
Machine Learning and Pattern Recognition - Week 8 -

Autoencoders & PCA

Antonio León Villares

November 2022

Contents

1 Unsupervised Representation Learning: Autoencoders 2
1.1 Unsupervised Representation Learning . 2
1.2 Autoencoders . 2

2 Unsupervised Representation Learning: PCA 5
2.1 Covariance Matrices . 5
2.2 Principal Component Analysis . 7
2.3 Alternative Decomposition: SVD . 10
2.4 Probabilistic PCA . 11

3 Question 12
3.1 Notes Questions . 12

4 Tutorial 12

1

Based on the online notes here.

1 Unsupervised Representation Learning: Autoencoders

1.1 Unsupervised Representation Learning

• How do neural networks help identify features in our data?

– given targets, a neural network learns weights which convert an input into a feature vector

– this is supervised representation learning

• Why is unsupervised representation learning important?

– good labelled data is scarce

– unsupervised representation learning seeks to learn features for unlabelled data

– these representation are useful, since:

1. They provide features which are inherent in the data, allowing us to better understand
the data (i.e given an image, it can learn that edges are important for differentiating between
2 inputs)

2. They allow us to reduce the dimensionality of the data, so:

∗ computations can be more efficient

∗ we can visualise high dimensional data

∗ useful for downstream tasks (i.e clustering, ourlier detection)

1.2 Autoencoders

• What is an autoencoder?

– a neural network architecture which is self-supervised

– it seeks to learn representations of data by learning the identity function:

f(x) = x

– in order to learn a useful representation, we typically place constraints on the architecture

• How does the data processing inequality affect the power of autoencoder?

– an autoencoder learns a new representation of the data which we feed

– however, it can’t add information to this representation: it will either lose or keep the infor-
mation

– as such, autoencoder constraints must be carefully chosen, to ensure we truly extract the
meaningful features

• How does a bottleneck autoencoder learn features?

– with a bottleneck constraint, if we have an input x ∈ RD, we require that the hidden repre-
sentation is lower-dimensional, h ∈ RK , where K << D:

Page 2

https://mlpr.inf.ed.ac.uk/2022/notes/

– by doing this, we force the network to learn a meaningful, compressed representation of the
input

– the more meaningful the features it finds, the easier the reconstruction will be

• How does a denoising autoencoder learn features?

– a denoising autoencoder doesn’t require learning a compressed representation

– input features are corrupted, by randomly setting certain values to 0

– the autoencoder then has to denoise the input, to reconstruct the original input

Figure 1: The denoising autoencoder learns a larger feature representation D ≥ K to denoise the corrupted
input.

Page 3

Figure 2: Example of corrupted data, and how the denoising autoencoder removes the noise.

– the idea is that the autoencoder will learn to combine the non-zero features to reconstruct the
missing features; by doing this, it is learning the underlying structures which define an object,
even if there is noise involved

• How does a sparse autoencoder learn features?

– a sparse autoencoder limits the amount of hidden units which can be non-zero (that is, it
enforces a large proportion of hidden units to be set to 0)

– this architecture forces the network to be “intelligent” about how a select number of features can
be combined to reconstruct the input

– thus, even if we have a large number of input features, the network learns to only rely on a few
of them - the ones which are meaningful and truly representative

– more details of implementation can be found in these notes by Andrew Ng

• Why is it important to set constraints on the autoencoder architecture?

– our objective is that f(x) ≈ x

Page 4

https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

– without constraints, a network can learn:

f(x) = Wx

where W = I
– this certainly fulfills the objective f(x) ≈ x, but it isn’t learning a useful representation

2 Unsupervised Representation Learning: PCA

2.1 Covariance Matrices

• How can we use an eigendecomposition to sample from a multivariate normal distribution?

– say we have a multivariate Gaussian:

N (0,Σ)

– by the Spectral Theorem, since Σ is real and diagonal, it has an eigendecomposition
involving only real eigenvalues, with orthonormal eigenvectors

– moreover, we can then decompose Σ via:

Σ = QΛQT

where:

∗ Q is an orthogonal matrix, with columns as the eigenvectors of Σ

∗ Λ is a diagonal matrix, with the eigenvalues of Σ as the diagonal elements

Let A ∈ Rn×n be a matrix. An eigenvalue of A is a constant λ ∈ C,
such that ∃v ∈ Rn satisfying:

Av = λv

In particular, if we want to compute λ, will be the roots of the charac-
teristic polynomial:

P (λ) = |A− λI| = 0

where | · | is the determinant.
If n = 2 and:

A =

a b

c d


then:

P (λ) = (a− λ)(d− λ)− bc = λ2 − λ(ad) + (ad− bc)

which has solutions:

λ =
ad±

√
a2d2 − 4(ad− bc)

