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Based on the online notes here.

1 Recap: Bayesian Linear Regression

In Bayesian Linear Regression, we have:

e q prior distribution on weights:

P(w)

e q likelihood, of seeing some data D, given a certain weight setting:

P(D | w)

e using this, we can compute a posterior distribution, which tells us
how wetghts should look, given that we have observed data D:
P(D | w)P(w)
P(D)

P(w|D) =

If we use a normally distributed prior and likelithood, then the poste-
rior P(w | D) can be easily sampled from.

If we want to use our Bayesian Linear Regression to actually make
predictions, we need to define a posterior predictive distribution:

P(y | z,D)

which predicts a value y, given some observation x and all the data seen by
the model previously D. To determine the posterior predictive distri-
bution, we apply the sum and product rules, which allow us to condition
on weights, and thus, allow us to utilise our posterior to make predic-
tions:

Ply |z, D) = / i | D)ok = / P(y | z,w)P(w | D)dw

where P(y | z,w) is the predictive distribution, which gives the proba-
bility of observing y given our weights w and an input x.

In practice, sampling from the posterior to get weights, or computing
the posterior predictive distribution are highly non-trivial tasks:
for instance, we might not even have a closed-form, parametrised distribu-
tion. On the other hand, if we have a normal posterior and predictive
model, then we can derive a new normal distribution for the posterior
predictive distribution.
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2 Bayesian Logistic Regression

2.1 Recap: Logistic Regression

The Logistic Regression model is used to perform binary classifica-
tion:

Ply=1|z,w)=ocw'z+b) = 1+ exp(—l(wT£+ b))

To determine w, we can use a Maximum Likelithood Estimation:
gwen an iput matrix X and observations y:

Py | X,w) Ha M)y T (™))
where:
2 =9y _ 1

and y™ is a binary feature.
In practice, we typically minimaise the negative log likelihood, and add
a regularisation parameter:

w* = arg maz[log P(y | X, w) — A’ w)

2.2 Probabilistic Logistic Regression
e What is the posterior distribution for a Bayesian Logistic Regression model?

— as with Bayesian Linear Regression, we will have:

* a prior over weights w:
P(w)

x a likelihood of observing data given weights. This will be our Logistic Regression:
P(D | w) = o(w"z+b)
— using this, we obtain a posterior:

P(D | w)P(w)

P(w | D) = P(D)

where we can compute the marginal likelihood P(D) by marginalisation:

:/P(D|Q)Pwdw
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Figure 1: Sample weights taken from a Bayesian Logistic Regression model. Each figure displays the decision
boundary for the model (o(w”z + b) = 0.5). w is perpendicular to the decision boundary.
— notice, we have sampled very different weights, all of which give reasonable decision boundaries
¢ How can we use Bayesian Logistic Regression for classification?

— we need to compute the posterior predictive distribution

— analogously to Bayesian Linear Regression:
Py 2.0) = [ Pl 2.D)dw = [ Ply | 2w)P(w | D)dw

— this is a weighted integral: we are averaging all possible models P(y | z,w) = o((2y—1)[w” z+b])
given how plausible the parameters for the model are P(w | D)

¢ How do the contours of Bayesian Logistic Regression differ from those of standard Logistic
Regression?

— with standard Logistic Regression, we have a fixed weight, so the contours will be parallel
to the boundary

— with bayesian Logistic Regression, we consider all possible models, so the contours need not be
parallel or linear

— this is because different predictors have different confidence levels when far away from the data
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Figure 2: We plot contours for P(y = 1 | z,D). To the left, contours for Bayesian Logistic Regression:
getting away from the data warps the contours, since in regions away from data the different predictors wll
disagree. To the right, contours for a fixed weight Logistic Regression: getting away from the data doesn’t
affect the uncertainty of the predictions.

e What is MAP estimation?

— stands for maximum a posteriori estimation

— MLE seeks to maximise the likelihood of the data, given the model:

arg max P(D | w)

w

— MAP seeks to maximise the posterior (i.e maximise the probability of the parameters, given
the data; also known as finding the mode of the distribution)

arg mazx P(w | D) = arg maz P(D | w)P(w)

w
(since the marginal likelihood P(D) is constant it doesn’t affect the max)
e What is the result of fitting Logistic Regression weights using MAP?

— we can apply MAP to the negative log-likelihood to find the weights for our Bayesian
Logistic Regression model:

*

w* = —arg min log P(w | D)

= —arg min [log P(D | w) + log P(w)]
w

— if we have a Gaussian prior:
w ~ N(0,03T)

then:

1
log P(w) = — ﬁwTw
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— hence, our MAP estimation becomes:

1
w* = —arg min |log P(D | w) — —wTw
w g g P(D | w) Sez

— this is precisely the negative log likelihood with L? regularisation of the weights!
e Is MAP a Bayesian procedure?

