Machine Learning and Pattern Recognition - Week 9 - Bayesian Logistic Regression & the Laplace Approximation

Antonio León Villares

November 2022

Contents

1	Recap: Bayesian Linear Regression	2
2	Bayesian Logistic Regression	3
	2.1 Recap: Logistic Regression	3
	2.2 Probabilistic Logistic Regression	3
3	The Laplace Approximation	6
	3.1 The Posterior for Bayesian Logistic Regression	6
	3.2 Computing the Laplace Approximation	
	3.3 Predicting with Bayesian Logistic Regression	10
	3.4 Evaluating the Laplace Approximation	11
4	Question	13
	4.1 Notes Questions	13

1 Recap: Bayesian Linear Regression

In **Bayesian Linear Regression**, we have:

• a **prior** distribution on **weights**:

$$P(\underline{w})$$

• a likelihood, of seeing some data D, given a certain weight setting:

$$P(\mathcal{D} \mid \underline{w})$$

• using this, we can compute a **posterior** distribution, which tells us how **weights** should look, given that we have observed data \mathcal{D} :

$$P(\underline{w} \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \underline{w})P(\underline{w})}{P(\mathcal{D})}$$

If we use a **normally** distributed **prior** and **likelihood**, then the **posterior** $P(\underline{w} \mid \mathcal{D})$ can be easily sampled from.

If we want to use our **Bayesian Linear Regression** to actually make predictions, we need to define a **posterior predictive distribution**:

$$P(y \mid \underline{x}, \mathcal{D})$$

which predicts a value y, given some observation \underline{x} and all the data seen by the model previously \mathcal{D} . To determine the **posterior predictive distribution**, we apply the **sum** and **product** rules, which allow us to condition on **weights**, and thus, allow us to utilise our **posterior** to make predictions:

$$P(y \mid \underline{x}, \mathcal{D}) = \int P(y, \underline{w} \mid \underline{x}, \mathcal{D}) d\underline{w} = \int P(y \mid \underline{x}, \underline{w}) P(\underline{w} \mid \mathcal{D}) d\underline{w}$$

where $P(y \mid \underline{x}, \underline{w})$ is the **predictive distribution**, which gives the probability of observing y given our weights \underline{w} and an input \underline{x} . In practice, sampling from the **posterior** to get **weights**, or computing the **posterior predictive distribution** are highly **non-trivial** tasks: for instance, we might not even have a closed-form, parametrised distribution. On the other hand, if we have a normal **posterior** and **predictive model**, then we can derive a new normal distribution for the **posterior predictive distribution**.

2 Bayesian Logistic Regression

2.1 Recap: Logistic Regression

The Logistic Regression model is used to perform binary classification:

$$P(y = 1 \mid \underline{x}, \underline{w}) = \sigma(\underline{w}^T \underline{x} + b) = \frac{1}{1 + \exp(-(\underline{w}^T \underline{x} + b))}$$

To determine \underline{w} , we can use a **Maximum Likelihood Estimation**: given an input matrix X and observations y:

$$P(\underline{y} \mid X, \underline{w}) = \prod \sigma(z^{(n)} \underline{w}^T \underline{x}^{(n)})$$

where:

$$z^{(n)} = 2y^{(n)} - 1$$

and $y^{(n)}$ is a **binary** feature.

In practice, we typically **minimise** the **negative log likelihood**, and add a **regularisation parameter**:

$$\underline{w}^* = \arg\max_{\underline{w}} [\log P(\underline{y} \mid X, \underline{w}) - \lambda \underline{w}^T \underline{w}]$$

2.2 Probabilistic Logistic Regression

- What is the posterior distribution for a Bayesian Logistic Regression model?
 - as with **Bayesian Linear Regression**, we will have:
 - * a **prior** over weights \underline{w} :

* a likelihood of observing data given weights. This will be our Logistic Regression:

$$P(\mathcal{D} \mid \underline{w}) = \sigma(\underline{w}^T \underline{x} + b)$$

- using this, we obtain a **posterior**:

$$P(\underline{w} \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \underline{w})P(\underline{w})}{P(\mathcal{D})}$$

where we can compute the **marginal likelihood** $P(\mathcal{D})$ by **marginalisation**:

$$P(\mathcal{D}) = \int P(\mathcal{D} \mid \underline{w}) P(\underline{w}) d\underline{w}$$

Figure 1: Sample weights taken from a Bayesian Logistic Regression model. Each figure displays the decision boundary for the model $(\sigma(\underline{w}^T\underline{x} + b) = 0.5)$. \underline{w} is **perpendicular** to the decision boundary.