2

Page 5

– now recall, since we assume that Σ is positive definite, we know that ∃A such that:

Σ = AAT

which corresponds to the covariance matrix of a random variable y ∼ N (0,Σ) given by:

y = Ax

where x ∼ N (0, I) is distributed as a standard normal random variable

– hence, to sample from N (0,Σ), we need to be able to write:

Σ = QΛQT = AAT

– notice, if λi are the eigenvalues of Σ, define:

L = diag(
√
λ1, . . . ,

√
λn)

then:
LLT = L2 = Λ

so:
Σ = QΛQT = QLLTQT = (QL)(QL)T

so if we define A = QL, we can sample from N (0,Σ) by using the eigendecomposition

• How does the distribution sampled from N (0, I) differ from the distribution sampled from
N (0,Σ)?

– say x ∼ N (0, I). Then, drawing samples gievs us a spherical distribution:

– if we sample y ∼ N (0,Σ), this is equivalent to transfoming our samples x by using A = QL,
where:

1. L =
√
Λ is a diagonal matrix, so Lx stretches x, such that xd becomes

√
λdxd

2. Q corresponds to a rotation, such that the Lx will now be aligned with the eigenvector
columns

Figure 3: Mapping from x to y, where Σ =

 2 0.8

0.8 1

.

Page 6

If you are wondering why Q is a rotation, recall its columns are or-
thonormal vectors. As such, they form a basis for the space. More-
over, recall, given an orthonormal basis vi, if we want to convert a vector
x described in terms of the standard basis into a vector x̃ written in terms
of vi, we just need to use dot products:

x̃d = ⟨vd, x⟩

Now, matrix multiplication is nothing but a bunch of dot products, so
when we compute Q(Lx), we are doing nothing but mapping Lx into its
coordinates in terms of the eigenvector basis. Since the eigenvectors are
orthonormal, this corresponds to “rotating” our standard x,y axes.)

2.2 Principal Component Analysis

• What is principal component analysis?

– a dimensionality reduction technique

– can be thought of as a linear autoencoder (i.e the non-liner function are set to the identity)

– in particular, if we want to learn f(x) ≈ x, x ∈ RK , a linear autoencoder will look like:

h = W (1)x+ b(1), W (1) ∈ RK×D

f = W (2)h+ b(2), W (2) ∈ RD×K

– with PCA, we reformulate this, and seek to find a single parameter matrix V ∈ RD×K such
that:

h = W (1)x+ b(1) = V T (x− x̄)

f = W (2)h+ b(2) = V h+ x̄

where x̄ is the mean vector of our training data:

x̄ =
1

N

N∑
n=1

x(n)

– we first center our data by the mean, reduce it to D dimensions, and then we bring it back up to
K dimensions with the same parameters, and recenter by adding the mean again

• How does PCA find the matrix V ?

– we saw above that the eigenvectors of the covariance matrix are orthonormal, and span
the whole space

– when data is distributed with covariance Σ, it will be distributed along an ellipsoid, whose axes
are in the direction of these eigenvectors

– the length of these axes will be determined by the eigenvalues corresponding to the eigenvec-
tors

– PCA finds the matrix V by minimising the square error in reconstruction, by minimising the
difference between a data point and x̄ along the longest axes of the ellipsoid

– to do this, it sets V to have as columns the K eigenvectors corresponding to the K largest
eigenvalues

Page 7

– by doing this, we will be projecting the data into the space spanned by these K eigenvectors

– this minimises reconstruction error, since upon reconstructing the data, it will lie alongside the
principal components, such that the reconstructed data will be perpendicular to the original
data

Figure 4: If we reconstruct the data, it will lie along a subspace. By projecting to the principal components
(the eigenvectors), data which we reconstruct will lie perpendicular to the original data, thus minimising
reconstruction error.

– if K = D, we use all the eigenvectors, which span the whole space, and thus V V T = I (since they
are orthonormal)

Page 8

Figure 5: This is the same data as before. We project it down to the first principal component with PCA.
If we project back up into 2 dimensions, the data remains on the subspace generated by the eigenvector (a
one-dimensional line).

• What is an alternative interpretation for V ?

– an alternative viewing of PCA is that by mapping data to the space spanned by theK eigenvectors,
we are maximising variance of data along these axes

– maximising the variance ensures thatwe preserve as much of the original information as possible

– in fact, the eigenvalues provide us with a proportion of the variance explained along each axes

• What advantages does PCA have over gradient-based, non-linear autoencoders?

1. Unique Solution: V solely depends on eigenvectors, which are unique (up to scaling)

2. Easy Computation: computing the parameters V just requires standard linear algebra

3. Nesting: if we choose dimensions K,K∗ with K < K∗, the first K values in the hidden layer for
K and K∗ will have the same value (since they both use the same eigenvectors)

• Does PCA overfit to the data?

