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Based on the online notes here.

1 Model Evaluation

1.1 Baseline Models

• What is a baseline model?

– a model used to compare a new model in development

– it can be indicative that the problem is too hard (if a fancy model can’t generalise well) or that
there are bugs in the code

• What types of baselines are typically used?

– “dummy” baselines:

∗ allow us to verify that our model works as expected

∗ for instance:
f(x) = b

∗ if our new model performs worse than this simple model, there is probably an issue with our
code

– state-of-the-art

∗ typically used when proposing a new method

∗ can look at papers, see which baselines they use and use them yourself

1.2 Test Sets & Generalisation Error

• What is a test set?

– data not seen by the model

– used to report the error that the model should attain when applied to new data

• Why is the test set important?

– if we train a bunch of models, typically the most complicated one will get greater training accuracy,
since it is more powerful at learning

– for example:
f(x;w, b) = wTx+ b

will always outperform:
f(x; b) = b

since the models are nested: anything produced by f(x; b) can be produced by f(x;w, b)

– hence, training performance is not a good indicative of how well our model will perform with new
data, so can’t be used to select the “best” model

• What is generalisation error?

– the average error that a model would achieve on future test cases produced by a distribution
p(x, y):

Egen = Ep(x,y)[L(y, f(x)]

– the loss L will depend on the task of interest
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– depending on the data:

Ep(x,y)[L(y, f(x)] =

∫
L(y, f(x))p(x, y)dxdy

Ep(x,y)[L(y, f(x)] =
∑
x,y

L(y, f(x)p(x, y)dxdy

• Why can’t we compute the generalisation error?

– we would need to know p(x, y)

– but if we knew the distribution of future events, we wouldn’t need a model in the first place

• What is the Monte Carlo method?

– repeatedly sampling from a distribution, hoping that the sample is representative of the
distribution, and so, allows us to predict is parameters

• What do we use to approximate the generalisation error?

– if we assume that the test set contains M samples taken from p(x, y), then we can use a Monte
Carlo estimate:

Etest =
1

M

M∑
m=1

L(y(m), f(x(m))), x(m), y(m) ∼ p(x, y)

– Etest provides an unbiased estimate of Egen:

Egen ≈ Etest

since on average the estimate is correct:

Ep(x,y)[Etest] =
1

M

M∑
m=1

Ep(x,y)[L(y, f(x)] =
MEgen

M
= Egen

– again, this is contingent on the data being representative of future data

1.3 Validation Data

• What is a validation set?

– a set used to validate model hyperparameters

– when developing a model, there are many parameters that need tweaking (i.e regularisation,
types of basis function, etc ...)

– we can train all these different models on a training set, and then use the validation set to
select the most performant

• Why can’t we use the test set for selecting parameters?

– because then the parameters would be selected to fit to the test data

– however, test data should only be used for evaluating a model, and should never be seen by
the model

– we use validation to select the “best” parameter, and test for seeing performance on future data

Page 3



Figure 1: As expected, increasing the order of the polynomial monotonically decreases the training error
(since the models are nested, so higher order polynomials can always attain at least the same performance as
lower order ones). However, this is due to overfitting: on completely new data (validation), the validation
error quicly increases. For this data, we can see that polynomials with orders between 4 and 7 will perform
decently.

• How is validation data selected for time series?

– validation is selected after the data used for training

– testing is selected after the data used for validation

1.4 Cross Validation

• What is K-Fold Cross Validation?

– a method for validation, particularly useful when there is little data available

– splits the data into K “folds”

– then, uses K − 1 folds for training, and the Kth fold for validation
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– repeat, until all the folds have been used for validation once

– the validation error will be the average of the validation errors for each fold

• What are the issues with K-Fold Cross Validation?

– expensive: ultimately we have to retrain a new modelK times, which is very expensive (especially
if we use validation to pick a parameter)

– statistics: hard to make any statistically rigorous statements about performance

1.5 Warning: Test Data

• How should data be split?

– no “percentages” for train, validation and test

– ideally, want as much training as possible to fit a good model

• Why is it so important that a model never sees testing data?

