translation pair $\underline{x}, \underline{y}$, on average, what proportion of the alignments link x_i to y_i ?
- probabilitstically, this is:

$$P(a_i = j \mid \underline{x}, \underline{y}) = \frac{P(\underline{y} \mid a_i = j, \underline{x})P(a_i = j \mid \underline{x})}{P(\underline{y} \mid \underline{x})} = \frac{P(\underline{y}, a_i = j \mid \underline{x})}{P(\underline{y} \mid \underline{x})}$$

- thus, for each alignment, instead of counting 0 or 1, we use the **expected count** (which is nothing but a **posterior** probability)
- we can compute this posterior via:

$$P(a_i = j \mid \underline{x}, \underline{y}) = \frac{P(\underline{y}, a_i = j \mid \underline{x})}{P(\underline{y} \mid \underline{x})} = \frac{P(x_i \mid e_j)}{\sum_{a_i = 0}^{|\underline{y}|} P(y_i \mid x_{a_i})}$$

- the **higher** the **expected count**, the more confident we are that a given alignment is good
- Why can't we directly use expected counts when predicting the translation probabilities?
 - to obtain **expected counts**, we need to have access to our **translation model**
 - but to get our **translation model**, we need to have access to the counts!
- How can expectation maximisation be used to compute the parameters for our MT model?
 - this self-referential problem calls for the use of **Expectation Maximisation**:
 - 1. Define some initial model θ_0
 - 2. Using θ_0 , compute the expected counts (expectation step)
 - 3. With the expected counts, use MLE to compute the parameters of a new model, θ_1 (maximisation step)
 - 4. Continue iterating: at step i, compute θ_i by using θ_{i-1} until stopping criterion is met (i.e convergence, fixed number of iterations)
 - EM guarantees that the resulting **likelihood** will be **non-decreasing** with each new estimate for θ (theory: expectation step constructs a function which is a lower bound of the true optimal likelihood; maximisation step improves this lower bound)
- How can the alignments be recovered from the MT model?
 - once we have a model, finding the best alignment is relatively easy:

$$\underline{\hat{a}} = \arg\max_{a} P(\underline{a} \mid \underline{x}, \underline{y})$$

- componentwise, and noting that $P(a_i \mid |\underline{x}|)$ is uniform:

$$\hat{a}_i = \arg\max_{a_i} P(\underline{y} \mid \underline{x}) \prod_{i=1}^{|\underline{y}|} P(a_i \mid \underline{x}) P(y_i \mid x_{a_i}) = \arg\max_{a_i} P(y_i \mid x_{a_i})$$

2.3 Decoding with the MT Model

- How are conditional language models trained in practice?
 - Bayes' Rule is often used:

$$P(y \mid \underline{x}) \propto P(y)P(\underline{x} \mid y)$$

- -P(y) will be a **language model** (these can be trained easily)
- $-P(\underline{x} \mid y)$ is our translation+alignment model (same as above, but translating in reverse)
- by training both models separately, we get the power of a good language model, alongside the translation (as opposed to just learning translation)
- How can we decode given a conditional language model?
 - 1. Greedy Search: at step i, predict y_i to maximise:

$$P(y_i \mid y_{1:i-1}, \underline{x})$$

2. **Beam Search**: at step i, keep the k best y_i 's maximising:

$$P(y_i \mid y_{1:i-1}, \underline{x})$$

- note, none of these strategies will find an **optimal** y

You might be wondering: given all the advances in **deep learning**, why bother on studying **n-grams**?

- 1. **Applicability**: man of these ideas will show up in NNs (maximising objective function, beam search for decoding, latent variables in unsupervised learning, alignment inspired **attention**)
- 2. **Low-Data**: when there is little data, these simpler models can perform quite well (NNs require a lot of data)
- 3. Google: still uses n-grams for phrase-based translation
- 4. **Perspective**: understanding the tradeoffs of working with Markov assumptions will help you appreciate how NNs make them go away