— no, since Bayesian methods don’t fix an unknwon parameter vector (in our case w)

— we can think of MAP as acrude approximation for a Bayesian procedure: as we saw above,
Bayesian Logistic Regression has very different contours than the contours obtained by a Logistic
Regression model fitted with MAP

3 The Laplace Approximation

3.1 The Posterior for Bayesian Logistic Regression

e How tractable is the computation of the predicitve posterior for Bayesian Logistic Re-
gression?

— in general, evaluating:

P(y | 2.D) = / Py | 2,w)P(w | D)dw

in closed-form is intractable
— even if we use the trick:
P(y|z,D)=Ey~pw | p)[Py | z,w)]

and approximate using Monte-Carlo Estimation:

K
S Py | zw®),  w® ~Pw|D)
k=1

1 K
=% Zg(w(k)T@
k=1

we still need to sample w from our posterior:

==

Ey~p@w | D[Py | 2,w)] ~

which is problematic for 2 reasons:

1. computing the marginal likelihood:
P(D) = [ P(D| w)Pw)dn

is again, highly non-trivial

2. even if we choose to ignore it (since it is a constant), how would we sample from the likelihood
P(D | w) (for example, if its a Logistic Regression, or some other model which isn’t as nice
as some standard distribution, like normal/binomial /bernoulli/etc...)

— methods such as Markov Chain Monte Carlo can be used to sample from posteriors of
models like logistic regression and neural networks; however, this is beyond the scope of the
course
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e What alternatives are available for computing the posterior of the Bayesian Logistic
Regression?
1. Use a parametric distribution (i.e normal, bernoulli) to define the likelihood and priors
2. Make approximations:

— reduce the non-parametric distribution into a simpler one (i.e Gaussian)
— approximate by matching the moments (i.e mean, variance, etc...) of the distribution
— use MAP for approximating the distribution

e When will the posterior of a Bayesian Logistic Regression not be Gaussian?

— say we observe a datapoint at x = —20, with label y = 1; we also know that we have a normal
prior:

P(w) o< N(w; 0,1)
and a logistic likelihood, with bias 10

— if we compute the posterior for the single observation, the posterior is:
P(w | D) x N(w;0,1)0(10 — 20w)

which we can plot as a function of w:

4 2 0 2 4
w

Figure 3: Since the sigmoid is basically 0 when w > 0.7, it “slices” a section of the positive region of the
prior. After normalising, we obtain the above posterior distribution.

— the posterior is not symmetric, and thus, can’t be Gaussian

— its believe is now that the weight must be negative: otherwise, z = —20 should’ve had the label
y=0

e When will the posterior of a Bayesian Logistic Regression look Gaussian?

— if we have many observations, the posterior will begin to look Gaussian

— for instance, if we sample 500 labels z(™) from a logsitic regression model with no bias, and
(™ ~ N(0,100), and then build a Probabilistic Logistic Regression model with:

P(w) o< A (w;0,1)
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we get posterior:
500

P(w | D) x N(w;0,1) H o(wz™ 2™

n=1

which will look Gaussian:

—p(w) )
— — —p(w|D) N

4 2 0
w

Figure 4: The posterior over many samples looks (but isn’t) Gaussian. Notice, it has high confidence that
w =1, as expected (since w = 1 is what we used to generate the data in the first place)

3.2 Computing the Laplace Approximation
e What is the Laplace approximation?

— a way of approximating a non-parametric distribution by using a Gaussian

— the resulting Gaussian will:

* have the same mode
* have the same curvature at the location of the mode

e What is the Laplace approximation for the posterior Bayesian Logistic Regression model?

— define the energy as the negative log probability of the weight distribution for a Bayesian

Logistic Regression model:
E(w) = —log P(w, D)

(this is defined up to the normalisation constant)
— this tells us that P(w | D) is a distribution of the form:
exp(—E(w))
K

where K is some normalisation constant
— notice, finding weights by minimising F is equivalent to performing a MAP approximation for the
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(log) posterior:

*

P(w,D)
P(D)
= —arg min log (P(Mv D))

= —arg min log <

w

= —arg min E(w)

w
where we have used monotonicity of the logarithm

— at the minimum of E, we have that V,E(w*) = 0; moreover, the curvature of E at w* is
determined by the Hessian:

j(ﬂ ) N 8wi8wj (M )

which tells us how quickly E changes at the minimum in a given direction

H;

— now, the energy for multivariate Gaussian with mean p and covariance ¥ (up to the normal-
ising constant) is:
1 -
Ex(w) = 5(w—p)" S (w—p)

— since ¥ is positive definite, E\ (w) > 0, and clearly:
w' = p

minimises the energy

— we now determine the curvature. In one dimension:

Ey(w) = %

s0:
d2E_i 2w—p)\ _ 1
dv  dw 202 o2
so by analogy, the Hessian H will be:
H=x""!

— hence, the Laplace Approximation:
P(w | D) =~ N(w;w", H™")
will have the same mode and curvature as the posterior P(w | D)

e What is the Laplace approximation for the normalisation constant of the posterior Bayesian
Logistic Regression model?