– if we use the test data in any way to change the model, and thus improve testing performance,
we are fitting our model to the test

– thus our reference for “goodness of fit” gets lost

– as a practical example:

Someone may have followed good practice for all of their analysis, but
then the final test score is disappointing. They then realize that there was
something they should probably have done differently, so they change that
and try again. Then they have another realization, but after that change
the test score gets worse, so they revert that change. . . and so on.
Each minor re-run of a method, or peek at the test set, doesn’t seem like
it could cause any problems individually. But the effects build up. These
problems with accidental overfitting are frequently seen on Kaggle. Their
competitions display a public leaderboard, based on a test set, but the final
rankings are based on a second test set. It is common for some competitors
to fall many places when the leaderboard is re-ranked. One such competi-
tor (Greg Park) wrote a reflective blog post on how they had fooled them-
selves. Despite knowing about cross-validation and the dangers of overfit-
ting, they slowly but surely slipped into fitting the test set. They reached
second place on the public leaderboard, but fell dramatically when it was re-
ranked. . . embarrassingly beneath one of the available baselines.

• What are the limitations of test errors?

– whilst test errors are typically good at comparing model performance, they aren’t fully reliable

– for example, data from the future can change (i.e measured with different equipment, people,
location, etc...)

– ultimately, test errors are only reflective of how good a model is under the given distribution:
if used for some other data, it might generalise poorly

• How can online prediction reduce these limitations?

– typically training is performed using a bunch of data all at once
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– with online prediction, we constantly feed the model new data, and it uses this “stream” to
update its parameters

2 further notes on model development.

1. Interpreting Weights: weights aren’t always meaningful, and we
shouldn’t always seek to assign a meaning (for example, this paper
discusses how, according to weights, Asthma should reduce
health-related risks)

2. Type of Testing: how we test data depends on the task at hand. For
example, this paper argues that AI still hasn’t caught up to human
radiologists when screening for breast cancer. They argue that the
testing data used may have inflated the results, since the data is taken
from a subset of hospitals, in specific locations. They argue that this
doesn’t make the AI “general”, since screenings from other hospitals
might not get the same performance. Moreover, they argue that even
if data has kept up with time (a model trained x years ago is still good
for current screenings) this might not be indicative of generalisation,
but rather a phenomenon caused by the fact that it is likely that the
same people get screenings across times, so again, the AI isn’t
generalising. They argue that we would need new data, from new
locations and new patients. This just illustrates how we should
always be sceptical of our models before sending them out to
production, especially for important cases like these.

2 Gaussians

2.1 Univariate Gaussians

2.1.1 The Standard, Univariate Gaussian

• What is the standard, univariate normal distribution?

– a probability distribution:
N (µ = 0, σ2 = 1)

– µ is the mean of the distribution

– σ2 is the variance of the distribution

– if we sample from the distribution and plot a histogram we obtain a bell-shaped distribution,
centered at 0, and with points of inflection at 1:
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Figure 2: The above distribution has mean −0.00026 and variance 0.99802 (using 106 samples). If Z ∼
N (0, 1), we expect that as the number of samples goes to ∞, the mean and variance of the samples tends to
µ = 0, σ2 = 1. Formally:

E[Z] =

∫
zp(z)dz = 0, Z ∼ N (0, 1)

V ar[Z] = E[(Z − µ)2] =

∫
z2p(z)dz = 1, X ∼ N (0, 1)

where p(x) is the probability density function of the normal distribution.

• What is the probability density function of a standard normal distribution?

– a function describing the bell-shaped curve of the normal distribution:

p(z) = N (z; 0, 1) =
1√
2π

e−
x2

2

– p(z) does not give the probability of z under a normal distribution

– PDFs are used to compute probabilities of the form:

P (Z ≤ z) =

∫ z

−∞
p(u)du
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Whilst p(z) doesn’t give a probability, we can assume that as δ → 0, the
probability of a sample z ∈ N (0, 1) being in the range

[
x− δ

2
, x+ δ

2

]
is

close to:
p(x)δ

(this is an approximation for the area under the curve in this range)
If we have generated N samples, we expect p(x)δN of those samples to
land within the bin

[
x− δ

2
, x+ δ

2

]
.

We can use this procedure to approximate the PDF:

We expect ≈ 68% of the data to be in the range [−σ, σ], and ≈ 95% of the
data to be in the range [−2σ, 2σ].

2.1.2 General Univariate Gaussians

• How can we compute a normal distribution with arbitrary parameters?

