
Natural Language Understanding, Generation and Machine
Translation - Week 1 - Introduction to Machine Translation

Antonio León Villares

January 2023

Contents
1 Conditional Language Modelling 2

1.1 General Language Models . 2
1.2 The N-Gram Language Model . 2

2 Machine Translation With N-Grams 3
2.1 Defining the MT Model . 3
2.2 Expectation Maximisation for Alignments . 5
2.3 Decoding with the MT Model . 6

1

Based on a Tutorial by Adam Lopez.

1 Conditional Language Modelling
1.1 General Language Models

• What is a language model?

– a probabilistic model for strings
– for example, we can train a model for headline generation

• What are conditional language models?

– language models, where language prediction is conditioned on some input
– for example:

∗ speech recognition (conditioned on speech signal)
∗ machine translation (conditioned on text in another language)
∗ text completion: (conditioned on first words of a sentence)
∗ OCR (conditioned on images of text)
∗ image captioning (conditioned on an image)
∗ grammar checking (conditioned on surrounding words)

• How can language models be interpreted as functions?

– we consider a finite vocabulary V

– a language model can be thought of as a function:

P : V ∗ → [0, 1]

where V ∗ denotes the set of word sequences (or arbitrary length) which can be constructed from
V

– we must ensure that all the probabilities outputted by P add up to 1
– this defines a probability distribution, whose random variables can be, for example, words at a

given position in a sentence (i.e w1 is the RV representing the first word in the sentence provided)

1.2 The N-Gram Language Model
• How can we define the probability of a sentence?

– consider a sentence represented by w (such that wi represents the ith word in w), and assume
that |w| = L

– using the chain rule of probability, we can define:

P (w) = P (w1, . . . , wL)

≡ P (w1:L)

= P (w1)× P (w2 | w1)× . . .× P (</s> | w1:L)

=

L+1∏
i=1

P (wi | w1:i−1)

• Why is this representation for a sentence probability?

– there are (potentially) no limitations for |v| = L

Page 2

https://learn-eu-central-1-prod-fleet01-xythos.content.blackboardcdn.com/5d1b15b77a8ac/15531735?X-Blackboard-S3-Bucket=learn-eu-central-1-prod-fleet01-xythos&X-Blackboard-Expiration=1674248400000&X-Blackboard-Signature=vCXhEvAko2SH5sTiaEiWMMXCC9PuekVb6UFs8KfBl1M%3D&X-Blackboard-Client-Id=301835&X-Blackboard-S3-Region=eu-central-1&response-cache-control=private%2C%20max-age%3D21600&response-content-disposition=inline%3B%20filename%2A%3DUTF-8%27%27word_alignment_and_EM.pdf&response-content-type=application%2Fpdf&X-Amz-Security-Token=IQoJb3JpZ2luX2VjECgaDGV1LWNlbnRyYWwtMSJHMEUCIAcWIdMRybgFYPUPP%2FWwAkkRL7Ntog7qS4OqiZzX0v7YAiEA6YhH0Yo6C22UdHU9kPjVF%2BD2ETyOpJhbqrSrqf05hesq3wQIkf%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FARACGgw2MzU1Njc5MjQxODMiDAN%2BGzR5HFoOa%2FYmWiqzBOPzktxzoG6bjv8uJXpOjUKEwO1n9BCN24ey8rbJHnoVW%2BKfsjwkl08ZPGCFx%2BOwCqFnop5UBt0VLX%2BN0tcSnaR21t%2BstHeYokSaxGFvEZhU%2B3jdFMg%2BygF61DSgX0E2J7vlmbuWCGFvpESaQ8UQBNJYYCoA%2BBJdKEPgTJ8FQfMZ9Vhi5JNNnc10rUVmuvbm2dINgwRe5%2B%2B4Vz%2B0uisQIbK1uF4pLLntGUQiLpAPJZuzPgs77TDreKfbNYb5%2BWte5fo42akpXRe8zwCNoSQ5YBu5EH5ohFiqilCKIjxanvAIc4zXXroqPT9Br659dTISKWZrulTAjod%2BaLOXInAhchV6Iww%2F%2B8%2BxTo0EvXBrcbbPoVerst%2FrTacu0J2Zn0010XIbiQWdAMq9Qy%2FWM%2BZnsOF4eXTB%2B8d9Trxd%2FuIUpnddShZ1dV6ci67djCOxqdtIwZ2AVb9l%2FOvGFLCxiCm%2FW1DeGRmbzl5gtCa7%2FasIw6%2FJ%2FMS5qtOPXt54M6tk8ddJHshsv%2Fk%2BALByQxwHu4l5xp8RE8nVqoFzH%2BnRR0uUDF4Qr1E8uF7OiHy9yXRhnRR2hlcR7O%2Bc1Lww8wkX9%2FJSEQW8%2BI6IXDa1fJnmL5Wd1bq%2BQlAyR%2BnrCL4SVE7V4IGinsFAubxhaqsNjM596sOQvY0PDzb09XXgE5C9nZx7FoiMFVQKHGdxuAhD%2B6Q6Dg4nlDR1BLMIGV7H4lrrvgSv%2BqrSTLGxJ3v6Ym%2BVyeI5yo6%2FwsniMKboqp4GOqkBcrQBdyhu7FrSPzKB0Xvg6%2FSiahujoVUWn%2FE32tYtxosS48dFzOr0CSEEDQTetyL9kJlfB%2F%2BxKbg6TAvAP9g2dxjIUczjBV6n9Zg43S6r9zLMDRIA%2Bwo2ej%2FaxXq4%2BBLFLKGvHUNqKnv5RuRE4u8DgWjMk5aFhGB7SxY2Br0jqsxucKjhHiNYHqA78WqxArEOwsvijEWlShfrrmg9rcliTej64ZdwuhGoTw%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20230120T150000Z&X-Amz-SignedHeaders=host&X-Amz-Expires=21600&X-Amz-Credential=ASIAZH6WM4PL3POUL3FS%2F20230120%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Signature=817a5fd93fec175d284d4644ff9b13615db03dac33c93dadce0dcfdee25385b6

