
Machine Learning and Pattern Recognition - Week 6 - Kernels for

GPs & Softmax for Classification

Antonio León Villares

October 2022

Contents

1 Kernels and Gaussian Processes 2
1.1 The Kernel Trick . 2
1.2 Types of Kernels . 3
1.3 Hyperparameters for the Gaussian Kernel . 3

1.3.1 Effect of Hyperparameters . 3
1.3.2 Learning Hyperparameters . 5
1.3.3 Importance of Good Hyperparameters . 7
1.3.4 Practical Tips for Fitting Hyperparameters . 8

1.4 Limitations of Gaussian Processes . 8
1.5 Exploring GPs via Code . 8

2 Reparametrisation and Convexity for Fitting Probabilistic Models 8
2.0.1 Reparametrisation . 8
2.0.2 Convexity . 10

3 Softmax for Classification 13

4 Robust Logistic Regression via Probabilistic Modelling 15
4.1 Classification and Corrupted Data . 15
4.2 Dealing with Corruption Probabilistically . 16

5 Question 18
5.1 Notes Questions . 18

1

Based on the online notes here.

1 Kernels and Gaussian Processes

1.1 The Kernel Trick

• What is the kernel trick?

– in many machine learning applications, we often have to compute dot products

– these dot products are often computed in high-dimensional feature space

– for example, if we use 106 RBFs, and we want to do Bayesian Linear Regression via Gaussian
Processes, we showed last week that the kernel is:

k(x(i), x(j)) = σ2
wϕ(x

(i))Tϕ(x(j)) + σ2
b

– the kernel trick allows us to compute ϕ(x(i))Tϕ(x(j)) directly, without explicitly mapping our
input vectors to the high-dimensional space

• When is a ML algorithm kernelised?

– when it can be expressed in terms of dot products

– in these cases, we can then apply the kernel trick

• Why is the kernel trick so useful?

– we can use it to find dot products in infinite dimensional feature space

– for instance, if we placed an RBF at every point on R, it can be shown that a dot product in this
infinite dimensional space is given by the gaussian kernel:

k(x(i), x(j)) ∝ exp(−∥x(i) − x(j)∥2)

– hence, the kernel trick allows us to derive a model which:

1. Approximates arbitrarily complicated functions

2. Is valid on any domain (contrast this with using finitely many RBFs: beyond their defined
range, the functions all become 0, so we have no information outside the domain of the RBFs)

Figure 1: Beyond [−2, 2], the RBFs all evaluate close to 0, so any linear combination will be close to 0,
making this model useless outside of [−2, 2].

Page 2

https://mlpr.inf.ed.ac.uk/2022/notes/

• For Gaussian processes, why are Mercer Kernels used?

1. They produce positive definite matrices, so they give us a covariance matrix

2. It can be shown that Mercer kernels correspond to a dot product in a given feature space,
which might be infinite, thus giving a GP arbitrary flexibility

1.2 Types of Kernels

See here for plots and explanations for the kernels.

1. Squared-Exponential Kernel (with Parameters)

K(x(i), x(j)) = σ2
f exp

−1

2

∑
d∈D

(
x
(i)
d − x

(j)
d

)2
ℓ2d

)


where:

• σf is the amplitude

• ℓ is the lengthscale

(these parameters will be better explained in the next section)

2. Periodic Kernel (with Parameters)

K(x(i), x(j)) = σ2
f exp

(
− 2

ℓ2
sin2

(
π
∥x(i) − x(j)∥

p

))
where:

• σf is the amplitude

• ℓ is the lengthscale

• p is the period

3. Kernel Combinations

K(x(i), x(j)) = αK1(x
(i), x(j)) + βK2(x

(i), x(j))

If we combine Mercer kernels in this way, we obtain new Mercer kernels!

4. Abstract Kernels: these allow us to compare abstract objects, such as strings or graphs

1.3 Hyperparameters for the Gaussian Kernel

1.3.1 Effect of Hyperparameters

In this section we consider the Gaussian Kernel, defined by given parame-
ters:

K(x(i), x(j)) = σ2
f exp

−1

2

∑
d∈D

(
x
(i)
d − x

(j)
d

)2
ℓ2d

)


where σf is the amplitude and ℓ is the lengthscale.