- notice, we have sampled very different weights, all of which give **reasonable** decision boundaries
- How can we use Bayesian Logistic Regression for classification?
 - we need to compute the **posterior predictive distribution**
 - analogously to **Bayesian Linear Regression**:

$$P(y \mid \underline{x}, \mathcal{D}) = \int P(y, \underline{w} \mid \underline{x}, \mathcal{D}) d\underline{w} = \int P(y \mid \underline{x}, \underline{w}) P(\underline{w} \mid \mathcal{D}) d\underline{w}$$

- this is a **weighted integral**: we are averaging all possible models $P(y \mid \underline{x}, \underline{w}) = \sigma((2y-1)[\underline{w}^T\underline{x} + b])$ given how **plausible** the parameters for the model are $P(\underline{w} \mid \mathcal{D})$
- How do the contours of Bayesian Logistic Regression differ from those of standard Logistic Regression?
 - with standard Logistic Regression, we have a fixed weight, so the contours will be parallel
 to the boundary
 - with **bayesian** Logistic Regression, we consider **all** possible models, so the contours need not be parallel or linear
 - this is because **different predictors** have different confidence levels when far away from the data

Figure 2: We plot contours for $P(y = 1 \mid \underline{x}, \mathcal{D})$. To the left, contours for **Bayesian Logistic Regression**: getting away from the data warps the contours, since in regions away from data the different predictors wll disagree. To the right, contours for a fixed weight **Logistic Regression**: getting away from the data doesn't affect the uncertainty of the predictions.

• What is MAP estimation?

- stands for maximum a posteriori estimation
- MLE seeks to maximise the likelihood of the data, given the model:

$$arg \max_{\underline{w}} P(\mathcal{D} \mid \underline{w})$$

 MAP seeks to maximise the posterior (i.e maximise the probability of the parameters, given the data; also known as finding the mode of the distribution)

$$\underset{w}{arg\ max}\ P(\underline{w}\mid\mathcal{D}) = \underset{w}{arg\ max}\ P(\mathcal{D}\mid\underline{w})P(\underline{w})$$

(since the **marginal likelihood** $P(\mathcal{D})$ is constant it doesn't affect the max)

- What is the result of fitting Logistic Regression weights using MAP?
 - we can apply MAP to the **negative log-likelihood** to find the **weights** for our **Bayesian Logistic Regression** model:

$$\begin{split} \underline{w}^* &= -\arg\min_{\underline{w}} \ \log P(\underline{w} \mid \mathcal{D}) \\ &= -\arg\min_{\underline{w}} \ [\log P(\mathcal{D} \mid \underline{w}) + \log P(\underline{w})] \end{split}$$

- if we have a **Gaussian prior**:

$$\underline{w} \sim \mathcal{N}(0, \sigma_w^2 \mathbb{I})$$

then:

$$\log P(\underline{w}) = -\frac{1}{2\sigma_w^2} \underline{w}^T \underline{w}$$

- hence, our MAP estimation becomes:

$$\underline{w}^* = -arg \min_{\underline{w}} \left[\log P(\mathcal{D} \mid \underline{w}) - \frac{1}{2\sigma_w^2} \underline{w}^T \underline{w} \right]$$

- this is precisely the negative log likelihood with L^2 regularisation of the weights!

• Is MAP a Bayesian procedure?