– say we want to define:
x ∼ N (µ, σ2)

– if z ∼ N (0, 1), then:
x = zσ + µ

is such that:
x ∼ N (µ, σ2)

– in the other direction, if x ∼ N (µ, σ2), then:

z =
x− µ

σ

is such that:
z ∼ N (0, 1)

• What is the PDF of the general univariate Gaussian?
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– this is a matter of shifting and scaling the standard univariate Gaussian

– to go from general to standard, we apply the transformation:

x 7→ x− µ

σ

so:

p(x) ∝ e−
( x−µ

σ )
2

2 = e−
(x−µ)2

2σ2

– however, this increases the area under the curve, since the curve has widened by a factor of σ;
thus, we need to scale:

p(x) = N (x;µ, σ2) =
1

σ
√
2π

e−
(x−µ)2

2σ2

– p(x) now describe a curve centered at µ, with inflection points (“width”) at ±σ

The factor 1
σ
is nothing but the Jacobian of the transformation. In this

case, we are doing a change of variables via:

f(x) =
x− µ

σ

so the Jacobian is:

|f ′(x)| = 1

σ

2.2 The Central Limit Theorem

• Are all probability distributions normal?

– no - real world data is not typically normally distributed:

• Why are normal distributions so important?

– they are simple to use, and still ubiquitous enough

– even when things are not normally distributed, assuming that they are often leads to good results

• What is the central limit theorem?

– under certain conditions, adding together many outcomes leads to data which is approximately
Gaussian distributed

– this means that understanding normal distributions will allow us to understand a lot of real data

• What conditions are required for the CLT?
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1. Bounded Mean and Variance: each summand should be sampled from a distribution with
bounded mean and variance (if we allowed a lot of extreme values, the sum would be distorted
and the distribution wouldn’t be bell-shape)

2. Constrained Value: the resulting distribution will be proportional to a Gaussian PDF, but
constrained to the possible values of the original distribution (i.e if we sample from the integers,
the sum can only be an integer)

3. Convergence in Distribution: the CLT converges in the sense of “convergence in distribution”
(this is a weak form of convergence). In other words, the convergence to the Gaussian will be
quick a few standard deviations from the mean, whilst the extreme tails of the distribution won’t
be so quick.
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We generate 5 integers (in the range [0, 1000]), and do this 1000 times.
We then plot the histogram of the sums:

If instead we add 3 integers we get:

Perhaps more interestingly, if we add 2 integers:
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2.3 Standard Error on the Mean

2.3.1 The Standard Error on the Mean

• How can we estimate the parameters of a distribution?

– given a sample produced from a distribution, the maximum likelihood estimation of the
parameters are obtained by using the sample mean and sample variance:

µ ≈ µ̂ =
1

N

N∑
n=1

xn

σ2 ≈ σ̂2 =
1

N − 1

N∑
n=1

(xn − µ̂)2

– the factor of 1
N−1 for the variance makes it so that σ̂2 is an unbiased estimator

• How good is the sample mean as an estimate of the population mean?

– notice, µ̂ is a random variable: its value depends on the samples

– we have:

E[µ̂] =
1

N

N∑
n=1

E[xn] =
1

N

N∑
n=1

µ = µ

so µ̂ is an unbiased estimator, and on average, µ̂ should be around µ

• What is the standard error on the mean?

– gives us a measure of how good the estimate µ̂ is

– if we compute its variance (assuming the samples are independent):

V ar[µ̂] =
1

N2

N∑
n=1

V ar[xn] =
1

N2

N∑
n=1

σ2 =
σ2

N

– the value:
σ√
N

is the standard error on the mean, which we typically approximate using the sample vari-
ance:

σ̂√
N

– the standard error on the mean gives a range on which µ is likely to lie:

µ ∈
[
x− σ̂√

N
, x+

σ̂√
N

]
68% of the time, µ should be within this range; 95% of the time it will lie 2 standard errors away

• How can we reduce the standard error on the mean?

– to decreases the standard error by a factor of 10, we would need to increase the amount of samples
by a factor of 100

– hence, increasing the sampels increases our confidence in the sample mean as being similar to the
true population mean
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Figure 3: Here we perform 100 trials. At each trial, we take 100 samples from a Bernoulli distribution with
mean µ = 0.3. We then average these results, and compute the standard error of the mean (plotted as
error bars). Notice how for most of the trials, the true mean 0.3 was within the error bars.

• How can standard error on the mean be used to compare test error to generalisation
error?

– the average test error is:

Ltest =
1

M

M∑
m=1

L(y(m), f(x(m))) =
1

M

M∑
m=1

Lm

– if we had infinitely many different test sets, then Ltest could be treated as a random variable
(albeit can’t assume it to be normally distributed)

– however, we can compute the standard error on the mean, to gauge how the performance of
our model might deviate

– again, this all depends on:

∗ test cases being independent

∗ loss being bounded (or at least finite variance)

∗ future inputs coming from same distribution

∗ relationship between input and output remaining the same

2.3.2 Model Reliability and Comparison

• When is a model not robust?

