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Based on the online notes here.

1 Gaussians for Regression

• Why is it a good idea to look at regression from a probabilistic perspective?

– data is often noisy

– using probabilistic models allows us to gauge our uncertainty about the data

– for instance, given some training data, there are a variety of functions which would be a good fit,
whilst least squares only gives us one such possibility

Figure 1: The above data was generated by y = 2x + N (µ = 0, σ2 = 4). Even the line y = 2x doesn’t
fully explain the points. There is always uncertainty associated with the noisy data; least squares is just a
“heuristic” to decide on a possible explanation.

• How can we define a probabilistic model?

– let x be input, and y be the observation

– lets assume that there are a set of weights w which define the function generating the data:

f(x;w)

f could be a linear model with basis function, a NN, etc...

– however, there is also noise associated with the actual observed output, defined by σ2
y (we assume

this is known and applicable to each x)

– our probabilistic model evaluates how likely it is to see the observations y, given the data x
and the weights w:

P (y | w, x)

– for example, a Gaussian model would be:

P (y | w, x) = N (y;µ = f(x;w), σ2 = σ2
y)

• How can we find the optimal weights w?

– this is a probabilistic model, so we can use negative log-likelihood
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– if y are all our observations, and X is our design matrix (where each observation is assumed to
be independent):

− log(P (y | X,w)) = − log

(
N∏

n=1

P (y(n) | x(n), w)

)

= −
N∑

n=1

log(P (y(n) | x(n), w))

= −
N∑

n=1

log(N (y(n); f(x(n);w), σ2
y))

= −
N∑

n=1

log

 1√
2πσ2

y

e
− (y(n)−f(x(n),w))2

2σ2
y


= −

N∑
n=1

log

 1√
2πσ2

y

− (y(n) − f(x(n), w))2

2σ2
y


= −

N∑
n=1

(
−1

2
log(2πσ2

y)−
1

2σ2
y

(y(n) − f(x(n), w))2
)

=
N

2
log(2πσ2

y) +
1

2σ2
y

N∑
n=1

(y(n) − f(x(n), w))2

– thus, if σy is known and constant, finding w is equivalent to fitting least squares (this can be
thought of as a justification for applying it in linear regression)

• What happens to the loss if the noise σy varies?

– this can occur if for example the measurement instrument has varying precision (i.e a thermome-
ter might be more certain at lower temperatures)

– then we would optimise:

N∑
n=1

(
1

2
log(2π(σ(n)

y )2) +
1

2(σ
(n)
y )2

(y(n) − f(x(n), w))2

)
– in fact, the term:

1

(σ
(n)
y )2

is known as the precision

– the above loss shows that observations with higher precision are weighted more than those with
lower precision when computing the difference of squares

It is important to note that this method is very similar to the standard lin-
ear regression: ultimately, we are optimising for a single set of weights,
whilst a probabilistic model should consider all possible weights.
However, we use this as an illustrative example of how probability can be
used for regression models.
The next sections go into Bayesian Methods, which are used to gener-
ate a distribution over models, which truly gauge the uncertainty in our
observations derived from noise.
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2 Representing Uncertainty in Regression

• How can we represent the noise in plots?

– we can use error bars, of width σy

– a line would be good “fit” if it passes through ≈ 68% of the error bars

– assuming that noise is Gaussian, 68% of observations should lie within ±σ of the mean, so such
a line would be a decent predictor

• How can we use probability to represent our uncertainty about the regression task?

– say we have some noisy data, and some (possible) models explaining the data:

– we can think of the model parameters w as our beliefs: they represent what we think can be a
model

– we can use probability distributions to represent beliefs (i.e we can think that each weight w
is sampled from some distribution)

– using probability theory, we can update these beliefs by using new observations (i.e if we
observe more data, we can more accurately narrow down the distribution from which to sample
w, such that the resulting w better explain our new observations)
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Figure 2: After adding more data points, our beliefs (the weights) can be updated. Notice that now the
lines are more “focused” on the data, since we have less uncertainty: the distribution from which we draw
w will have lower variance.

• How can we generate models from a distribution?

– say we sample w from a normal distribution:

w ∼ N (0, I)

– we can then use each sampled w to define a line wTx:

– if we then observe new data such as the one above (where the gradient is clearly negative), we can
update our beliefs (i.e sampling distribution) to one where the mean is negative, and the variance
is lower (since we have now observed data):

Page 5



• What is a prior belief?

– the distribution from which we assume that w is sampled

– doesn’t consider any data - just represents the models which are plausible

– for example, if we sample from a Gaussian:

P (w) = N (w;µ = 0,Σ = 0.42I)

we obtain the following, plausible, models

Figure 3: Generating models by sampling 500 w (plotted 50). For larger y-intercepts, we should change the
variance associated to w2.