- no, since **Bayesian** methods don't fix an unknwon parameter vector (in our case \underline{w})
- we can think of MAP as a**crude** approximation for a Bayesian procedure: as we saw above,
 Bayesian Logistic Regression has very different contours than the contours obtained by a Logistic Regression model fitted with MAP

3 The Laplace Approximation

3.1 The Posterior for Bayesian Logistic Regression

- How tractable is the computation of the predicitve posterior for Bayesian Logistic Regression?
 - in general, evaluating:

$$P(y \mid \underline{x}, \mathcal{D}) = \int P(y \mid \underline{x}, \underline{w}) P(\underline{w} \mid \mathcal{D}) d\underline{w}$$

in closed-form is intractable

- even if we use the trick:

$$P(y \mid \underline{x}, \mathcal{D}) = \mathbb{E}_{\underline{w} \sim P(\underline{w} \mid \mathcal{D})}[P(y \mid \underline{x}, \underline{w})]$$

and approximate using Monte-Carlo Estimation:

$$\mathbb{E}_{\underline{w} \sim P(\underline{w} \mid \mathcal{D})}[P(y \mid \underline{x}, \underline{w})] \approx \frac{1}{K} \sum_{k=1}^{K} P(y \mid \underline{x}, \underline{w}^{(k)}), \qquad \underline{w}^{(k)} \sim P(\underline{w} \mid \mathcal{D})$$

$$= \frac{1}{K} \sum_{k=1}^{K} \sigma(\underline{w}^{(k)T} \underline{x})$$

we still need to sample \underline{w} from our **posterior**:

$$P(\underline{w} \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \underline{w})P(\underline{w})}{P(\mathcal{D})}$$

which is problematic for 2 reasons:

1. computing the marginal likelihood:

$$P(\mathcal{D}) = \int P(\mathcal{D} \mid \underline{w}) P(\underline{w}) d\underline{w}$$

is again, highly non-trivial

- 2. even if we choose to ignore it (since it is a constant), how would we sample from the likelihood $P(\mathcal{D} \mid \underline{w})$ (for example, if its a Logistic Regression, or some other model which isn't as nice as some standard distribution, like normal/binomial/bernoulli/etc...)
- methods such as Markov Chain Monte Carlo can be used to sample from posteriors of models like logistic regression and neural networks; however, this is beyond the scope of the course

• What alternatives are available for computing the posterior of the Bayesian Logistic Regression?

- 1. Use a parametric distribution (i.e normal, bernoulli) to define the likelihood and priors
- 2. Make approximations:
 - reduce the non-parametric distribution into a **simpler** one (i.e Gaussian)
 - approximate by matching the **moments** (i.e mean, variance, etc...) of the distribution
 - use MAP for approximating the distribution

• When will the posterior of a Bayesian Logistic Regression not be Gaussian?

- say we observe a datapoint at x = -20, with label y = 1; we also know that we have a **normal** prior:

$$P(\underline{w}) \propto \mathcal{N}(\underline{w}; 0, 1)$$

and a logistic likelihood, with bias 10

- if we compute the **posterior** for the single observation, the posterior is:

$$P(\underline{w} \mid \mathcal{D}) \propto \mathcal{N}(w; 0, 1) \sigma(10 - 20w)$$

which we can plot as a function of w:

Figure 3: Since the sigmoid is basically 0 when w > 0.7, it "slices" a section of the positive region of the prior. After normalising, we obtain the above posterior distribution.

- the posterior is **not** symmetric, and thus, can't be **Gaussian**
- its believe is now that the weight must be **negative**: otherwise, x=-20 should've had the label y=0

• When will the posterior of a Bayesian Logistic Regression look Gaussian?

