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Based on the online notes here.

1 Recap: Bayesian Linear Regression

In Bayesian Linear Regression, we have:

• a prior distribution on weights:

P (w)

• a likelihood, of seeing some data D, given a certain weight setting:

P (D | w)

• using this, we can compute a posterior distribution, which tells us
how weights should look, given that we have observed data D:

P (w | D) =
P (D | w)P (w)

P (D)

If we use a normally distributed prior and likelihood, then the poste-
rior P (w | D) can be easily sampled from.

If we want to use our Bayesian Linear Regression to actually make
predictions, we need to define a posterior predictive distribution:

P (y | x,D)

which predicts a value y, given some observation x and all the data seen by
the model previously D. To determine the posterior predictive distri-
bution, we apply the sum and product rules, which allow us to condition
on weights, and thus, allow us to utilise our posterior to make predic-
tions:

P (y | x,D) =

∫
P (y, w | x,D)dw =

∫
P (y | x,w)P (w | D)dw

where P (y | x,w) is the predictive distribution, which gives the proba-
bility of observing y given our weights w and an input x.
In practice, sampling from the posterior to get weights, or computing
the posterior predictive distribution are highly non-trivial tasks:
for instance, we might not even have a closed-form, parametrised distribu-
tion. On the other hand, if we have a normal posterior and predictive
model, then we can derive a new normal distribution for the posterior
predictive distribution.
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2 Bayesian Logistic Regression

2.1 Recap: Logistic Regression

The Logistic Regression model is used to perform binary classifica-
tion:

P (y = 1 | x,w) = σ(wTx+ b) =
1

1 + exp(−(wTx+ b))

To determine w, we can use a Maximum Likelihood Estimation:
given an input matrix X and observations y:

P (y | X,w) =
∏

σ(z(n)wTx(n))

where:
z(n) = 2y(n) − 1

and y(n) is a binary feature.
In practice, we typically minimise the negative log likelihood, and add
a regularisation parameter:

w∗ = arg max
w

[logP (y | X,w)− λwTw]

2.2 Probabilistic Logistic Regression

• What is the posterior distribution for a Bayesian Logistic Regression model?

– as with Bayesian Linear Regression, we will have:

∗ a prior over weights w:
P (w)

∗ a likelihood of observing data given weights. This will be our Logistic Regression:

P (D | w) = σ(wTx+ b)

– using this, we obtain a posterior:

P (w | D) =
P (D | w)P (w)

P (D)

where we can compute the marginal likelihood P (D) by marginalisation:

P (D) =

∫
P (D | w)P (w)dw
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Figure 1: Sample weights taken from a Bayesian Logistic Regression model. Each figure displays the decision
boundary for the model (σ(wTx+ b) = 0.5). w is perpendicular to the decision boundary.

– notice, we have sampled very different weights, all of which give reasonable decision boundaries

• How can we use Bayesian Logistic Regression for classification?

– we need to compute the posterior predictive distribution

– analogously to Bayesian Linear Regression:

P (y | x,D) =

∫
P (y, w | x,D)dw =

∫
P (y | x,w)P (w | D)dw

– this is aweighted integral: we are averaging all possible models P (y | x,w) = σ((2y−1)[wTx+b])
given how plausible the parameters for the model are P (w | D)

• How do the contours of Bayesian Logistic Regression differ from those of standard Logistic
Regression?

– with standard Logistic Regression, we have a fixed weight, so the contours will be parallel
to the boundary

– with bayesian Logistic Regression, we consider all possible models, so the contours need not be
parallel or linear

– this is because different predictors have different confidence levels when far away from the data
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Figure 2: We plot contours for P (y = 1 | x,D). To the left, contours for Bayesian Logistic Regression:
getting away from the data warps the contours, since in regions away from data the different predictors wll
disagree. To the right, contours for a fixed weight Logistic Regression: getting away from the data doesn’t
affect the uncertainty of the predictions.

• What is MAP estimation?