– this model might thus rely on (potentially) infinite histories

• How do n-gram models deal with infinite histories?

– instead of conditioning on the whole history, we use a Markov assumption, and consider on a
fixed history

– for an n-gram, we consider windows of width n, such that the nth word is conditioned on the
n− 1 previous words:

∀i ∈ [1, L+ 1], P (wi | w1:i−1) ≈ P (wi | wi−n+1:i−1)

• How can n-gram probabilities be estimated?

– we can use Maximum Likelihood Estimation: given a corpus of word occurrences, we can use
counts to estimate n-gram probabilities:

P (w2 | w1) =
Count(w1, w2)

Count(w1)
P (w3 | w1, w2) =

Count(w1, w2, w3)

Count(w1, w2)

– such a model would maximise the likelihood function: given some training data D, this is a
function mapping models θ to a probability

– for example, for bigrams:
P (D | θ) =

∏
w1,w2∈V 2

P (w2 | w1, θ)

and the MLE estimation is a setting θ̂, such that:

θ̂ = arg max
θ

P (D | θ)

• What are the main issues with n-grams?

– Data Sparsity: for good models, we require large n, but this can lead to data sparsity: high-
order n-grams will barely appear, so MLE estimates will mostly be 0 (these could be structural
zeroes (the n-grams are never produced by the language) or sampling zeroes (we haven’t yet
found them in training))

– Model Size: to get a good model, we’d require billions of word sequences, which requires a lot
of memory

• How can n-grams be used to generate text?

– if we have a word sequence w1:k, we can predict the next word via:

ŵk+1 = arg max
wk+1

P (wk+1 | w1:k)

– this is particularly useful when processing inputs in real-time (word-by-word)

2 Machine Translation With N-Grams

Machine Translation involves converting an input x (written in lan-
guage A) into an output y (written in language B), such that the mean-
ing is preserved

2.1 Defining the MT Model
• What is the main hurdle in MT?

Page 3

– sentence length can vary, since some words might not have a direct translation, or might be
included just for structure

– for example:

“Me gusta jugar al fútbol”
“I like playing football”

here, the article “al” appears before the noun, which would sound weird in English (“I like playing
the football”)

– these nuances can become even more pronounced when language systems are different (i.e in
Japanese/Chinese, language involves morphemes and concepts):

“日本語が話せます”
“I can speak Japanese”

• How can a MT model account for varying sentence length?

– we consider 2 (connected models):
∗ an alignment model, which predicts which words align with which (we assume that each

word in y gets aligned with exactly one word in x)

∗ a translation model, which gives translation probabilities for the aligned words. For exam-
ple, if we consider bigrams we could compute:
· P (So | Så)
· P (why | varför)
· P (are | våra)

• How can we incorporate the alignment into an n-gram model for translation?

– say we want to translate x into y

– we can store the alignments as a vector a, such that:

ai =

{
0, yi doesn’t align with any word in x

j, yi aligns with xj

– then, our model involves predicting the alignment a, and the translation y, from x; probabilistically
(using the chain rule alongside an assumption of independence):

P (y, a | x) = P (y | x, a)P (a | x)

= P (|y| | x)
|y|∏
i=1

P (yi | y1:i−1, x, a)

|a|∏
j=1

P (aj | a1:j−1, x)

where:

Page 4

∗ P (|y| | x) is a model for sentence length: it tells us the desired length of the translated
sentence, given the the original sentence (notice, this doesn’t have an alignment term, since
|y| = |a|)

∗
∏|y|

i=1 P (yi | y1:i−1, x, a) is the translation model
∗
∏|a|

j=1 P (aj | a1:j−1, x) is the alignment model
– notice, since a is a latent variable, if we want a conditional language model, we need to

marginalise the alignments:
P (y | x) =

∑
a

P (y, a | x)

– if we then have a dataset D with N translation pairs, the likelihood will be:

P (D | θ) =
N∏

n=1

P (y(n) | x(n))

=
N∏

n=1

∑
a(n)

P (|y(n)| | x(n))

|y|∏
i=1

P (y
(n)
i | y(n)1:i−1, x

(n), a(n))

|a(n)|∏
j=1

P (a
(n)
j | a(n)1:j−1, x

(n))

• What is the MT workflow, according to this model?