- if we have many observations, the posterior will begin to look Gaussian
- for instance, if we sample 500 labels $z^{(n)}$ from a logsitic regression model with no bias, and $x^{(n)} \sim \mathcal{N}(0, 100)$, and then build a Probabilistic Logistic Regression model with:

$$P(\underline{w}) \propto \mathcal{N}(\underline{w}; 0, 1)$$

we get posterior:

$$P(\underline{w} \mid \mathcal{D}) \propto \mathcal{N}(\underline{w}; 0, 1) \prod_{n=1}^{500} \sigma(wx^{(n)}z^{(n)})$$

which will look Gaussian:

Figure 4: The posterior over many samples looks (but isn't) Gaussian. Notice, it has high confidence that w = 1, as expected (since w = 1 is what we used to generate the data in the first place)

3.2 Computing the Laplace Approximation

- What is the Laplace approximation?
 - a way of approximating a non-parametric distribution by using a Gaussian
 - the resulting **Gaussian** will:
 - * have the same **mode**
 - * have the same **curvature** at the location of the mode
- What is the Laplace approximation for the posterior Bayesian Logistic Regression model?
 - define the energy as the negative log probability of the weight distribution for a Bayesian Logistic Regression model:

$$E(w) = -\log P(w, \mathcal{D})$$

(this is defined up to the normalisation constant)

– this tells us that $P(\underline{w} \mid \mathcal{D})$ is a distribution of the form:

$$\frac{\exp(-E(\underline{w}))}{K}$$

where K is some normalisation constant

- notice, finding weights by minimising E is equivalent to performing a MAP approximation for the

(log) posterior:

$$\begin{split} \underline{w}^* &= -arg \min_{\underline{w}} \ \log P(\underline{w} \mid \mathcal{D}) \\ &= -arg \min_{\underline{w}} \ \log \left(\frac{P(\underline{w}, \mathcal{D})}{P(\mathcal{D})} \right) \\ &= -arg \min_{\underline{w}} \ \log \left(P(\underline{w}, \mathcal{D}) \right) \\ &= -arg \min_{\underline{w}} \ E(\underline{w}) \end{split}$$

where we have used monotonicity of the logarithm

– at the **minimum** of E, we have that $\nabla_{\underline{w}} E(\underline{w}^*) = \underline{0}$; moreover, the **curvature** of E at \underline{w}^* is determined by the **Hessian**:

$$H_{ij}(\underline{w}^*) = \frac{\partial^2 E}{\partial w_i \partial w_j} (\underline{w}^*)$$

which tells us how quickly E changes at the minimum in a given direction

– now, the **energy** for **multivariate Gaussian** with mean μ and covariance Σ (up to the normalising constant) is:

$$E_{\mathcal{N}}(\underline{w}) = \frac{1}{2}(\underline{w} - \underline{\mu})^T \Sigma^{-1}(\underline{w} - \underline{\mu})$$

- since Σ is positive definite, $E_{\setminus}(\underline{w}) \geq 0$, and clearly:

$$\underline{w}^* = \mu$$

minimises the energy

- we now determine the curvature. In one dimension:

$$E_{\mathcal{N}}(w) = \frac{(2-\mu)^2}{2\sigma^2}$$

so:

$$\frac{d^2E}{d^w} = \frac{d}{dw} \left(\frac{2(w-\mu)}{2\sigma^2} \right) = \frac{1}{\sigma^2}$$

so by analogy, the **Hessian** H will be:

$$H = \Sigma^{-1}$$

- hence, the **Laplace Approximation**:

$$P(\underline{w} \mid \mathcal{D}) \approx \mathcal{N}(\underline{w}; \underline{w}^*, H^{-1})$$

will have the same **mode** and **curvature** as the posterior $P(w \mid \mathcal{D})$

- What is the Laplace approximation for the normalisation constant of the posterior Bayesian Logistic Regression model?
 - we can use the **Laplace Approximation** to approximate:

$$P(\mathcal{D})$$

- we have:

$$P(\underline{w} \mid \mathcal{D}) = \frac{P(\underline{w}, \mathcal{D})}{P(\mathcal{D})}$$

$$\approx \mathcal{N}(\underline{w}; \underline{w}^*, H^{-1})$$

$$= \frac{|H|^{1/2}}{(2\pi)^{D/2}} \exp\left(-\frac{1}{2}(\underline{w} - \underline{w}^*)^T H(\underline{w} - \underline{w}^*)\right)$$