• How can we determine whether a prior leads to plausible distributions?

– if we haven’t observed any data, it might be hard to define a prior - it should generate plausible
models, but we don’t even know what we are modelling

1. Domain Knowledge: from experience, we might know the general shape of data (i.e features
tend to be positively correlated), and thus can select distributions which generate this sort of data
(i.e a Gaussian with a mean vector with positive terms)
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2. Mathematical Convenience: certain distributions make the math tractable. For instance,
we might choose a gaussian with very high variance to estimate a uniform distribution, since
gaussians are easier to work with.

3. First Principles: the central limit theorem states that, given enough data, distributions tend
to look Gaussian, so a Gaussian is not a bad prior to pick!

• What is a posterior belief?

– the distribution illustrating how our beliefs (weights) change after we actually observe data

– if we have data:
D = {x(n), y(n)}

the posterior is the distribution:
P (w | D)

(that is, how likely we are to sample certain weights, now that we have seen the data which we
want to fit)

• How can the posterior distribution be computed?

– we use Bayes’ Rule:

P (w | D) =
P (D | w)P (w)

P (D)
∝ P (D | w)P (w)

– P (D | w) is the likelihood: how likely we are to observe D given a set of weights w. It is not a
distribution over the model parameters:∫

P (D | w)dw ̸= 1

but we can think of it as a function, which maps w to a probability of w generating D

• How can the posterior distribution be computed with the objective of regression?

– in regression, the data is just our observed values (the target):

D = y = {y(n)}

– this data is actually conditioned on the inputs in the design matrix X (or Φ if we use basis
functions), since we are assuming that X somehow generates y

– thus, we rewrite the posterior:

P (w | D) = P (w | y,X) =
P (y | w,X)P (w)

P (y | X)
∝ P (y | w,X)P (w)

– hence, our current beliefs (posterior) are determined by our original beliefs about the pos-
sible models (prior), and how likely it is that a model generates the observed data (likelihood)
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Figure 4: After observing data, sampling from the posterior distribution leads to models which more closely
fit the data. We can interpret this as the variance (uncertainty) getting much smaller as we update our
beliefs. Notice, away from the data, the models tend to “spread” indicating the uncertainty present when
away from observed data.

• What are conjugate priors?

– we have the formula:
posterior ∝ likelihood× prior

– if the posterior and prior are in the same family of distributions (i.e both normal, both uniform,
both gamma, etc...), then the prior is a conjugate prior to the likelihood
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– for linear regression, if the likelihood and prior over the weights areGaussian, then the posterior
will be Gaussian (see below)

• What is the closed-form distribution for the posterior?

– we have that:
P (w | D) ∝ P (w)P (y | w,X)

– let:
P (w) = N (w;µ = w0,Σ = V0)

where the underscripts indicate that these are prior parameters (we haven’t yet observed anything)

– moreover:
P (y | w,X) = N (y; Φw, σ2

yI)

since conditioning on X,w is the same as using the model as our mean, and the noise as the
variance (covariance) (here we use Φ, since the original data X might’ve been transformed by
basis functions)

– hence:

P (w;D) ∝ N (w;µ = w0,Σ = V0)N (y; Φw, σ2
yI)

∝ exp

(
−1

2
(w − w0)

TV −1
0 (w − w0)

)
exp

(
−1

2
(y − Φw)T (σ2

y)I(y − Φw)

)
= exp

(
−1

2

(
(w − w0)

TV −1
0 (w − w0) + (y − Φw)T (σ2

y)I(y − Φw)
))

– if we define:
P (w | D) = N (w;wN , Vn)

then we get that:
Vn = σ2

y(σ
2
yV

−1
0 +ΦTΦ)−1

wn = VnV
−1
0 w0 +

1

σ2
y

VnΦ
T y

3 Predictions with Bayesian Linear Regression

3.1 Motivation: A Simple Card Game

3.1.1 Problem Setup

We consider 3 cards, labelled 1,2,3:

• card 1 has 1 white and 1 black side

• card 2 has 2 black sides

• card 3 has 2 white sides

We shuffle the cards, turning them over randomly in the process. We pick a card, and upon placing it on the
table, we see a black side. What is the probability that the other side of the same card is white?

Intuitively, we can say that the probability is 1
3 , since flipping a card and seeing a different colour is only

possible if we picked card 1, and we will pick this card with a probability of 1
3 . However, this argument

won’t work for more complex problems, so we seek to “formalise” this sort of reasoning.
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3.1.2 Conditioning on Cards

When solving inference problems, we should seek to first have a good model of the data.