• How does the amplitude affect the priors sampled from a GP?

Page 3

https://peterroelants.github.io/posts/gaussian-process-kernels/

– σf affects how large the covariance becomes

– as such, the larger that σf , we expect our priors to reach larger values, and to also be “steeper”

Figure 2: Priors sampled using a Gaussian kernel with σf ∈ [0.1, 2, 10, 20] and ℓ = 3.

– we should expect that around 68% of datapoints lie within ±σf of the mean (0 for the cases
above)

– σf can also be called the marginal variance for a function value f̃i:

σ2
f = V ar[f̃i] = K(x(i), x(i))

• How does the lengthscale affect the priors sampled from a GP?

– as the lengthscale gets smaller, we see that the term in the exponential gets more and more
negative, meaning that the covariance will approach 0

– this indicates that changes in features are less likely to be correlated, so we expect the function
to change more sharply

– on the other hand, larger ℓd encourages smooth functions

– hence, ℓd will control how often “turning points” appear in the function, with a turning point
appearing approximately with distances of ℓ between them:

Page 4

Figure 3: Priors sampled using a Gaussian kernel with ℓ ∈ [0.1, 2, 10] and σf = 2.

1.3.2 Learning Hyperparameters

• What are the hyperparameters in Gaussian Processes?

– the parameters used to define the kernel, alongside the noise variance σ2
y

– for example, if we used a Gaussian Kernel, the hyperparameters would be:

θ = {σ2
y, σ

2
f , {ℓd}d∈[1,D]}

• How can we learn the hyperparameters of a Gaussian?

1. Maximum Likelihood Optimisation: the marginal likelihood of a GP is:

P (y | X, θ) = N (y; 0,K(X,X) + σ2
yI)

where y are our observations, and X is the data matrix. This is just the pdf of a multivariate
Gaussian. Hence, this can be optimised by using grid-search on a validation set, or by exploit-
ing the easy differentiability and using a gradient-based optimiser (this is best when there are
a lot of parameters)

For reference, the log marginal likelihood is:

logP (y | X, θ) = −1

2
yTM−1y − 1

2
log |M | − N

2
log 2π

where:
M = K(X,X) + σ2

yI
The hyperparameters θ are what define M .

2. Bayesian Approach: alternatively, we can use marginalisation to write:

P (f∗ | y,X) =

∫
P (f∗, θ | y,X)dθ =

∫
P (f∗ | y,X, θ)P (θ | y,X)dθ

Page 5

However, this can’t be computed exactly (the term P (θ | y,X) needs to be approximated)

• How can we prevent overfitting of the parameters?

– the maximum likelihood optimisation approach can lead to hyperparameter overfitting (the
Bayesian approach won’t)

– to prevent this, we can regularise the log noise variance:

log σ2
y

to avoid it from becoming too small

Page 6

1.3.3 Importance of Good Hyperparameters

Recall, last week we showed that when predicting a new point we obtained
the following parameters:

µ∗ = kT
∗M

−1y

σ2
∗ = k(x∗, x∗)− kT

∗M
−1k∗

So with GPs, we are always more confident when we make a prediction,
since M = K(X,X) + σ2

yI is positive definite.
Now, say we have a bunch of well-defined observations, and we make a
prediction:

However, if we then have a surprising observation:

our uncertainty about our prediction won’t necessarily increase (this is
what the formula says).
Here is when hyperparameter fitting is important. Without the sur-
prising data point, we might be confident that the data behaves relatively
smoothly. If we didn’t have hyperparameters, after seeing the surpris-
ing data point our model wouldn’t change much. However, with hyper-
paramers, we can think that we would obtain a better fit by making ℓd (for
example) smaller, since we should expect our original function to be a bit
more “wriggly”.

