Machine Learning and Pattern Recognition - Week 6 - Kernels for GPs & Softmax for Classification

Antonio León Villares

October 2022

Contents

1	Ker	rnels and Gaussian Processes	2
	1.1	The Kernel Trick	2
	1.2	Types of Kernels	3
	1.3	Hyperparameters for the Gaussian Kernel	3
		1.3.1 Effect of Hyperparameters	3
		1.3.2 Learning Hyperparameters	
		1.3.3 Importance of Good Hyperparameters	7
		1.3.4 Practical Tips for Fitting Hyperparameters	
	1.4	Limitations of Gaussian Processes	8
	1.5	Exploring GPs via Code	8
2	Rep	parametrisation and Convexity for Fitting Probabilistic Models 2.0.1 Reparametrisation	
3	Soft	tmax for Classification	13
4	Rol	oust Logistic Regression via Probabilistic Modelling	15
	4.1		15
	4.2	Dealing with Corruption Probabilistically	
5	Que	estion	18
	5.1	Notes Questions	18

1 Kernels and Gaussian Processes

1.1 The Kernel Trick

• What is the kernel trick?

- in many machine learning applications, we often have to compute **dot products**
- these dot products are often computed in high-dimensional feature space
- for example, if we use 10⁶ RBFs, and we want to do Bayesian Linear Regression via Gaussian Processes, we showed last week that the kernel is:

$$k(\underline{x}^{(i)}, \underline{x}^{(j)}) = \sigma_w^2 \phi(\underline{x}^{(i)})^T \phi(\underline{x}^{(j)}) + \sigma_b^2$$

- the **kernel trick** allows us to compute $\phi(\underline{x}^{(i)})^T \phi(\underline{x}^{(j)})$ **directly**, without explicitly mapping our input vectors to the high-dimensional space

• When is a ML algorithm kernelised?

- when it can be expressed in terms of dot products
- in these cases, we can then apply the kernel trick

• Why is the kernel trick so useful?

- we can use it to find dot products in **infinite dimensional** feature space
- for instance, if we placed an RBF at every point on \mathbb{R} , it can be shown that a dot product in this infinite dimensional space is given by the **gaussian kernel**:

$$k(\underline{x}^{(i)}, \underline{x}^{(j)}) \propto \exp(-\|\underline{x}^{(i)} - \underline{x}^{(j)}\|^2)$$

- hence, the **kernel trick** allows us to derive a model which:
 - 1. Approximates arbitrarily **complicated** functions
 - 2. Is valid on any domain (contrast this with using **finitely** many RBFs: beyond their defined range, the functions all become 0, so we have no information outside the domain of the RBFs)

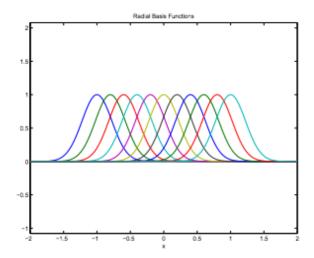


Figure 1: Beyond [-2,2], the RBFs all evaluate close to 0, so any linear combination will be close to 0, making this model useless outside of [-2,2].

- For Gaussian processes, why are Mercer Kernels used?
 - 1. They produce **positive definite** matrices, so they give us a **covariance matrix**
 - 2. It can be shown that **Mercer kernels** correspond to a **dot product** in a given feature space, which might be infinite, thus giving a GP arbitrary flexibility

1.2 Types of Kernels

See here for plots and explanations for the kernels.

1. Squared-Exponential Kernel (with Parameters)

$$K(\underline{x}^{(i)}, \underline{x}^{(j)}) = \sigma_f^2 \exp\left(-\frac{1}{2} \sum_{d \in D} \frac{\left(x_d^{(i)} - x_d^{(j)}\right)^2}{\ell_d^2}\right)$$

where:

- σ_f is the amplitude
- ℓ is the lengthscale

(these parameters will be better explained in the next section)

2. Periodic Kernel (with Parameters)

$$K(\underline{x}^{(i)}, \underline{x}^{(j)}) = \sigma_f^2 \exp\left(-\frac{2}{\ell^2} \sin^2\left(\pi \frac{\|\underline{x}^{(i)} - \underline{x}^{(j)}\|}{p}\right)\right)$$

where:

- σ_f is the amplitude
- ℓ is the lengthscale
- p is the **period**
- 3. Kernel Combinations

$$K(\underline{x}^{(i)},\underline{x}^{(j)}) = \alpha K_1(\underline{x}^{(i)},\underline{x}^{(j)}) + \beta K_2(\underline{x}^{(i)},\underline{x}^{(j)})$$

If we combine Mercer kernels in this way, we obtain new Mercer kernels!