The distribution of cards is:

P (C = c) =
1

3
, c ∈ {1, 2, 3}

Now, we define the probability of seeing a black face first, given we pick a given card c ∈ {1, 2, 3}:

P (F = B | C = c) =


1
2 , c = 1

1, c = 2

0, c = 3

Using Baye’s Rule can then tell us the probability of having picked a certain card, given that we saw a black
face. Since card 1 is the only card with black and white faces, P (C = 1 | F = B) defines the probability we
are seeking. Thus:

P (C = c | F = B) =
P (F = B | C = c)P (C = c)

P (F = B)
=


1
2×

1
3

1
2

= 1
3 , c = 1

1× 1
3

1
2

= 2
3 , c = 2

0, c = 3

so as expected P (C = 1 | F = B) = 1
3 .

Notice, the distribution is unbalanced: this makes sense, since card 2 is more likely to have a black face
shown than card 1.

3.1.3 Formalising the Argument

We can further generalise this argument. In particular, the probability which we should’ve sought was:

P (F2 = W | F1 = B)

but this probability is impossible to find directly using Bayes’ Theorem (we would find that P (F2 = W | F1 =
B) = P (F1 = B | F2 = W ) which is rather unhelpful). We were able to solve the problem because we were
only dealing with 3 cards and some simple rules.

If we want to find P (F2 = W | F1 = B), we need to exploit the product rule:

P (X,Y ) = P (X|Y )P (Y )

and the sum rule:
P (X) =

∑
Y

P (X,Y )

Then, by the sum rule, we can introduce the card:

P (F2 = W | F1 = B) =
∑
c∈C

P (F2 = W,C = c | F1 = B)

By the product rule, we can split this into a product, conditioned by the card type:

P (F2 = W | F1 = B) =
∑
c∈C

P (F2 = W | F1 = B,C = c)P (C = c | F1 = B)

These are all easily computable probabilities, and we will indeed get 1
3 !
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In general, if we want to solve a prediction problem:

P (y | data)

we can do so by introducing a latent variable, and applying the prod-
uct+sum rule combination:

P (y | data) =
∑
z∈Z

P (y | z, data)P (z | data)

or for continuous RVs:

P (y | data) =
∫

P (y | z, data)P (z | data)dz

3.2 Linear Regression via Bayesian Models

• What is the posterior predictive distribution?

– a distribution enabling us to predict an output y, given a new input x, given some prior training
data:

D = {x(n), y(n)}

– we can compute P (y | x,D) by conditioning on the weights w of our model:

P (y | x,D) =

∫
P (y, w | x,D)dw =

∫
P (y | x,w)P (w | D)dw

– notice, we drop D from the first term, since if we know w, the training data doesn’t influence the
prediction

– similarly, the second term isn’t conditioned on x, since we don’t use the input x shouldn’t tell us
anything about the weights (unless we do transductive learning)

• Can we compute the value of the integral?

– in general, this is hard; since we are using Gaussians, the integral actually has a closed form

– notice, P (y | x,w) is our predictive distribution, given parameters:

P (y | x,w) = N (y;µ = wTx, σ2 = σ2
y)

– moreover, P (w | D) is our posterior:

P (w | D) = N (w;µ = wN ,Σ = VN )

– thus, the distribution to predict y given x is:

P (y | x,D) =

∫
N (y;wTx, σ2

y)N (w;µ = wN ,Σ = VN )dw

– whilst computable, this is tedious work

• How can we compute P (y | x,D) without explicitly computing the integral?

– we can exploit the fact that we expect a Gaussian output
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– in particular, we can rewrite the posterior predictive distribution as:

y = xTw + ν, ν ∼ N (0, σ2
y)

– then, the parameters of the distribution will be given by:

E[y] = E[xTw] + E[ν] = E[xTw] + 0 = E[xTw]

V ar[y] = V ar[xTw] + V ar[ν] = V ar[xTw] + σ2
y

(where we use the fact that xTw and ν are independent

– we thus compute:
E[xTw] = xTE[w] = xTwN

V ar[xTw] = E[(xTw − xTwN )(xTw − xTwN )]

= E[xT (w − wN )xT (w − wN )]

= E[xT (w − wN )(w − wN )Tx], (by symmetry of inner product)

= xTE[(w − wN )(w − wN )T ]x

= xTCov[w]x

= xTVNx

– thus:
P (y | D, x) = N (y;µ = xTwN , σ2 = xTVNx+ σ2

y)

– notice, this implies that if we scale a datapoint x by ax, the variance xTVNx + σ2
y will increase

to:
a2xTVNx+ σ2

y

so the model will be less precise

3.3 Decision Making via Bayesian Models

• How can we derive a single value from the posterior predictive distribution?