– technically no: it just uses features of the data to come up with a sensible transformation

– in fact, it can reduce overfitting, since it removes the less useful features in the data, which means
that models will have less noise to “distract” them

Page 9

2.3 Alternative Decomposition: SVD

• What is SVD?

– a matrix decomposition technique:

X = USV T , X ∈ RN×D

where:

∗ U is an orthogonal matrix, with columns given by the eigenvectors of XTX

∗ S is a rectangular, diagonalmatrix, where the values in the diagonal are known as singular
values, and are given by the square root of the non-zero eigenvalues of XXT or XTX

∗ V is an orthogonal matrix, with columns given by the eigenvectors of XXT

To see why, we use the fact that XXT and XTX will be real, symmetric
matrices, and thus, are diagonalisable. Hence:

XTX = (USV T)T (USV T) = V STUTUSV T = V (STS)TV T

where we have used the fact that U is orthogonal matrix, so UTU = I.
Hence, V must be matrix obtained by taking the eigenvectors of XTX,
whilst STS must correspond to the eigenvalue matrix of XTX.
Similarly, we get that:

XXT = (USV T)(USV T)T = USV TV STUT = U(STS)UT

which we can analyse in a similar way.

– this generalises the eigendecomposition for non-square matrices

• What is truncated SVD?

– an approximate factorisation of X (in fact, the optimal, low-rank matrix approximation, in
terms of square error)

– instead of using all the eigenvectors/eigenvalues of XTX and XXT , we only use a subset

– in particular:
X ≈ UKSKV T

K

where:

∗ UK ∈ RN×K contains the K eigenvectors of XTX corresponding to the K largest singular
values

∗ SK ∈ RK×K contains the K largest singular values

∗ VK ∈ RD×K contains the K eigenvectors of XXT corresponding to the K largest singular
values

– notice, if K = min(N,D), then truncated SVD will become SVD, so matrix reconstruction will
be perfect

• How can truncated SVD be used for dimensionality reduction?

– the rows of U give a K dimensional embedding of the D-dimensional rows of X

– the columns of V T give a K dimensional embedding of the N -dimensional columns of X

Page 10

– hence, truncated SVD gives us low-dimensional representations of data, for both rows and
columns, and all at once

• How do PCA and truncated SVD compare?

– assume you have mean-centered data X

– then, notice that:

Σ =
1

N
XTX

since: (
1

N
XTX

)
ij

=
1

N

n∑
k=1

XkiXkj =
1

N

n∑
k=1

(Xki − 0)(Xkj − 0) = Σij

– hence, matrix U , whose columns are the eigenvectors of XTX = Σ (since 1
N is a scaling which

doesn’t affect the eigenvectors), will be precisely the parameter matrix for PCA

– similarly, V is built by using the eigenvectors resulting from applying PCA to XT

2.4 Probabilistic PCA

• What is the idea behind probabilistic PCA?

– if we have very high dimensional data sampled from a distribution, MLE of parameters might be
expensive

– with probabilistic PCA, we learn to generate high-dimensional data, by using a lower-dimensional
distribution

– PPCA allows us to learn a weight matrix, which is what allows us to upsample the low-
dimensional data

– we assume that our samples are normally distributed

• How does the PPCA model work?

– consider data x ∈ RD

– say we have a K dimensional Gaussian variable:

ν ∈ N (0, IK)

– we then learn a matrix W ∈ RK×D, such that:

x = Wν + µ

– under this assumption:
E[x] = µ ∈ RD

Cov[x] = WWT

since x is obtained by applying W to a standard normal ν. Hence, we expect that:

x ∼ N (µ,WWT)

– however, this is a bad model: it generates x which lie in a linear subspace of dimension K,
so this model assigns a likelihood of 0 to any data point outside this subspace (such as general
datapoints in RD)

– to solve this, we assume the addition of spherical noise, such that:

x ∼ N (µ,WWT + σ2I)

which allows us to derive data in RD by using lower dimensional data

• How does PCA compare to PPCA?

– as σ2 → 0, PPCA explains data in a similar way to standard PCA

Page 11

3 Question

3.1 Notes Questions

1. When applying PCA to 0 mean data, why isn’t it always possible to get 0 error when
K < D?

• if we have 0 mean, our PCA function becomes:

f(x) = V V Tx

• to have 0 error, we’d require that V V T = I ∈ RD×D. However, K < D the rank of V ∈ RD×K is
at most K, so rank(V V T) ≤ K < D. But rank(I) = D, so it is impossible for V V T = I.