Page 7

1.3.4 Practical Tips for Fitting Hyperparameters

• Always visualise the data, and look for weird artifacts which might
not be captured by the model

• Consider encoding inputs/outputs to improve performance

• When possible, use domain knowledge to set initial
hyperparameters

• Otherwise:

– standardise the input, and set ℓd ≈ 1

– standardise the targets and set σ2
f ≈ 1

– set the noise σ2
y to a high level; this will make optimisation easier

1.4 Limitations of Gaussian Processes

Gaussian processes provide an extremely flexible framework for modelling expensive functions (and even
non-functions, like graphs). However, this power comes with certain flaws:

1. Poor Performance with Large Datasets: if N is the dataset size:

• inverting/factoring the covariance matrix M is O(N3)

• computing the kernel matrix is O(DN2)

• the kernel matrix requires O(N2) memory, which unfeasible in certain situations

2. Not an Omnirepresentative Model: for example, monotonic functions can’t be represented by a
GP, since given 2 observations, the probability of our prediction between the 2 observations violating
the monotonic assumption is non-zero

3. The Gaussian Assumption: if we model processes which don’t follow a Gaussian, we rely on using
approximations

1.5 Exploring GPs via Code

• GPs for CO2 Prediction

• Visualising GPs with Different Kernels

• GPs in PyTorch

• GPs in Tensorflow

2 Reparametrisation and Convexity for Fitting Probabilistic Mod-
els

2.0.1 Reparametrisation

• Why shouldn’t we use constrained parameters in unconstrained optimisation?

Page 8

http://learning.eng.cam.ac.uk/carl/mauna/
https://distill.pub/2019/visual-exploration-gaussian-processes/
https://gpytorch.ai/
https://github.com/GPflow/GPflow

– consider Bayesian Linear Regression, with noise variance σy

– we showed that the negative log-likelihood was:

− log(P (y | X,w)) =
N

2
log(2πσ2

y) +
1

2σ2
y

N∑
n=1

(y(n) − f(x(n), w))2

– thus:
σy → 0 =⇒ − log(P (y | X,w))→∞

which means that our model is becoming more confident (since σy becomes infinitesimal), but the
model is getting most things wrong (since the -ve log-likelihood is increasing, meaning P (y | X,w)
is approaching 0

– this issue arises because σy is constrained (to be non-negative), whilst our optimisation technique
is unconstrained (for example, with SGD:

σy ← σy − η
∂L
∂σy

means that σy can potentially take any set of values, even negative ones)

• What is reparametrisation?

– a way of converting constrained variables into new, unconstrained variables

– we can then use an unconstrained optimiser to optimise the unconstrained variable

– if c is our cost, w is our constrained variable and v is w after being reparametrised, then by
the chain rule:

∂c

∂v
=

∂c

∂w
× ∂w

∂v

– if the optimiser still pushes the unconstrained variable to an extrema (i.e v → ∞, which could
correspond to sending w towards one of its constraints), we can always use regularisation to
prevent this

• What types of reparametrisations can be used?

1. To Positive: use the exponential:
v = exp(w)

2. Positive to Unconstrained: use the logarithm:

v = log(w)

3. Unconstrained to (0, 1): use the logistic sigmoid:

v = σ(w) =
1

1 + e−w

4. (0, 1) to Unconstrained: use the logit:

v = logit(w) = log

(
w

1− w

)
• How does reparemtrisation affect model fitting at boundaries?

– it is perfectly feasible to fit a GP using σy = 0 (the covariance matrix just goes fromK(X,X)+σyI
to K(X,X)

– however, if we reparametrise using log, we can no longer fit points to it (since log(0)→ −∞)

Page 9

2.0.2 Convexity

• What is a convex function?

– a convex function is one such that any line between two points in its surface lies entirely above
the surface

– as a reminder, use conVex, and think that a parabola (which is convex) is shaped like a U/V

• What is a concave function?

– a concave function is one such that any line between two points in its surface lies entirely below
the surface

– as a reminder, use conVex, and think that a parabola (which is convex) is shaped like a U/V

• What is a strictly convex function?