– at the mode \underline{w}^* we get that:

$$\frac{P(\underline{w}^*, \mathcal{D})}{P(\mathcal{D})} \approx \frac{|H|^{1/2}}{(2\pi)^{D/2}}$$

so we approximate $P(\mathcal{D})$ by:

$$P(\mathcal{D}) \approx \frac{P(\underline{w}^*, \mathcal{D})(2\pi)^{D/2}}{|H|^{1/2}} = P(\underline{w}^*, \mathcal{D})|2\pi H^{-1}|^{1/2}$$

3.3 Predicting with Bayesian Logistic Regression

- How can we use the Laplace Approximation to classify using Bayesian Logistic Regression?
 - we want to be able to compute:

$$P(y \mid \underline{x}, \mathcal{D}) = \int P(y \mid \underline{x}, \underline{w}) = P(\underline{w} \mid \mathcal{D}) d\underline{w}$$

(this is technically all conditioned on \mathcal{M} , our model choices)

- using the **Laplace Approximation**, this is:

$$P(y = 1 \mid \underline{x}, \mathcal{D}) \approx \int \sigma(\underline{w}^T \underline{x}) \mathcal{N}(\underline{w}; \underline{w}^*, H^{-1}) d\underline{w}$$

which can be written as an **expectation**:

$$P(y = 1 \mid \underline{x}, \mathcal{D}) \approx \mathbb{E}_{w \sim \mathcal{N}(w; w^*, H^{-1})} [\sigma(\underline{w}^T \underline{x})]$$

- now, notice since \underline{w} is normally distributed, $a = \underline{w}^T \underline{x}$ is a **scalar** which should also be normally distributed
- in particular:

$$\mathbb{E}[\underline{w}^T \underline{x}] = (\mathbb{E}[\underline{w}])^T \underline{x} = \underline{w}^{*T} \underline{x}$$

$$\begin{split} Var(a) &= \mathbb{E}[(\underline{w}^T\underline{x})^2] - (\underline{w}^{*T}\underline{x})^2 \\ &= \mathbb{E}[\underline{x}^T\underline{w}\underline{w}^T\underline{x}] - x^T\underline{w}^*\underline{w}^{*T}\underline{x} \\ &= \underline{x}^T \left(\mathbb{E}[\underline{w}\underline{w}^T] - \underline{w}^*\underline{w}^{*T} \right)\underline{x} \\ &= \underline{x}^T Cov(\underline{w})\underline{x} \\ &= \underline{x}^T H^{-1}\underline{x} \end{split}$$

so we have that:

$$p(a) = \mathcal{N}(a; \underline{w}^{*T}\underline{x}, \underline{x}^T H^{-1}\underline{x})$$

- hence, our expectation changes to:

$$P(y = 1 \mid \underline{x}, \mathcal{D}) \approx \mathbb{E}_{a \sim \mathcal{N}(a; \underline{w}^{*T} \underline{x}, \underline{x}^T H^{-1} \underline{x})} [\sigma(a)]$$
$$= \int \sigma(a) \mathcal{N}(a; \underline{w}^{*T} \underline{x}, \underline{x}^T H^{-1} \underline{x}) da$$

which is now a **one-dimensional** integral

- one dimensional integrals are easy to compute numerically, and can be done very easily
- What is the probit approximation?

- we can approximate the whole **predictive posterior** by using the **probit approximation**

$$P(y=1\mid\underline{x},\mathcal{D})\approx\sigma(\kappa\underline{w}^{*T}\underline{x}), \qquad \kappa=\frac{1}{\sqrt{1+\frac{\pi}{8}\underline{x}^{T}H^{-1}\underline{x}}}$$

- this has the benefit of:
 - * being quick to evaluate
 - * being interpretable
 - * being a **closed-form** expression
- this uses the MAP weights, and scales the activation down if there is uncertainty (so predictions will be less confident away from data)