– when its performance changes significantly across different fits

• What can cause fit changes in a model?

– using new data

– models might require randomness (i.e initialising a neural network)

– randomness introduced by training (i.e GPUs perform a lot of parallel computations, which can
lead to different results - even as significant as using randomness within the algorithm itself)

• How can we report the variability of our model?

– give the standard deviation of performance across the different fits

– a robust model will have a low σ, and so, will not vary much given future data

• Can standard error be used to compare model performance?
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– consider 2 models A,B, with standard error intervals overlapping (that is, the true generalisation
error should be within 1 standard error of their test error) - could we assert that we can’t tell if
A is better than B (or viceversa)

– this is false - for example, if A attains 0.1 better performance on each test case, we can confidently
say that A is better than B

– moreover, it could be the case that the standard error of B is larger than that of A

• What is a paired comparison?

– a method for putting model performance head to head

– we consider the difference of losses:

δm = LA
test − LB

test

– if we do this for each test set, we can compute the mean difference, and its corresponding standard
error

– if the mean is several standard errors greater than 0, we can be confident that A is a better
model (the difference would be statistically significant)

2.4 Multivariate Gaussians

2.4.1 The Standard, Multivariate, Independent Gaussian

• What is a standard multivariate gaussian?

– a distribution N (0, 1)

– however, we sample vectors z, where each component zi follows a standard normal distribution:

zi ∼ N (0, 1)

• What is the PDF of the standard multivariate gaussian?

– assuming each component is an independent variable, then the product of their PDFs will give
the PDF of the mutlivariate gaussian:

p(z) =

D∏
d=1

p(zd)

=

D∏
d=1

N (zd; 0, 1)

=

D∏
d=1

1√
2π

e−
z2d
2

=
1

(2π)D/2
e−

1
2

∑D
d=1 z2

d

=
1

(2π)D/2
e−

1
2 z

T z

– notice, this PDF is proportional to an RBF, albeit scaled to ensure it integrates to 1

Page 14



2.4.2 The Covariance Matrix

• What is the covariance matrix?

– a matrix Σ, the generalisation of variance for higher dimensions

– in general, given a set of random variables:

Σij = Cov(x(i), x(j)) =
1

N − 1
(x(i) − ¯x(i)) · (x(j) − ¯x(j)) =

1

N − 1

N∑
n=1

(x(i)
n − ¯x(i))(x(j)

n − ¯x(j))

– can also write, for a vector x:
Σ = E[xxT ]− E[x]E[x]T

– the covariance matrix is symmetric, with the variance of a variable along the diagonal, and the
covariances in the remaining entries

• What is the covariance of 2 independent variables?

– the covariance is 0

• What is the inverse of the covariance matrix?

– a matrix known as the precision matrix

• What is a positive definite matrix?

– a real, symmetric matrix is positive definite if and only if :

zTΣz > 0, ∀z ∈ Rn, z ̸= 0

– a positive definite matrix is always invertible, and the inverse is also positive definite:

zTΣ−1z > 0, ∀z ∈ Rn, z ̸= 0

• What is a positive semi-definite matrix?
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– a real, symmetric matrix is positive semi-definite if and only if :

zTΣz ≥ 0, ∀z ∈ Rn, z ̸= 0

– the covariance matrix is positive semi-definite

– if zTΣz = 0, then Σ won’t be invertible, since:

det(Σ) = |Σ| = 0

• How can positive semidefinite matrices be generated?

– take any real-valued matrix A

– then:
Σ = AAT

will be positive semi-definite

– in fact, any symmetric, positive semi-definite matrix Σ can be written as a matrix product of A
with its transpose (for some A)

2.4.3 The General, Multivariate Gaussian

• What is the covariance matrix of vectors transformed linearly?

– consider z ∼ N (0, I)
– we can apply a linear transformation to x via a matrix A:

y = Az

– the covariance of this new random variable will be:

Cov[y] = E[yyT ]− E[y]E[y]T

= E[AxxTAT ]− E[Ax]E[Ax]T

= AE[xxT ]AT −AE[x](AE[x])T

= AE[xxT ]AT , (since E[x] = 0)

= ACov[x]AT

= AAT , (since E[xxT ] = Cov[x])

• What is the PDF of a normal distribution whose vectors are transformed linearly?