– let f be a function, and λ ∈ [0, 1]

– f is convex if ∀x, y, λ:
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Page 10

Figure 4: We can consider a point in R between x, y, given by λx+ (1− λ)y. The value at λx+ (1− λ)y of
the line between f(x) and f(y) will be λf(x) + (1− λ)f(y). Hence, this requirement is just stating how we
defined convexity in the first place.

– f is strictly convex of ∀x, y and λ ∈ (0, 1) we have:

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

– notice, this formulae tells us that the sum of 2 convex functions will again be convex (if both
functions satisfy the inequality, so will their sum)

• How many extrema does a strictly convex function have?

– strictly convex functions have a unique extremum

• Why are strictly convex loss functions desirable?

– strictly convex functions have a unique minium

– there are many algorithms which ensure convergence to this local minimum for convex loss
functions

Page 11

Figure 5: The logistic regression loss given by
∑N

n=1 log
(
σ((2y(n) − 1)wTx(n))

)
is convex. This uses linearly

spread x, with the target being a Bernoulli trial.

Figure 6: The square loss given by
∑N

n=1(y
(n) − σ(wTx(n)))2 is not convex. This uses linearly spread x,

with the target being a Bernoulli trial.

• Are typical ML problems convex optimisation problems?

– in general, most problems won’t be convex (for example, optimising the location of basis func-
tions)

– we can still try reducing loss using gradient methods, which will result in parameters which
are reasonable

Page 12

– however, we won’t have any guarantee of optimality: there might be a better optimiser which
finds better parameters

• Why use log for optimisation problems?

1. Mathematical Convenience: it converts products of probabilities into sums, which is easier to
differentiate

2. Numerical Underflow: representing very small numbers (i.e 0.51000) is easier using logs (i.e
1000 log(0.5)) (these small numbers arise when working with probabilities)

3. Convexity: a non-convex loss function might become convex with a log transformation (i.e
finding the mean of the negative log of a Gaussian PDF via gradient methods can be done, since
the ideal cost function will be convex; however, the Gaussian PDF is not convex)

3 Softmax for Classification

• What is softmax regression?

– a method for multiclass classification

– generalises logistic regression

• What does the softmax model output?

– if we have K classes, we can represent the target y for a given input x as a one-hot vector

– if y represents class c, then
yk = δkc

– softmax outputs a vector ŷ, where yk represents the probability it assigns to class k

• How does softmax differ from a one-vs-rest classifier?

– previously, we saw multiclass classification in terms of training K classifiers, which predicted
whether a given input was class k or not with a probability

– softmax computes the probabilities all at once

• How does softmax compute the probability vector?

– the softmax model has a weight matrix W

– the probability of assigning class k for an input x will be:

P (yk = 1 | w,W) = fk(x;W) =
exp((w(k))Tx)∑K
j=1 exp((w

(j))Tx)

– if W ∈ RK×D, the w(j) can be thought of as the row vectors of W , and we can write:

f(x;W) = softmax(Wx)

to represent the vector output

• Intuitively, how are the weight vectors adjusted for class classification?

– if w(k) is the weight vector for class k, then (w(k))Tx will be largest when w(k) and x are parallel

– another factor which influences the value of (w(k))Tx is the magnitude of x and (w(k))Tx

– if a model just learns large weights for any input x, then exp((w(k))Tx) will be large ... but so
will all the other exp((w(k))Tx)

Page 13

– hence, the probability of class k will be small if some other weight w(j) is larger

– thus, a model will learn weights, such that for a given class, most elements of the class are as
parallel as possible to w(k)

• When is an estimator consistent?

– when, given infinite data, the estimator will produce the true paramaters which generated
the data

• What loss functions can be used for softmax parameter optimisation?

– both least squares and maximum likelihood estimatation are consistent, and will fit op-
timal parameters which “explain” the observed data

– however, MLE is slightly better since:

∗ it has a faster asymptotic convergence

∗ it heavily penalises confident but incorrect predictions

• What is the optimisation procedure for softmax?