– notice, P (y | x,D) gives a distribution: a range of possible values for y

– however, for regression, we typically want a single value

– what this value is depends on the loss function L(y, ŷ), which indicates how bad our guess ŷ will
be

– the expected loss given D gives us a cost function:

C = EP (y | x,D)[L(y, ŷ)] =

∫
L(y, ŷ)P (y | x,D)dy

– by setting:
∂C

∂ŷ
= 0

we can derive what our Bayesian model should output, to minimise the loss

• What does a Bayesian Model output with a squared loss?

– let:
L(y, ŷ) = (y − ŷ)2
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– then, we can differentiate inside the integral (since it doesn’t depend on ŷ):

∂C

∂ŷ
=

∫
∂

∂ŷ
(y − ŷ)2P (y | x,D)dy

=

∫
−2(y − ŷ)P (y | x,D)dy

= −2

(∫
yP (y | x,D)dy −

∫
ŷP (y | x,D)

)
= −2(EP (y | x,D)[y]− ŷ)

where we have used: ∫
P (y | x,D)dy = 1

– in other words, if we have a Gaussian model, to minimise cost, we should predict:

ŷ = EP (y | x,D)[y] = xTwN

It can be shown that this corresponds to using a L2 regularised model, so
using a Bayesian approach doesn’t really change our linear regression.
However, introducing this uncertainty is useful: an uncertain prediction
can be used to manually inspect the data to understand where an issue
might lie.

Imagine that a bakery makes an estimate of tomorrow’s bread sales . If it
were possible to make perfect predictions, so we knew that , then we would
bake exactly loaves of bread. We’d sell all our bread, and send no cus-
tomers away. Sadly we can’t make perfect predictions. If we really don’t
like throwing bread away, then we could set smaller than the average possi-
ble value of . In that case, we would sell out nearly every day. Most bakers
seem to attach a different loss to waste, and make decisions that regularly
result in throwing bread away6.
As another example, a business-to-business supplier of non-perishable
goods will pay warehouse fees to keep excess stock, if failing to fulfill orders
will lose customers in the long term. For them, the cost of underestimat-
ing sales is much higher than the cost of overestimating.
The Bayesian approach separates modelling data from the application-
specific loss function by keeping track of multiple possibilities for the
model, and deferring making a decision until later. Multiple decisions,
with different losses, can be made from the same model. An alternative
and popular approach, “empirical risk minimization”, fits a model func-
tion to the training data to directly optimize an application-specific loss
function.
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4 Tutorial

1. We consider a probabilistic model for regression:

P (y | x,w) = N (y; f(x;w), σ2
y)

In this question, we set f(w;w) = wTx and assume a diagonal prior covariance matrix:

P (w) = N (w;w0, σ
2
wI)

Recall, the posterior distribution is Normal:

P (w | D) = N (w;wN , VN )

where:
VN = σ2

y(σ
2
yV

−1
0 +ΦTΦ)−1

wN = VNV −1
0 w0 +

1

σ2
y

VNΦT y

(recall, w0, V0 are the parameters for the prior distribution).
Using Φ = X and V0 = σ2

wI, we get that:

VN = σ2
y(σ

2
y

1

σ2
w

I+XTX)−1

wN = VN
1

σ2
w

Iw0 +
1

σ2
y

VNXT y

What distribution, with what parameters is P (w | D) approaching when we let σ2
w → ∞?

Can you justify this intuitively?

• as σ2
w → ∞, the posterior becomes a normal distribution with parameters:

VN = σ2
y(X

TX)−1

wN = (XTX)−1XT y

• notice, (XTX)−1XT is the Moore-Penrose Pseudo Inverse, so the mean of the posterior distribution
will be the weights obtained by least squares fitting

• this makes intuitive sense: as σ2
w → ∞, we are infinitely uncertain about the possible distribution

of weights; hence, we just pick a mean which best fits to the data, without considering any prior
information

2. N noisy independent observations are made of the unknown saclar quantity m:

x(n) ∼ N (m,σ2)

(a) We don’t give yout he raw data, but tell you the mean of the observations:

x̄ =
1

N

N∑
n=1

x(n)

What is the P (x̄ | m) (i.e what is the likelihood of M given x̄).