4. Abstract Kernels: these allow us to compare abstract objects, such as strings or graphs

1.3 Hyperparameters for the Gaussian Kernel

1.3.1 Effect of Hyperparameters

In this section we consider the Gaussian Kernel, defined by given parameters:

$$K(\underline{x}^{(i)}, \underline{x}^{(j)}) = \sigma_f^2 \exp\left(-\frac{1}{2} \sum_{d \in D} \frac{\left(x_d^{(i)} - x_d^{(j)}\right)^2}{\ell_d^2}\right)$$

where σ_f is the **amplitude** and ℓ is the **lengthscale**.

• How does the amplitude affect the priors sampled from a GP?

- $-\sigma_f$ affects how large the covariance becomes
- as such, the larger that σ_f , we expect our priors to reach larger values, and to also be "steeper"

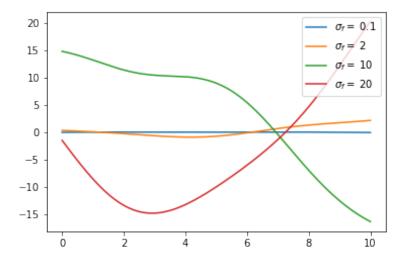


Figure 2: Priors sampled using a Gaussian kernel with $\sigma_f \in [0.1, 2, 10, 20]$ and $\ell = 3$.

- we should expect that around 68% of datapoints lie within $\pm \sigma_f$ of the mean (0 for the cases above)
- $-\sigma_f$ can also be called the **marginal variance** for a function value \tilde{f}_i :

$$\sigma_f^2 = Var[\tilde{f}_i] = K(\underline{x}^{(i)}, \underline{x}^{(i)})$$

• How does the lengthscale affect the priors sampled from a GP?

- as the $\bf length scale$ gets smaller, we see that the term in the exponential gets more and more negative, meaning that the covariance will approach 0
- this indicates that changes in features are less likely to be correlated, so we expect the function to change more sharply
- on the other hand, larger ℓ_d encourages smooth functions
- hence, ℓ_d will control how often "turning points" appear in the function, with a turning point appearing approximately with distances of ℓ between them:

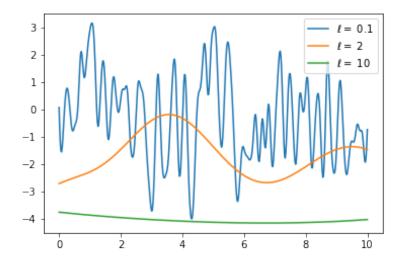


Figure 3: Priors sampled using a Gaussian kernel with $\ell \in [0.1, 2, 10]$ and $\sigma_f = 2$.

1.3.2 Learning Hyperparameters

- What are the hyperparameters in Gaussian Processes?
 - the **parameters** used to define the **kernel**, alongside the noise variance σ_y^2
 - for example, if we used a Gaussian Kernel, the hyperparameters would be:

$$\theta = \{\sigma_y^2, \sigma_f^2, \{\ell_d\}_{d \in [1, D]}\}$$

- How can we learn the hyperparameters of a Gaussian?
 - 1. Maximum Likelihood Optimisation: the marginal likelihood of a GP is:

$$P(y \mid X, \theta) = \mathcal{N}(y; \underline{0}, K(X, X) + \sigma_y^2 \mathbb{I})$$

where \underline{y} are our observations, and X is the data matrix. This is just the pdf of a multivariate Gaussian. Hence, this can be optimised by using **grid-search** on a **validation set**, or by exploiting the easy differentiability and using a **gradient-based optimiser** (this is best when there are a lot of parameters)

For reference, the log marginal likelihood is:

$$\log P(\underline{y} \mid X, \theta) = -\frac{1}{2} \underline{y}^{T} M^{-1} \underline{y} - \frac{1}{2} \log |M| - \frac{N}{2} \log 2\pi$$

where:

$$M = K(X, X) + \sigma_y^2 \mathbb{I}$$

The hyperparameters θ are what define M.