– stands for maximum a posteriori estimation

– MLE seeks to maximise the likelihood of the data, given the model:

arg max
w

P (D | w)

– MAP seeks to maximise the posterior (i.e maximise the probability of the parameters, given
the data; also known as finding the mode of the distribution)

arg max
w

P (w | D) = arg max
w

P (D | w)P (w)

(since the marginal likelihood P (D) is constant it doesn’t affect the max)

• What is the result of fitting Logistic Regression weights using MAP?

– we can apply MAP to the negative log-likelihood to find the weights for our Bayesian
Logistic Regression model:

w∗ = −arg min
w

logP (w | D)

= −arg min
w

[logP (D | w) + logP (w)]

– if we have a Gaussian prior:
w ∼ N (0, σ2

wI)

then:

logP (w) = − 1

2σ2
w

wTw
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– hence, our MAP estimation becomes:

w∗ = −arg min
w

[
logP (D | w)− 1

2σ2
w

wTw

]
– this is precisely the negative log likelihood with L2 regularisation of the weights!

• Is MAP a Bayesian procedure?

– no, since Bayesian methods don’t fix an unknwon parameter vector (in our case w)

– we can think of MAP as acrude approximation for a Bayesian procedure: as we saw above,
Bayesian Logistic Regression has very different contours than the contours obtained by a Logistic
Regression model fitted with MAP

3 The Laplace Approximation

3.1 The Posterior for Bayesian Logistic Regression

• How tractable is the computation of the predicitve posterior for Bayesian Logistic Re-
gression?

– in general, evaluating:

P (y | x,D) =

∫
P (y | x,w)P (w | D)dw

in closed-form is intractable

– even if we use the trick:
P (y | x,D) = Ew∼P (w | D)[P (y | x,w)]

and approximate using Monte-Carlo Estimation:

Ew∼P (w | D)[P (y | x,w)] ≈ 1

K

K∑
k=1

P (y | x,w(k)), w(k) ∼ P (w | D)

=
1

K

K∑
k=1

σ(w(k)Tx)

we still need to sample w from our posterior:

P (w | D) =
P (D | w)P (w)

P (D)

which is problematic for 2 reasons:

1. computing the marginal likelihood:

P (D) =

∫
P (D | w)P (w)dw

is again, highly non-trivial

2. even if we choose to ignore it (since it is a constant), how would we sample from the likelihood
P (D | w) (for example, if its a Logistic Regression, or some other model which isn’t as nice
as some standard distribution, like normal/binomial/bernoulli/etc...)

– methods such as Markov Chain Monte Carlo can be used to sample from posteriors of
models like logistic regression and neural networks; however, this is beyond the scope of the
course
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• What alternatives are available for computing the posterior of the Bayesian Logistic
Regression?

1. Use a parametric distribution (i.e normal, bernoulli) to define the likelihood and priors

2. Make approximations:

– reduce the non-parametric distribution into a simpler one (i.e Gaussian)

– approximate by matching the moments (i.e mean, variance, etc...) of the distribution

– use MAP for approximating the distribution

• When will the posterior of a Bayesian Logistic Regression not be Gaussian?

– say we observe a datapoint at x = −20, with label y = 1; we also know that we have a normal
prior:

P (w) ∝ N (w; 0, 1)

and a logistic likelihood, with bias 10

– if we compute the posterior for the single observation, the posterior is:

P (w | D) ∝ N (w; 0, 1)σ(10− 20w)

which we can plot as a function of w:

Figure 3: Since the sigmoid is basically 0 when w > 0.7, it “slices” a section of the positive region of the
prior. After normalising, we obtain the above posterior distribution.

– the posterior is not symmetric, and thus, can’t be Gaussian

– its believe is now that the weight must be negative: otherwise, x = −20 should’ve had the label
y = 0

• When will the posterior of a Bayesian Logistic Regression look Gaussian?

– if we have many observations, the posterior will begin to look Gaussian

– for instance, if we sample 500 labels z(n) from a logsitic regression model with no bias, and
x(n) ∼ N (0, 100), and then build a Probabilistic Logistic Regression model with:

P (w) ∝ N (w; 0, 1)
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we get posterior:

P (w | D) ∝ N (w; 0, 1)

500∏
n=1

σ(wx(n)z(n)

which will look Gaussian:

Figure 4: The posterior over many samples looks (but isn’t) Gaussian. Notice, it has high confidence that
w = 1, as expected (since w = 1 is what we used to generate the data in the first place)

3.2 Computing the Laplace Approximation

• What is the Laplace approximation?