Since x̄ is a (scaled) sum of normally distributed RVs, x̄ must itself be a normally distributed RV.
Hence, determining the likelihood just requires finding the parameters of the distribution:

E[x̄] = E

[
1

N

N∑
n=1

x(n)

]
=

1

N

N∑
n=1

E[x(n)] = m
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V ar[x̄] = V ar

[
1

N

N∑
n=1

x(n)

]
=

1

N2

N∑
n=1

V ar[x(n)] =
σ2

N

Thus:

P (x̄ | m) = N
(
x̄;m,

σ2

N

)
(b) A sufficient statistic is a summary of some data that contains all of the information

about a parameter.

i. Show that x̄ is a sufficient statistic of the observations for m, assuming we know
the noise variance σ2. That is, show that:

P (m | x̄) = P (m | {x(n)})

We shall treat m as the only variable here, since we know both σ2 and x̄. We can then use
proportionality to “ignore” any terms which don’t include m.
We compute using Bayes Rule:

P (m | x̄) ∝ P (x̄ | m)P (m)

∝ P (m) exp

(
−1

2

(x̄−m)2

σ2

N

)

= P (m) exp

(
− N

2σ2
(x̄2 − 2mx̄+m2)

)
∝ P (m) exp

(
−Nm2

2σ2
+

mNx̄

σ2

)

Similarly:

P (m | {x(n)}) ∝ P ({x(n)} | m)P (m)

∝ P (m)
∏
n

P (x(n) | m,σ2)

∝ P (m)
∏
n

exp

(
−1

2

(x(n) −m)2

σ2

)

= P (m) exp

(
− 1

2σ2

∑
n

(x(n) −m)2

)

= P (m) exp

(
− 1

2σ2

∑
n

((x(n))2 − 2mx(n) +m2)

)

∝ P (m) exp

(
− 1

2σ2

∑
n

((−2mx(n) +m2)

)

∝ P (m) exp

(
−Nm2

2σ2
+

m
∑

n x
(n)

σ2

)
= P (m) exp

(
−Nm2

2σ2
+

mNx̄

σ2

)
Hence, x̄ is a sufficient statistic: our beliefs about the parameter m given x̄ are identical to
those given that we have the whole dataset

ii. If we don’t know the noise variance σ2 or the mean, is x̄ still a sufficient statistic?
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• intuitively, this isn’t the case; the normal distribution is fully determined by its mean and
variance

• if we don’t know the variance, we won’t know how spread out the data is (i.e it could all
be sharply distributed about the mean, or it could be very noisy and spread out with the
same mean)

• for instance, say all the samples are identically x̄; then, we’d have 0 variance, and our
distribution would be a delta distribution

• if otherwise there is high variance, but still mean x̄, we’d eb uncertain about x̄ as the mean

• x̄ is still a good point-estimate, but it doesn’t tell us the whole story about the distribution

3. Recall, a conjugate prior for a likelihood function is a prior where the posterior is a
distribution in the same family as the prior. For instance, a Gaussian prior on the mean
of a Gaussian distribution is conjugate to Gaussian observations of that mean.

(a) The inverse-gamma distribution is a distribution over positive numbers. It’s often
used to put a prior on the variance of a Gaussian distribution, because it’s a conjugate
prior.
The inverse-gamma distribution has a PDF:

P (z | α, β) = βα

Γ(α)
z−α−1 exp

(
−β

z

)
, α, β > 0

Assume we obtain N observations:

x(n) ∼ N (0, σ2)

where the variance is unknown. Say we place an inverse-gamma prior with parameters
α, β on the variance. Show that the posterior of the variance, given the data, is also
inverse-gamma, and find its parameters.

Using Bayes’ Rule (and using v = σ2):

P (v | {x(n)}) ∝ P ({x(n)} | v)P (v)

= P ({x(n)} | 0, v)P (v | α, β)

=

[∏
n

P (x(n) | 0, v)

]
βα

Γ(α)
v−α−1 exp

(
−β

v

)

=
1

vN/2
exp

(
− 1

2v

∑
n

(x(n))2

)
βα

Γ(α)
v−α−1 exp

(
−β

v

)

∝ v−(α+
N
2 )−1 exp

(
−
β + 1

2

∑
n(x

(n))2

v

)

Hence, the posterior for v follows an inverse gamma distribution, with:

α = α+
N

2

β = β +
1

2

∑
n

(x(n))2

(b) If a conjugate prior exists, then the data can be replaced with sufficient statistics. Can
you explain why?

• since we have a conjugate prior, the posterior is parametrised by some distribution, which just
depends on its parameters (in the case of a normal distribution, mean and variance)

• the posterior is fully determined by these parameters, so they will be sufficient statistics -
sampled data is no longer necessary
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