2. Bayesian Approach: alternatively, we can use marginalisation to write:

$$P(\underline{f}_* \mid \underline{y}, X) = \int P(\underline{f}_*, \theta \mid \underline{y}, X) d\theta = \int P(\underline{f}_* \mid \underline{y}, X, \theta) P(\theta \mid \underline{y}, X) d\theta$$

However, this can't be computed exactly (the term $P(\theta \mid \underline{y}, X)$ needs to be approximated)

• How can we prevent overfitting of the parameters?

- the maximum likelihood optimisation approach can lead to hyperparameter **overfitting** (the Bayesian approach won't)
- to prevent this, we can ${\bf regularise}$ the ${\bf log}$ noise ${\bf variance}:$

$$\log \sigma_y^2$$

to avoid it from becoming too small

1.3.3 Importance of Good Hyperparameters

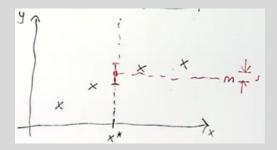
Recall, last week we showed that when predicting a new point we obtained the following parameters:

$$\mu_* = \underline{k}_*^T M^{-1} \underline{y}$$

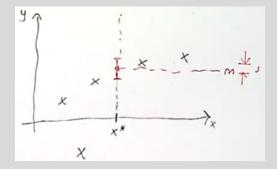
$$\sigma_*^2 = k(\underline{x}_*, \underline{x}_*) - \underline{k}_*^T M^{-1} \underline{k}_*$$

So with GPs, we are always more confident when we make a prediction, since $M = K(X, X) + \sigma_v^2 \mathbb{I}$ is positive definite.

Now, say we have a bunch of well-defined observations, and we make a prediction:



However, if we then have a surprising observation:



our uncertainty about our prediction won't necessarily increase (this is what the formula says).

Here is when **hyperparameter** fitting is important. Without the surprising data point, we might be confident that the data behaves relatively **smoothly**. If we didn't have hyperparameters, after seeing the surprising data point our model wouldn't change much. However, with hyperparamers, we can think that we would obtain a better fit by making ℓ_d (for example) smaller, since we should expect our original function to be a bit more "wriggly".

1.3.4 Practical Tips for Fitting Hyperparameters

- Always visualise the data, and look for weird artifacts which might not be captured by the model
- Consider encoding inputs/outputs to improve performance
- When possible, use domain knowledge to set initial hyperparameters
- Otherwise:
 - standardise the input, and set $\ell_d \approx 1$
 - standardise the targets and set $\sigma_f^2 \approx 1$
 - set the noise σ_y^2 to a high level; this will make optimisation easier

1.4 Limitations of Gaussian Processes

Gaussian processes provide an extremely flexible framework for modelling expensive functions (and even non-functions, like graphs). However, this power comes with certain flaws:

- 1. Poor Performance with Large Datasets: if N is the dataset size:
 - inverting/factoring the covariance matrix M is $\mathcal{O}(N^3)$
 - computing the **kernel** matrix is $\mathcal{O}(DN^2)$
 - the **kernel** matrix requires $\mathcal{O}(N^2)$ memory, which unfeasible in certain situations
- 2. **Not an Omnirepresentative Model**: for example, **monotonic** functions can't be represented by a GP, since given 2 observations, the probability of our prediction between the 2 observations violating the monotonic assumption is non-zero
- 3. **The Gaussian Assumption**: if we model processes which don't follow a Gaussian, we rely on using approximations

1.5 Exploring GPs via Code

- GPs for CO2 Prediction
- Visualising GPs with Different Kernels
- GPs in PyTorch
- GPs in Tensorflow

2 Reparametrisation and Convexity for Fitting Probabilistic Models

2.0.1 Reparametrisation

• Why shouldn't we use constrained parameters in unconstrained optimisation?