– the log-likelihood for a single observation x with label c is:

log(P (yc = 1 | x,W) = log(fc(x;W))

= log

(
exp((w(c))Tx)∑K
j=1 exp((w

(j))Tx)

)

= log
(
exp((w(c))Tx)

)
− log

 K∑
j=1

exp((w(j))Tx)


= (w(c))Tx− log

 K∑
j=1

exp((w(j))Tx)



– hence, we can compute the gradient with respect to some weight w(k):

∇w(k) log(fc(x;W)) = δkcx−
1∑K

j=1 exp((w
(k))Tx)

exp((w(k))Tx)x = (yk − fk(x;W))x

by using yk = δkc, since yk is a binary target.

– then, we can apply stochastic gradient ascent (since we haven’t negated the log-likelihood)
for each weight vector:

wk ← wk + η∇w(k) log(fc(x;W))

Notice what the weight is telling us: w(k) will be pushed to be more parallel
to x; the degree of the push will be based on the disparity between the pre-
diction fk and the actual label yk. If fk is close to yk, the gradient will be
small, indicating that w(k) is already a good weight; otherwise, the gradient
will be much larger.

Page 14

– alternatively, we can apply batch gradient descent where we use as gradient:

∇w(k)

B∑
n=1

log(f
(n)
c(n) =

B∑
n=1

(y
(n)
k − fk(x

(n)))x(n)

• In what sense are weights redundant in softmax regression?

– our softmax model is defined by:

P (yk = 1 | x,W) =
exp((w(k))Tx∑K
j=1 exp((w

(j))Tx

– we can divide the top and bottom through by exp((w(K))Tx to obtain:

P (yk = 1 | x,W) =
exp((w(k) − w(K))Tx∑K
j=1 exp((w

(j) − w(K))Tx

– thus, define a new model W̃ by:
w̃(k) = w(k) − w(K)

– W̃ will yield the exact same predictions, and:

w̃(K) = 0

will be “redundant”

4 Robust Logistic Regression via Probabilistic Modelling

4.1 Classification and Corrupted Data

• How can softmax/logistic regression be affected by extreme outliers?

– a given sample might be corrupted, with some features having extreme values

– logistic/softmax regression will then learn weight vectors for the class which are small for those
features

– however, this might not be the best strategy, if the non-corrupted samples don’t behave in this
way

• How can we deal with corrupted inputs when training a classification model?

– Magnitude Limitation or Unit Length: enforce that feature vectors have a bounded magni-
tude

– Binary Features: effect of corruption would just involve flipping ones and zeroes

– Outlier Detection: discard faulty input vectors

– Optimisation Limitation: limit how much weights can be updated by a given sample, thus
reducing the effect of outliers

– Probabilistic Modelling: assume the corruption is produced by noise, and incorporate this into
the model

Page 15

4.2 Dealing with Corruption Probabilistically

• How can we model input corruption?

– the labels can be modified to include a model of label corruption

– this will provide us with a new loss, which can be optimised as before

• What types of corruption models can we use?

– let m be a binary indicator, with m = 0 indicating corruption, and m = 1 indicating no corruption

– we can model m using a Bernoulli distribution:

P (m | ε) = Bernoulli(m; 1− ε) =

{
1− ε, m = 1

ε, m = 0

– then we can modify our logsitic regression in 2 ways (but not limited to these 2 ways):

1. Uniform Corruption: we can pick the label for an input x uniformly randomly when data
is corrupted:

P (y = 1 | x,w,m) =

{
σ(wTx), m = 1
1
2 , m = 0

2. Flip Corruption: alternatively, we can flip the label:

P (y = 1 | x,w,m) =

{
σ(wTx), m = 1

0, m = 0

– we shall proceed using the uniform corruption model

• How can we incorporate the indicator variable m when computing the probability assigned
by our classification model?