– a way of approximating a non-parametric distribution by using a Gaussian

– the resulting Gaussian will:

∗ have the same mode

∗ have the same curvature at the location of the mode

• What is the Laplace approximation for the posterior Bayesian Logistic Regression model?

– define the energy as the negative log probability of the weight distribution for a Bayesian
Logistic Regression model:

E(w) = − logP (w,D)

(this is defined up to the normalisation constant)

– this tells us that P (w | D) is a distribution of the form:

exp(−E(w))

K

where K is some normalisation constant

– notice, finding weights by minimising E is equivalent to performing a MAP approximation for the
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(log) posterior:

w∗ = −arg min
w

logP (w | D)

= −arg min
w

log

(
P (w,D)

P (D)

)
= −arg min

w
log (P (w,D))

= −arg min
w

E(w)

where we have used monotonicity of the logarithm

– at the minimum of E, we have that ∇wE(w∗) = 0; moreover, the curvature of E at w∗ is
determined by the Hessian:

Hij(w
∗) =

∂2E

∂wi∂wj
(w∗)

which tells us how quickly E changes at the minimum in a given direction

– now, the energy for multivariate Gaussian with mean µ and covariance Σ (up to the normal-
ising constant) is:

EN (w) =
1

2
(w − µ)TΣ−1(w − µ)

– since Σ is positive definite, E\(w) ≥ 0, and clearly:

w∗ = µ

minimises the energy

– we now determine the curvature. In one dimension:

EN (w) =
(2− µ)2

2σ2

so:
d2E

dw
=

d

dw

(
2(w − µ)

2σ2

)
=

1

σ2

so by analogy, the Hessian H will be:
H = Σ−1

– hence, the Laplace Approximation:

P (w | D) ≈ N (w;w∗, H−1)

will have the same mode and curvature as the posterior P (w | D)

• What is the Laplace approximation for the normalisation constant of the posterior Bayesian
Logistic Regression model?

– we can use the Laplace Approximation to approximate:

P (D)

– we have:

P (w | D) =
P (w,D)

P (D)

≈ N (w;w∗, H−1)

=
|H|1/2

(2π)D/2
exp

(
−1

2
(w − w∗)TH(w − w∗)

)
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– at the mode w∗ we get that:
P (w∗,D)

P (D)
≈ |H|1/2

(2π)D/2

so we approximate P (D) by:

P (D) ≈ P (w∗,D)(2π)D/2

|H|1/2
= P (w∗,D)|2πH−1|1/2

3.3 Predicting with Bayesian Logistic Regression

• How can we use the Laplace Approximation to classify using Bayesian Logistic Regres-
sion?

– we want to be able to compute:

P (y | x,D) =

∫
P (y | x,w) = P (w | D)dw

(this is technically all conditioned on M, our model choices)

– using the Laplace Approximation, this is:

P (y = 1 | x,D) ≈
∫

σ(wTx)N (w;w∗, H−1)dw

which can be written as an expectation:

P (y = 1 | x,D) ≈ Ew∼N (w;w∗,H−1)[σ(w
Tx)]

– now, notice since w is normally distributed, a = wTx is a scalar which should also be normally
distributed

– in particular:
E[wTx] = (E[w])Tx = w∗Tx

V ar(a) = E[(wTx)2]− (w∗Tx)2

= E[xTwwTx]− xTw∗w∗Tx

= xT
(
E[wwT ]− w∗w∗T )x

= xTCov(w)x

= xTH−1x

so we have that:
p(a) = N (a;w∗Tx, xTH−1x)

– hence, our expectation changes to:

P (y = 1 | x,D) ≈ Ea∼N (a;w∗T x,xTH−1x)[σ(a)]