— we can use the Laplace Approximation to approximate:
P(D)
— we have:
P(w,D)

P@\D)ZW

~ N (w;w*, H)

HI|/? 1
= (|27T;D/26Xp (—z(w—w*)TH(w—w*)>
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— at the mode w* we get that:
P(w*,D) _ |H|'?
P(D) ~ (2m)P/2

so we approximate P(D) by:

P(w*,D)(27)P/?

P(D) ~ FiRE

= P(w",D)|2rH|'/?

3.3 Predicting with Bayesian Logistic Regression

e How can we use the Laplace Approximation to classify using Bayesian Logistic Regres-
sion?

— we want to be able to compute:
P(y|2.0) = [ Ply| 2.w) = Plw | D)dw

(this is technically all conditioned on M, our model choices)

— using the Laplace Approximation, this is:

Ply=1|z,D)~ /U(QTQ)N(M;M*,H*)C@
which can be written as an expectation:
Ply=1 l Z, D) ~ EQNN(Q;M*,H*I)[U(QTﬁ)]

— now, notice since w is normally distributed, @ = w” z is a scalar which should also be normally
distributed

— in particular:

so we have that:

— hence, our expectation changes to:
P(y =1 | <z, D) ~ EaNN(a;y*Tg,gTHflg) [U(a)]
= /U(a)N(a;M*TL zTH 1z)da

which is now a one-dimensional integral
— one dimensional integrals are easy to compute numerically, and can be done very easily

e What is the probit approximation?
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we can approximate the whole predictive posterior by using the probit approiximation

1

1+ §zTH

Ply=1]|z,D)~ J(KQ*T@, K=

this has the benefit of:
* being quick to evaluate
* being interpretable
* being a closed-form expression

this uses the MAP weights, and scales the activation down if there is uncertainty (so predictions
will be less confident away from data)

3.4 Evaluating the Laplace Approximation

e When is the Laplace approximation reasonable?

assuming E(w) is well behaved, we can expand its Taylor Series about the mode w*
in one-dimension:

Bw) % Bw*) + B'(w)(w — w*) + 5 B (w*)(w — w)? + O(5%) = B(w*) + 3 Hlw — w")’

where E'(w*) = 0, as w* minimises £
in multiple dimensions:
1
E(w) ~ Ew") + 5w - w")" H(w - w”)
this indicates that close to w* the energy behaves quadratically: precisely like the energy for a
Gaussian distribution

hence, if the Taylor series is accurate (i.e the posterior is tightly peaked), the Taylor expansion of
the energy will be accurate, and our approximation as a Gaussian will be good

this is the Bayesian Central Limit Theorem

e In which situations is the Laplace approximation unreasonable?

when the approximated distribution isn’t very Gaussian like, even if the Laplace approximation
matches the mode and curvature, the approximation can be very off

for example, in certain directions of parameter space, data might not be too informative, which
can produce an asymmetric posterior (as we saw above)
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Figure 5: When the posterior distribution is non-Gaussian, then the values of the densities will likely not
match.

— this means that the approximation of P(D) won’t be good (for example, in the diagram above,
since N'(w*;w*, H=!) > P(w*, D) our posterior is an overestimate, so we are underestimat-
ing P(w*, D), and thus, we will underestimate P(D))

— another example of where this fares badly is for multimodal distributions (which are clearly
non-Gaussian)

Figure 6: The Laplace Approximation clearly fails at gauging multimodal data, since it just expects one
mode. Even if it correctly captures a mode, it might not be the “best” mode.

— this is problematic, since many NN posteriors will be multimodal

— if the posterior is flat in some direction, there will be near 0 curvature, in which case the Hessian
won’t be positive-definite, and thus, won’t give us a meaningful approximation
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4 Question

4.1 Notes Questions

1. Say that, as above, we consider the posterior for a single data point with y =1 and z = —20
with distribution:
P(w) < N (w;0,0.1)

P(w | D) < N(w;0,0.1)0(10 — 20w)
How does the posterior P(w | D) look?

e notice, the variance is now much smaller, so most of the probability mass will be clustered around
w =10

e the sigmoid is basically 1 for w < 0.3, so:
P(w | D) = P(w)
e the sigmoid will only have the effect of “cutting” the distribution when w >= 0.5, but for these

points, the prior has nearly 0 probability mass

e hence, prior and posterior should be nearly indistinguishable

2. The Poisson distribution is defined by a parameter \. Say we have observed r counts from
data. The prior and likelihood for a Poisson distribution is:

P\ x —

T

P(r | X) = exp(-0)

Use a Laplace approximation to the powerior over )\, given an observed count, to infer the
distribution of A.

e we define the energy as (up to a constant):

E(A\) = —=log(P(N)P(r|AN)=X—(r—1)logA

e the minimum \* is: L
r—

\ = N'=r-1

E\)=1-

e the curvature H is: ) )
E// AF) = = _
(A% A*2 r—1

e hence, and assuming that r > 1 (otherwise the curvature will be undefined):

PAr)y=NMXNr—1,7r—1)
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