- consider Bayesian Linear Regression, with noise variance σ_{ν}
- we showed that the negative log-likelihood was:

$$-\log(P(\underline{y}\mid X,\underline{w})) = \frac{N}{2}\log(2\pi\sigma_y^2) + \frac{1}{2\sigma_y^2} \sum_{n=1}^{N} (y^{(n)} - f(\underline{x}^{(n)},\underline{w}))^2$$

- thus:

$$\sigma_y \to 0 \implies -\log(P(y \mid X, \underline{w})) \to \infty$$

which means that our model is becoming more confident (since σ_y becomes infinitesimal), but the model is getting most things wrong (since the -ve log-likelihood is increasing, meaning $P(\underline{y} \mid X, \underline{w})$ is approaching 0

- this issue arises because σ_y is **constrained** (to be non-negative), whilst our optimisation technique is **unconstrained** (for example, with SGD:

$$\sigma_y \leftarrow \sigma_y - \eta \frac{\partial \mathcal{L}}{\partial \sigma_y}$$

means that σ_y can potentially take any set of values, even negative ones)

• What is reparametrisation?

- a way of converting **constrained** variables into new, **unconstrained** variables
- we can then use an **unconstrained optimiser** to optimise the **unconstrained** variable
- if c is our **cost**, w is our **constrained** variable and v is w after being **reparametrised**, then by the chain rule:

$$\frac{\partial c}{\partial v} = \frac{\partial c}{\partial w} \times \frac{\partial w}{\partial v}$$

- if the optimiser still pushes the unconstrained variable to an extrema (i.e $v \to \infty$, which could correspond to sending w towards one of its constraints), we can always use **regularisation** to prevent this
- What types of reparametrisations can be used?
 - 1. To Positive: use the exponential:

$$v = \exp(w)$$

2. Positive to Unconstrained: use the logarithm:

$$v = \log(w)$$

3. Unconstrained to (0,1): use the logistic sigmoid:

$$v = \sigma(w) = \frac{1}{1 + e^{-w}}$$

4. (0,1) to Unconstrained: use the logit:

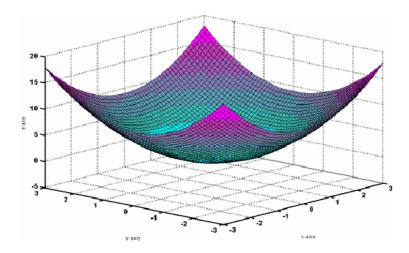
$$v = logit(w) = log\left(\frac{w}{1-w}\right)$$

- How does reparemtrisation affect model fitting at boundaries?
 - it is perfectly feasible to fit a GP using $\sigma_y = 0$ (the covariance matrix just goes from $K(X, X) + \sigma_y \mathbb{I}$ to K(X, X)
 - however, if we reparametrise using log, we can no longer fit points to it (since $\log(0) \to -\infty$)

2.0.2 Convexity

• What is a convex function?

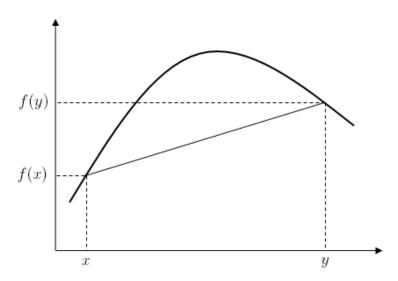
- a **convex** function is one such that any line between two points in its surface lies entirely **above** the surface



- as a reminder, use conVex, and think that a parabola (which is convex) is shaped like a U/V

• What is a concave function?

 a concave function is one such that any line between two points in its surface lies entirely below the surface



- as a reminder, use conVex, and think that a parabola (which is convex) is shaped like a U/V

• What is a strictly convex function?

- let f be a function, and $\lambda \in [0,1]$
- f is **convex** if $\forall x, y, \lambda$:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

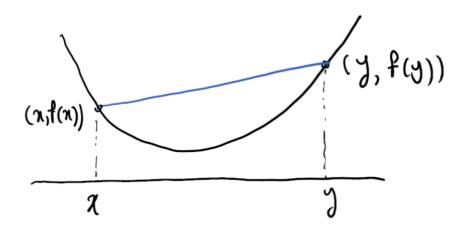


Figure 4: We can consider a point in \mathbb{R} between x, y, given by $\lambda x + (1 - \lambda)y$. The value at $\lambda x + (1 - \lambda)y$ of the line between f(x) and f(y) will be $\lambda f(x) + (1 - \lambda)f(y)$. Hence, this requirement is just stating how we defined convexity in the first place.