– if we observed m directly, we could just remove corrupted samples

– since we can’t observe it, if we know the probability of corruption ε, we can marginalise over m,
by using the sum and product rules:

P (y = 1 | x,w, ε) =
∑

m∈{0,1}

P (y = 1,m | x,w, ε)

=
∑

m∈{0,1}

P (y = 1 | x,w, ε,m)P (m | x,w, ε)

– since corruption happens independently of the observed samples:

P (m | x,w, ε) = P (m | ε)

– moreover, once we know m, knowing ε is irrelevant, so:

P (y = 1 | x,w, ε,m) = P (y = 1 | x,w,m)

– thus, our model becomes:

P (y = 1 | x,w, ε) =
∑

m∈{0,1}

P (y = 1 | x,w,m)P (m | ε)

Page 16

– this is easily computed:

P (y = 1 | x,w, ε) = (1− ε)σ(wTx) +
ε

2

• What is the gradient for the robust logistic regression model?

– recall, with standard logistic regression we used the properties of the sigmoid to define:

σn = σ(z(n)wTx(n))

where z(n) = (2y(n) − 1) is a label in {−1,+1}
– we derived that:

∇w log(σn) = (1− σn)z
(n)x(n)

and:
d

dx
σ(x) = σ(x)(1− σ(x))

– then:

∇w log(P (z(n) | x(n), w)) = ∇w log
(
(1− ε)σn +

ε

2

)
=

1

(1− ε)σn + ε
2

(1− ε)σn(1− σn)z
(n)x(n)

=
1

1 + ε
2(1−ε)σn

∇w log(σn)

– however, the loss will no longer be convex, so we don’t have guarantees of optimal weights

Notice, if we set ε = 0, we recover our standard logistic regression model.
After looking at this, it seems a bit weird to set ε = 0: it would be like as-
suming that all data is perfect!

• How will the robust model compare with the standard logistic regression model?

– as ε→ 0, ε
1−ε → 0, and robust logistic regression behaves like normal logistic regression

– as ε→ 1 ε
1−ε →∞, so the gradient becomes negligible

– thus, if we are highly uncertain, the robust model will be very cautious about updating weights

– if the probability σn is much smaller than ε, we again get negligible gradients, meaning that our
robust model will be discouraged to greatly change the weights

– hence, if we think that outliers are very likely, or our model detects a very unlikely input, they
will be discarded by the model

• How can we set ε?

1. Domain Knowledge: if we know the corruption rate, we can set ε manually

2. Grid Search: try a grid of settings to see which setting best models data

3. Gradient Optimisation: whilst ε ∈ [0, 1], we can apply a logit transform so that logit(ε) ∈ R+.
Then, we can apply the standard gradient optimisation techniques via:

a = logit(ε) =⇒ ∂L
∂a

=
∂L
∂ε

∂ε

∂a

whilst we update the weights of our model with ∇wL.

Page 17

5 Question

5.1 Notes Questions

1. How do the priors and posteriors look when sample from a GP with a kernel using a
lengthscale ℓ which is very small?

• as ℓ→ 0, the covarianc ebetween close samples will still be small

• hence, we expect that the turning points appear more and more often, so prior samples will osciallate
wildly

• the posterior will look similar to this, and osciallte wildly, except possibly at the testing location,
where the posterior will try to approximate these values

2. How do prior samples look as ℓd →∞,∀d ∈ [1, D]?

• as ℓd grows, the term in the exponential approaches 0, so the covariance between any 2 points will
be approximately σ2

f , independent of distance between 2 points

• hence, we expect a prior which looks like horizontal hyperplane

3. How do prior samples look as ℓd →∞ for a specific d ∈ [1, D]?

• elements along dimension d will have the same covariance, so we expect that the function along
this dimension remains constant

Page 18

	Kernels and Gaussian Processes
	The Kernel Trick
	Types of Kernels
	Hyperparameters for the Gaussian Kernel
	Effect of Hyperparameters
	Learning Hyperparameters
	Importance of Good Hyperparameters
	Practical Tips for Fitting Hyperparameters

	Limitations of Gaussian Processes
	Exploring GPs via Code

	Reparametrisation and Convexity for Fitting Probabilistic Models
	Reparametrisation
	Convexity

	Softmax for Classification
	Robust Logistic Regression via Probabilistic Modelling
	Classification and Corrupted Data
	Dealing with Corruption Probabilistically

	Question
	Notes Questions