=

∫
σ(a)N (a;w∗Tx, xTH−1x)da

which is now a one-dimensional integral

– one dimensional integrals are easy to compute numerically, and can be done very easily

• What is the probit approximation?
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– we can approximate the whole predictive posterior by using the probit approiximation

P (y = 1 | x,D) ≈ σ(κw∗Tx), κ =
1√

1 + π
8x

TH−1x

– this has the benefit of:

∗ being quick to evaluate

∗ being interpretable

∗ being a closed-form expression

– this uses the MAP weights, and scales the activation down if there is uncertainty (so predictions
will be less confident away from data)

3.4 Evaluating the Laplace Approximation

• When is the Laplace approximation reasonable?

– assuming E(w) is well behaved, we can expand its Taylor Series about the mode w∗

– in one-dimension:

E(w) ≈ E(w∗) + E′(w∗)(w − w∗) +
1

2
E′′(w∗)(w − w∗)2 +O(δ3) ≈ E(w∗) +

1

2
H(w − w∗)2

where E′(w∗) = 0, as w∗ minimises E

– in multiple dimensions:

E(w) ≈ E(w∗) +
1

2
(w − w∗)TH(w − w∗)

– this indicates that close to w∗ the energy behaves quadratically: precisely like the energy for a
Gaussian distribution

– hence, if the Taylor series is accurate (i.e the posterior is tightly peaked), the Taylor expansion of
the energy will be accurate, and our approximation as a Gaussian will be good

– this is the Bayesian Central Limit Theorem

• In which situations is the Laplace approximation unreasonable?

– when the approximated distribution isn’t very Gaussian like, even if the Laplace approximation
matches the mode and curvature, the approximation can be very off

– for example, in certain directions of parameter space, data might not be too informative, which
can produce an asymmetric posterior (as we saw above)

Page 11



Figure 5: When the posterior distribution is non-Gaussian, then the values of the densities will likely not
match.

– this means that the approximation of P (D) won’t be good (for example, in the diagram above,
since N (w∗;w∗, H−1) ≥ P (w∗,D) our posterior is an overestimate, so we are underestimat-
ing P (w∗,D), and thus, we will underestimate P (D))

– another example of where this fares badly is for multimodal distributions (which are clearly
non-Gaussian)

Figure 6: The Laplace Approximation clearly fails at gauging multimodal data, since it just expects one
mode. Even if it correctly captures a mode, it might not be the “best” mode.

– this is problematic, since many NN posteriors will be multimodal

– if the posterior is flat in some direction, there will be near 0 curvature, in which case the Hessian
won’t be positive-definite, and thus, won’t give us a meaningful approximation
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4 Question

4.1 Notes Questions

1. Say that, as above, we consider the posterior for a single data point with y = 1 and x = −20
with distribution:

P (w) ∝ N (w; 0, 0.1)

P (w | D) ∝ N (w; 0, 0.1)σ(10− 20w)

How does the posterior P (w | D) look?

• notice, the variance is now much smaller, so most of the probability mass will be clustered around
w = 0

• the sigmoid is basically 1 for w < 0.3, so:

P (w | D) ≈ P (w)

• the sigmoid will only have the effect of “cutting” the distribution when w >= 0.5, but for these
points, the prior has nearly 0 probability mass

• hence, prior and posterior should be nearly indistinguishable

2. The Poisson distribution is defined by a parameter λ. Say we have observed r counts from
data. The prior and likelihood for a Poisson distribution is:

P (λ) ∝ 1

λ

P (r | λ) = exp(−λ)
λr

r!

Use a Laplace approximation to the powerior over λ, given an observed count, to infer the
distribution of λ.

• we define the energy as (up to a constant):

E(λ) = − log(P (λ)P (r | λ)) = λ− (r − 1) log λ

• the minimum λ∗ is:

E′(λ) = 1− r − 1

λ
=⇒ λ∗ = r − 1

• the curvature H is:

E′′(λ∗) =
r − 1

λ∗2 =
1

r − 1

• hence, and assuming that r > 1 (otherwise the curvature will be undefined):

P (λ | r) ≈ N (λ; r − 1, r − 1)
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