- f is **strictly convex** of $\forall x, y \text{ and } \lambda \in (0, 1)$ we have:

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

- notice, this formulae tells us that the sum of 2 convex functions will again be convex (if both functions satisfy the inequality, so will their sum)
- How many extrema does a strictly convex function have?
 - strictly convex functions have a unique extremum
- Why are strictly convex loss functions desirable?
 - strictly convex functions have a **unique** minium
 - there are many algorithms which ensure convergence to this local minimum for ${\bf convex}$ loss functions

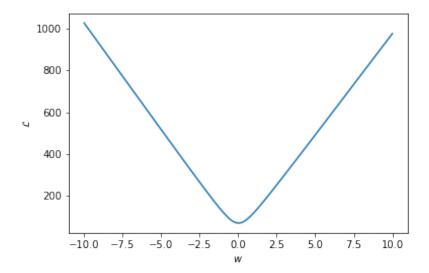


Figure 5: The logistic regression loss given by $\sum_{n=1}^{N} \log \left(\sigma((2y^{(n)}-1)\underline{w}^T\underline{x}^{(n)})\right)$ is **convex**. This uses linearly spread x, with the target being a Bernoulli trial.

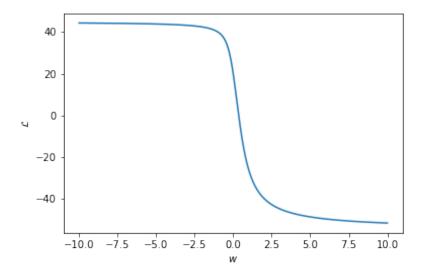


Figure 6: The square loss given by $\sum_{n=1}^{N} (y^{(n)} - \sigma(\underline{w}^T \underline{x}^{(n)}))^2$ is **not** convex. This uses linearly spread x, with the target being a Bernoulli trial.

• Are typical ML problems convex optimisation problems?

- in general, most problems won't be **convex** (for example, optimising the location of basis functions)
- we can still try reducing loss using **gradient methods**, which will result in parameters which are **reasonable**

- however, we won't have any guarantee of **optimality**: there might be a better optimiser which finds better parameters

• Why use log for optimisation problems?

- 1. Mathematical Convenience: it converts products of probabilities into sums, which is easier to differentiate
- 2. Numerical Underflow: representing very small numbers (i.e 0.5^{1000}) is easier using logs (i.e $1000 \log(0.5)$) (these small numbers arise when working with probabilities)
- 3. Convexity: a non-convex loss function might become convex with a log transformation (i.e finding the mean of the negative log of a Gaussian PDF via gradient methods can be done, since the ideal cost function will be convex; however, the Gaussian PDF is not convex)

3 Softmax for Classification

- What is softmax regression?
 - a method for multiclass classification
 - generalises logistic regression
- What does the softmax model output?
 - if we have K classes, we can represent the target y for a given input \underline{x} as a **one-hot** vector
 - if y represents class c, then

$$y_k = \delta_{kc}$$

- softmax outputs a vector \hat{y} , where y_k represents the probability it assigns to class k

• How does softmax differ from a one-vs-rest classifier?

- previously, we saw multiclass classification in terms of training K classifiers, which predicted whether a given input was class k or not with a probability
- softmax computes the probabilities all at once
- How does softmax compute the probability vector?
 - the **softmax** model has a **weight matrix** W
 - the probability of assigning class k for an input \underline{x} will be:

$$P(y_k = 1 \mid \underline{w}, W) = f_k(\underline{x}; W) = \frac{\exp((\underline{w}^{(k)})^T \underline{x})}{\sum_{j=1}^K \exp((\underline{w}^{(j)})^T \underline{x})}$$

– if $W \in \mathbb{R}^{K \times D}$, the $\underline{w}^{(j)}$ can be thought of as the **row vectors** of W, and we can write:

$$f(x; W) = softmax(Wx)$$

to represent the vector output

• Intuitively, how are the weight vectors adjusted for class classification?