– for simplicity, lets consider a bigram model:

P (|y| | x)
|y|∏
i=1

P (ai | |x|)P (yi | xai)

(notice, we have combined the 2 product terms into 1)
– for concreteness, lets consider the example above where we try to translate Swedish (x) to English

(y):
1. Sample possible lengths for English sentences, conditioned on the Swedish text (P (|y| | x))
2. For each English word, we can draw an alignment with a Swedish word (P (ai | |x|); typically

drawing uniform samples)
3. For each English word, sample a possible translation (P (yi | xai))

• How is this MT scheme related to HMM?

– we can think of words in Swedish as a set of states
– we can think of words in English as a set of tags
– MT is then a HMM, where the transition probabilities correspond to alignment probabili-

ties, and emission probabilities correspond to translation probabilities

2.2 Expectation Maximisation for Alignments
• Why can’t we directly use maximum likelihood estimation to predict the translation

probabilities?

– for MLE, we need to count bigram occurrences
– however, to be able to count, we need to have the alignments
– a is known as a latent variable - we don’t have its value from the data

• What are expected counts?

Page 5

– since we don’t have the alignments, we can’t formally count bigram occurrences
– instead, we can use expected counts: for a translation pair x, y, on average, what proportion of

the alignments link xi to yj?
– probabilitstically, this is:

P (ai = j | x, y) =
P (y | ai = j, x)P (ai = j | x)

P (y | x)
=

P (y, ai = j | x)
P (y | x)

– thus, for each alignment, instead of counting 0 or 1, we use the expected count (which is nothing
but a posterior probability)

– we can compute this posterior via:

P (ai = j | x, y) =
P (y, ai = j | x)

P (y | x)
=

P (xi | ej)∑|y|
ai=0 P (yi | xai)

– the higher the expected count, the more confident we are that a given alignment is good

• Why can’t we directly use expected counts when predicting the translation probabilities?

– to obtain expected counts, we need to have access to our translation model
– but to get our translation model, we need to have access to the counts!

• How can expectation maximisation be used to compute the parameters for our MT model?

– this self-referential problem calls for the use of Expectation Maximisation:
1. Define some initial model θ0
2. Using θ0, compute the expected counts (expectation step)
3. With the expected counts, use MLE to compute the parameters of a new model, θ1 (max-

imisation step)
4. Continue iterating: at step i, compute θi by using θi−1 until stopping criterion is met (i.e

convergence, fixed number of iterations)
– EM guarantees that the resulting likelihood will be non-decreasing with each new estimate

for θ (theory: expectation step constructs a function which is a lower bound of the true optimal
likelihood; maximisation step improves this lower bound)

• How can the alignments be recovered from the MT model?

– once we have a model, finding the best alignment is relatively easy:

â = arg max
a

P (a | x, y)

– componentwise, and noting that P (ai | |x|) is uniform:

âi = arg max
ai

P (y | x)
|y|∏
i=1

P (ai | x)P (yi | xai) = arg max
ai

P (yi | xai)

2.3 Decoding with the MT Model
• How are conditional language models trained in practice?

– Bayes’ Rule is often used:
P (y | x) ∝ P (y)P (x | y)

Page 6

– P (y) will be a language model (these can be trained easily)
– P (x | y) is our translation+alignment model (same as above, but translating in reverse)
– by training both models separately, we get the power of a good language model, alongside the

translation (as opposed to just learning translation)

• How can we decode given a conditional language model?

1. Greedy Search: at step i, predict yi to maximise:

P (yi | y1:i−1, x)

2. Beam Search: at step i, keep the k best yi’s maximising:

P (yi | y1:i−1, x)

– note, none of these strategies will find an optimal y

You might be wondering: given all the advances in deep learning, why
bother on studying n-grams?

1. Applicability: man of these ideas will show up in NNs (maximising
objective function, beam search for decoding, latent variables in
unsupervised learning, alignment inspired attention)

2. Low-Data: when there is little data, these simpler models can
perform quite well (NNs require a lot of data)

3. Google: still uses n-grams for phrase-based translation

4. Perspective: understanding the tradeoffs of working with Markov
assumptions will help you appreciate how NNs make them go away

Page 7

	Conditional Language Modelling
	General Language Models
	The N-Gram Language Model

	Machine Translation With N-Grams
	Defining the MT Model
	Expectation Maximisation for Alignments
	Decoding with the MT Model