• alternatively, V Tx will be a point in a K dimensional subspace of D. Hence, V (V Tx) will keep
the data embedded in a K dimensional subspace. Hence, unless the x are already lying in this
subspace, we won’t be able to reconstitute all the points back into the full space

• Be careful! It is not necessarily the case that we “throw information away” by reducing the dimen-
sion. Points in higher dimensional space can be represented by using lower dimensional data (see
Hilbert curves, which use lines in 1 dimension to fill a square in 2 dimensions). In principle, PCA
could perfectly fit to some finite number of training points, but getting 0 error would be extremly
difficult.

2. If the covariance of a distribution can be written as WWT +σ2I, then the cost of evaluating
the probability of a datapoint given W,σ2 becomes O(DK2). If we learn W by using SGD,
what is the computational cost of the gradient update?

• recall, computing gradients by backpropagation requires around the same computational complexity
as function evaluation

• hence, applying backpropagation would also be an O(DK2) operation

3. Say we want to fit SVD, by using

4 Tutorial

1. Consider applying K-nearest neighbours to the following data:

(a) How would the predictions from regularised linear logistic regression:

P (y = 1 | x,w, b) = σ(wTx+ b)

and 1-nearest neighbours compare on the dataset?

We can modify the KNN classifier by taking a linear transformation of the data:

z = Ax

and finding the KNN for the new features z. We’d like to learn the matrix A, but
for K = 1, the training error is 0 for almost all A (the nearest neighbour of a training
point is itself, which is correctly labelled)

A loss function that could evaluate possible transformations A is the leave-one-out LOO
classification error, defined as the fraction of errors made on teh training set when the
K nearest neighbours for a training item don’t include the point being classified.

Page 12

(b) Find a matrix A where the 1-nearest neighbour classifier has a lower LOO error than
using hte identity matrix for the data above. Explain why your matrix works in about
3 sentences.

(c) Explain whether we can fit the LOO error for a KNN classifier by gradient descent on
the matrix A.

(d) Assume that I have implemented some other classification method where I can evaluate
a cost function c and its derivatives with respect to feature input locations: Z̄, where
Z is an N × H matrix of inputs. I will use that cod eby creating the feature input
locations from a linear transformation of some original features:

Z = XAT

How could I fit the matrix A? If A is an H × D matrix, with H < D, how will the
computational cost of this method scale with D?

2. We now centre our data so it has 0 mean, and fit a linear autoencoder with no bias param-
eters. The autoencoder is a D-dimensional vector-valued function f from D-dimensional
inputs x, using an intermediate K-dimensional “hidden” vector h:

h = W (1)x

f = W (2)h

Assume we want ot find a setting of the parameters that minimises the square error ∥f−x∥2,
averaged over training examples.

(a) What are the sizes of the weight matrices? Why is it usually not possible to get 0
error for K < D?

(b) It’s common to transform a batch of data at one time. Given an N×D matrix of inputs
X, we set:

H = XW (1)T F = HW (2)T

The total square error:

E =
∑
n,d

(Fnd −Xnd)
2

has derivatives with respect to the neural network output:

∂E

∂Fnd
= 2(Fnd −Xnd)

Using the backpropagation rule for matri x multiplication:

C = ABT =⇒ Ā = C̄B B̄ = C̄TA

write down how to compute derivatives of the cost with respect to W (1),W (2)

(c) The PCA solution sets:
W (1) = V T W (2) = V

where the columns of V contain eigenvectors of teh covariance of the inputs. We only
really need to fit on ematrix to minimise square error. Tying the weight matrices
together:

W (1) = UT W (2) = U

we can fit one matrix U by giving its gradients:

Ū = W̄ (1)T + W̄ (2)

to a gradient-based optimiser. Will we fit the same V matrix as PCA?

Page 13

3. Some datapoints lie along the one-deimsnsional circumference of a semi-cricle. You could
create such a dataset, by:

x
(n)
1 ∼ Uniform[−1, 1]

x
(n)
2 =

√
1− (x

(n)
1)2

(a) EpExplainxlain why these points can’t be perfectly reconstructed when passed through
the linear autoencoder in Q3 with K = 1.

(b) explain whether the points could be perfectly reconstructed with K = 1 by some non-
linear decoder: f = g(h). Here, g could be an arbitrary function, perhaps represented

by multiple neural network layers. Assume the encoder is still linear: h = W (1)x.

(c) explain whether the points could be perfectly reconstructed with K = 1 by some non-
linear encoder: h = g(x). Here, g could be an arbitrary function, perhaps represented

by multiple neural network layers. Assume the encoder is still linear: f = W (2)h.

Page 14

	Unsupervised Representation Learning: Autoencoders
	Unsupervised Representation Learning
	Autoencoders

	Unsupervised Representation Learning: PCA
	Covariance Matrices
	Principal Component Analysis
	Alternative Decomposition: SVD
	Probabilistic PCA

	Question
	Notes Questions

	Tutorial