- if $\underline{w}^{(k)}$ is the weight vector for class k, then $(\underline{w}^{(k)})^T\underline{x}$ will be **largest** when $\underline{w}^{(k)}$ and \underline{x} are **parallel**
- another factor which influences the value of $(\underline{w}^{(k)})^T \underline{x}$ is the **magnitude** of \underline{x} and $(\underline{w}^{(k)})^T \underline{x}$
- if a model just learns large weights for any input \underline{x} , then $\exp((\underline{w}^{(k)})^T\underline{x})$ will be large ... but so will all the other $\exp((\underline{w}^{(k)})^T\underline{x})$

- hence, the probability of class k will be small if some other weight $\underline{w}^{(j)}$ is larger
- thus, a model will learn weights, such that for a given class, most elements of the class are as parallel as possible to $\underline{w}^{(k)}$

• When is an estimator consistent?

 when, given infinite data, the estimator will produce the true parameters which generated the data

• What loss functions can be used for softmax parameter optimisation?

- both **least squares** and **maximum likelihood estimatation** are **consistent**, and will fit optimal parameters which "explain" the observed data
- however, MLE is slightly better since:
 - * it has a faster asymptotic convergence
 - * it heavily penalises confident but incorrect predictions

• What is the optimisation procedure for softmax?

- the **log-likelihood** for a **single** observation x with label c is:

$$\log(P(y_c = 1 \mid \underline{x}, W)) = \log(f_c(\underline{x}; W))$$

$$= \log\left(\frac{\exp((\underline{w}^{(c)})^T \underline{x})}{\sum_{j=1}^K \exp((\underline{w}^{(j)})^T \underline{x})}\right)$$

$$= \log\left(\exp((\underline{w}^{(c)})^T \underline{x})\right) - \log\left(\sum_{j=1}^K \exp((\underline{w}^{(j)})^T \underline{x})\right)$$

$$= (\underline{w}^{(c)})^T \underline{x} - \log\left(\sum_{j=1}^K \exp((\underline{w}^{(j)})^T \underline{x})\right)$$

- hence, we can compute the **gradient** with respect to some weight $\underline{w}^{(k)}$:

$$\nabla_{\underline{w}^{(k)}} \log(f_c(x; W)) = \delta_{kc} \underline{x} - \frac{1}{\sum_{i=1}^K \exp((\underline{w}^{(k)})^T \underline{x})} \exp((\underline{w}^{(k)})^T \underline{x}) \underline{x} = (y_k - f_k(\underline{x}; W)) \underline{x}$$

by using $y_k = \delta_{kc}$, since y_k is a binary target.

- then, we can apply **stochastic gradient ascent** (since we haven't negated the log-likelihood) for each weight vector:

$$\underline{w}_k \leftarrow \underline{w}_k + \eta \nabla_{\underline{w}^{(k)}} \log(f_c(x; W))$$

Notice what the weight is telling us: $\underline{w}^{(k)}$ will be pushed to be more parallel to \underline{x} ; the degree of the push will be based on the disparity between the prediction f_k and the actual label y_k . If f_k is close to y_k , the gradient will be small, indicating that $\underline{w}^{(k)}$ is already a good weight; otherwise, the gradient will be much larger.

- alternatively, we can apply **batch gradient descent** where we use as gradient:

$$\nabla_{\underline{w}^{(k)}} \sum_{n=1}^{B} \log(f_{c(n)}^{(n)} = \sum_{n=1}^{B} (y_k^{(n)} - f_k(\underline{x}^{(n)})) \underline{x}^{(n)}$$

- In what sense are weights redundant in softmax regression?
 - our **softmax** model is defined by:

$$P(y_k = 1 \mid \underline{x}, W) = \frac{\exp((\underline{w}^{(k)})^T \underline{x}}{\sum_{j=1}^K \exp((\underline{w}^{(j)})^T \underline{x}}$$