3.4 Evaluating the Laplace Approximation

- When is the Laplace approximation reasonable?
 - assuming $E(\underline{w})$ is well behaved, we can expand its **Taylor Series** about the mode \underline{w}^*
 - in one-dimension:

$$E(w) \approx E(w^*) + E'(w^*)(w - w^*) + \frac{1}{2}E''(w^*)(w - w^*)^2 + \mathcal{O}(\delta^3) \approx E(w^*) + \frac{1}{2}H(w - w^*)^2$$

where $E'(w^*) = 0$, as w^* minimises E

- in multiple dimensions:

$$E(\underline{w}) \approx E(\underline{w}^*) + \frac{1}{2}(\underline{w} - \underline{w}^*)^T H(\underline{w} - \underline{w}^*)$$

- this indicates that close to \underline{w}^* the energy behaves **quadratically**: precisely like the energy for a **Gaussian** distribution
- hence, if the Taylor series is accurate (i.e the posterior is tightly peaked), the Taylor expansion of the energy will be accurate, and our approximation as a Gaussian will be good
- this is the Bayesian Central Limit Theorem
- In which situations is the Laplace approximation unreasonable?
 - when the approximated distribution isn't very Gaussian like, even if the Laplace approximation matches the mode and curvature, the approximation can be very off
 - for example, in certain directions of parameter space, data might not be too informative, which can produce an **asymmetric posterior** (as we saw above)

Figure 5: When the posterior distribution is non-Gaussian, then the values of the densities will likely not match.

- this means that the approximation of $P(\mathcal{D})$ won't be good (for example, in the diagram above, since $\mathcal{N}(w^*; w^*, H^{-1}) \geq P(w^*, \mathcal{D})$ our **posterior** is an **overestimate**, so we are **underestimating** $P(w^*, \mathcal{D})$, and thus, we will underestimate $P(\mathcal{D})$)
- another example of where this fares badly is for multimodal distributions (which are clearly non-Gaussian)

Figure 6: The Laplace Approximation clearly fails at gauging multimodal data, since it just expects one mode. Even if it correctly captures a mode, it might not be the "best" mode.

- this is problematic, since many NN posteriors will be multimodal
- if the **posterior** is **flat** in some direction, there will be near 0 curvature, in which case the Hessian won't be positive-definite, and thus, won't give us a meaningful approximation

4 Question

4.1 Notes Questions

1. Say that, as above, we consider the posterior for a single data point with y=1 and x=-20 with distribution:

$$P(\underline{w}) \propto \mathcal{N}(w; 0, 0.1)$$

$$P(w \mid \mathcal{D}) \propto \mathcal{N}(w; 0, 0.1) \sigma(10 - 20w)$$

How does the posterior $P(\underline{w} \mid \mathcal{D})$ look?

- notice, the variance is now much smaller, so most of the probability mass will be clustered around w=0
- the sigmoid is basically 1 for w < 0.3, so:

$$P(\underline{w} \mid \mathcal{D}) \approx P(\underline{w})$$

- the sigmoid will only have the effect of "cutting" the distribution when w >= 0.5, but for these points, the prior has nearly 0 probability mass
- hence, prior and posterior should be nearly indistinguishable

2. The *Poisson* distribution is defined by a parameter λ . Say we have observed r counts from data. The prior and likelihood for a Poisson distribution is:

$$P(\lambda) \propto \frac{1}{\lambda}$$

$$P(r \mid \lambda) = \exp(-\lambda) \frac{\lambda^r}{r!}$$

Use a Laplace approximation to the powerior over λ , given an observed count, to infer the distribution of λ .

• we define the energy as (up to a constant):

$$E(\lambda) = -\log(P(\lambda)P(r \mid \lambda)) = \lambda - (r-1)\log\lambda$$

• the minimum λ^* is:

$$E'(\lambda) = 1 - \frac{r-1}{\lambda} \implies \lambda^* = r - 1$$

 \bullet the curvature H is:

$$E''(\lambda^*) = \frac{r-1}{\lambda^{*2}} = \frac{1}{r-1}$$

• hence, and assuming that r > 1 (otherwise the curvature will be undefined):

$$P(\lambda \mid r) \approx \mathcal{N}(\lambda; r - 1, r - 1)$$