- we can divide the top and bottom through by $\exp((\underline{w}^{(K)})^T\underline{x})$ to obtain:

$$P(y_k = 1 \mid \underline{x}, W) = \frac{\exp((\underline{w}^{(k)} - \underline{w}^{(K)})^T \underline{x}}{\sum_{j=1}^K \exp((\underline{w}^{(j)} - \underline{w}^{(K)})^T \underline{x}}$$

– thus, define a new model \tilde{W} by:

$$\tilde{w}^{(k)} = w^{(k)} - w^{(K)}$$

 $-\tilde{W}$ will yield the exact same predictions, and:

$$\tilde{w}^{(K)} = 0$$

will be "redundant"

4 Robust Logistic Regression via Probabilistic Modelling

4.1 Classification and Corrupted Data

- How can softmax/logistic regression be affected by extreme outliers?
 - a given sample might be **corrupted**, with some features having extreme values
 - logistic/softmax regression will then learn weight vectors for the class which are small for those features
 - however, this might not be the best strategy, if the non-corrupted samples don't behave in this way
- How can we deal with corrupted inputs when training a classification model?
 - Magnitude Limitation or Unit Length: enforce that feature vectors have a bounded magnitude
 - Binary Features: effect of corruption would just involve flipping ones and zeroes
 - Outlier Detection: discard faulty input vectors
 - **Optimisation Limitation**: limit how much weights can be updated by a given sample, thus reducing the effect of outliers
 - Probabilistic Modelling: assume the corruption is produced by noise, and incorporate this into the model

4.2 Dealing with Corruption Probabilistically

- How can we model input corruption?
 - the **labels** can be modified to include a **model** of label corruption
 - this will provide us with a new loss, which can be optimised as before
- What types of corruption models can we use?
 - let m be a binary indicator, with m=0 indicating corruption, and m=1 indicating no corruption
 - we can model m using a **Bernoulli distribution**:

$$P(m \mid \varepsilon) = Bernoulli(m; 1 - \varepsilon) = \begin{cases} 1 - \varepsilon, & m = 1 \\ \varepsilon, & m = 0 \end{cases}$$

- then we can modify our logsitic regression in 2 ways (but not limited to these 2 ways):
 - 1. **Uniform Corruption**: we can pick the label for an input \underline{x} uniformly randomly when data is corrupted:

$$P(y=1 \mid \underline{x}, \underline{w}, m) = \begin{cases} \sigma(\underline{w}^T \underline{x}), & m = 1\\ \frac{1}{2}, & m = 0 \end{cases}$$

2. Flip Corruption: alternatively, we can flip the label:

$$P(y=1 \mid \underline{x}, \underline{w}, m) = \begin{cases} \sigma(\underline{w}^T \underline{x}), & m = 1\\ 0, & m = 0 \end{cases}$$

- we shall proceed using the uniform corruption model
- ullet How can we incorporate the indicator variable m when computing the probability assigned by our classification model?
 - if we observed m directly, we could just remove corrupted samples
 - since we can't observe it, if we know the probability of corruption ε , we can **marginalise** over m, by using the sum and product rules:

$$\begin{split} P(y = 1 \mid \underline{x}, \underline{w}, \varepsilon) &= \sum_{m \in \{0, 1\}} P(y = 1, m \mid \underline{x}, \underline{w}, \varepsilon) \\ &= \sum_{m \in \{0, 1\}} P(y = 1 \mid \underline{x}, \underline{w}, \varepsilon, m) P(m \mid \underline{x}, \underline{w}, \varepsilon) \end{split}$$

- since corruption happens independently of the observed samples:

$$P(m \mid x, w, \varepsilon) = P(m \mid \varepsilon)$$

- moreover, once we know m, knowing ε is irrelevant, so:

$$P(y = 1 \mid \underline{x}, \underline{w}, \varepsilon, m) = P(y = 1 \mid \underline{x}, \underline{w}, m)$$

- thus, our model becomes:

$$P(y=1\mid \underline{x},\underline{w},\varepsilon) = \sum_{m\in\{0,1\}} P(y=1\mid \underline{x},\underline{w},m) P(m\mid \varepsilon)$$

- this is easily computed:

$$P(y = 1 \mid \underline{x}, \underline{w}, \varepsilon) = (1 - \varepsilon)\sigma(\underline{w}^T\underline{x}) + \frac{\varepsilon}{2}$$

• What is the gradient for the robust logistic regression model?

- recall, with standard logistic regression we used the properties of the sigmoid to define:

$$\sigma_n = \sigma(z^{(n)} \underline{w}^T \underline{x}^{(n)})$$

where $z^{(n)} = (2y^{(n)} - 1)$ is a label in $\{-1, +1\}$

- we derived that:

$$\nabla_w \log(\sigma_n) = (1 - \sigma_n) z^{(n)} \underline{x}^{(n)}$$

and:

$$\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$$

- then:

$$\nabla_{\underline{w}} \log(P(z^{(n)} \mid \underline{x}^{(n)}, \underline{w})) = \nabla_{w} \log\left((1 - \varepsilon)\sigma_{n} + \frac{\varepsilon}{2}\right)$$

$$= \frac{1}{(1 - \varepsilon)\sigma_{n} + \frac{\varepsilon}{2}}(1 - \varepsilon)\sigma_{n}(1 - \sigma_{n})z^{(n)}\underline{x}^{(n)}$$

$$= \frac{1}{1 + \frac{\varepsilon}{2(1 - \varepsilon)\sigma_{n}}}\nabla_{\underline{w}} \log(\sigma_{n})$$

- however, the loss will no longer be **convex**, so we don't have guarantees of optimal weights

Notice, if we set $\varepsilon = 0$, we recover our standard logistic regression model. After looking at this, it seems a bit weird to set $\varepsilon = 0$: it would be like assuming that all data is perfect!

• How will the robust model compare with the standard logistic regression model?

- as $\varepsilon \to 0$, $\frac{\varepsilon}{1-\varepsilon} \to 0$, and robust logistic regression behaves like normal logistic regression
- as $\varepsilon \to 1$ $\frac{\varepsilon}{1-\varepsilon} \to \infty$, so the gradient becomes negligible
- thus, if we are highly uncertain, the robust model will be very cautious about updating weights
- if the probability σ_n is much smaller than ε , we again get negligible gradients, meaning that our robust model will be discouraged to greatly change the weights
- hence, if we think that outliers are very likely, or our model detects a very unlikely input, they will be discarded by the model

• How can we set ε ?

- 1. **Domain Knowledge**: if we know the corruption rate, we can set ε manually
- 2. Grid Search: try a grid of settings to see which setting best models data
- 3. **Gradient Optimisation**: whilst $\varepsilon \in [0, 1]$, we can apply a **logit** transform so that $logit(\varepsilon) \in \mathbb{R}^+$. Then, we can apply the standard gradient optimisation techniques via:

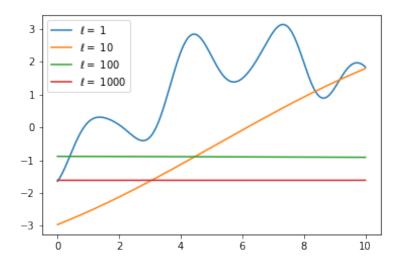
$$a = logit(\varepsilon) \implies \frac{\partial \mathcal{L}}{\partial a} = \frac{\partial \mathcal{L}}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial a}$$

whilst we update the weights of our model with $\nabla_{\underline{w}} \mathcal{L}$.

5 Question

5.1 Notes Questions

- 1. How do the priors and posteriors look when sample from a GP with a kernel using a lengthscale ℓ which is very small?
 - as $\ell \to 0$, the covarianc ebetween close samples will still be small
 - hence, we expect that the turning points appear more and more often, so prior samples will osciallate wildly
 - the posterior will look similar to this, and osciallte wildly, except possibly at the testing location, where the posterior will try to approximate these values
- 2. How do prior samples look as $\ell_d \to \infty, \forall d \in [1, D]$?
 - as ℓ_d grows, the term in the exponential approaches 0, so the covariance between any 2 points will be approximately σ_f^2 , independent of distance between 2 points
 - hence, we expect a prior which looks like horizontal hyperplane



- 3. How do prior samples look as $\ell_d \to \infty$ for a specific $d \in [1, D]$?
 - \bullet elements along dimension d will have the same covariance, so we expect that the function along this dimension remains constant