– consider z ∼ N (0, I) transformed by A

– assuming the covariance matrix Σ = AAT of this transformation is positive definite, then:

y = Az =⇒ z = A−1y

– plugging this into the PDF of the standard multivariate Gaussian:

p(y) ∝ e−
1
2 (A

−1y)T (A−1y) = e−
1
2y

T (A−1)TA−1y = e−
1
2y

TΣ−1y

– we need to rescale this so that the area remains the same; the volume by which a matrix changes
a region after transforming it is its determinant, so:

p(y) =
1

|A|(2π)D/2
e−

1
2y

TΣ−1y
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– alternatively we can write:

p(y) = |2πΣ|− 1
2 e−

1
2y

TΣ−1y

since:
|2πΣ| = (2π)D|A|

• What is the PDF of a general, multivariate normal distribution?

– the last step is to apply a translation:
x = y + µ

so that the PDF gets centered at µ:

p(x) = N (x;µ,Σ) =
1

|A|(2π)D/2
e−

1
2 (x−µ)TΣ−1(x−µ)

• How can we sample from a multivariate Gaussian?

– say we want to sample:
x ∼ N (0,Σ)

– the easiest way to do this is to use the fact that Σ will be positive definite, and so ∃A such that:

Σ = AAT

– A is what we can use to transform data:

x = Az, z ∼ N (0, I)

– however, A won’t be unique:

A =

2 0

0 2

 A′ =

√
3 1

−1
√
3

 =⇒ AAT = (A′)(A′)T

– in practice we can use the Cholesky decomposition, which gives us a triangular matrix decom-
position

• What is the shape of a multivariate Gaussian?

– data will look elliptical

– the axes defining the ellipse are determined by the eigenvectors of Σ

– below are some plots of this

2.4.4 Intuition: Non-Invertible Covariance and the Gaussian

Consider the transformation matrix:

A =

1 1

1 1


We can see A is not invertible, since:

|A| = 1− 1 = 0

However, it is nicer to undertand this geometrically. The effect of A on any vector (x1, x2) is the mapping:x1

x2

 7→

x1 + x2

x1 + x2


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In other words, A has the effect of mapping any point in the plane to the single line x1+x2 = x1+x2. This
means A can’t be invertible, since given the point (5, 5), there are infinitely many vectors which could’ve
mapped to it ((1, 4), (4, 1), (2, 3), (4.9, 0.1) etc...).
Now, say we have a variety of points sampled from a standard normal distribution:

We can visualise the effect of:

B =

1 1

1 a


and see how it affects the above distribution as a → 1:
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This means that our transformed random variable “loses” its probability density: the probability of a
Gaussian generating a point will be 0, unless the point lies exactly in the line through the origin..
How does this affect the shape of the gaussian? As a → 1, p(x) = 0 almost everywhere (since x will be
constrained to some neighbourhood of the diagonal line). We still require that:∫

p(x)dx = 1

which means that p(x) must approach infinite density along the aforementioned line. Intuitively, this means
that the shape of the Gaussian distribution will approach the Dirac Delta Function
Since Σ = AAT , Σ will also not have an inverse, so a non-invertible covariance matrix leads to a Dirac-like
distribution.

3 Questions

3.1 Notes Question

1. What is the MSE of the baseline which predicts the average of data each time?

f(x) =
1

N

N∑
n=1

y(n) = ȳ
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We can compute:

MSE =
1

N

N∑
n=1

(y(n) − ȳ)2 = σ2

Thus, if the MSE of a model is greater than the variance of the training labels, then there is an issue
with our model.

2. Consider the family of transformations:

A =

1 0

a (1− a)


(a) What does this transformation do?

If x = Az, then.
x1 = z1

x2 = az1 + (1− a)z2

(b) For what values of a are the variables dependent?

The covariance matrix is:

Σ =

1 a

a a2 + (1− a)2


Notice, if a ̸= 0, the covariance of the variables will be non-zero, so they are dependent whenever
a ̸= 0.

(c) When are the variables maximally dependent?

When a = 1, the covariance will be 1, so maximally dependent.

(d) What happens to the PDF as a → 1?

As a → 1, the Gaussian approaches a Dirac distribution, with the probability density tending to
infinity.

(e) Does the covariance matrix always have an inverse?

No. This is clear from computing the determinant:

|Σ| = a2 + (1− a)2 − a2 = (1− a)2

so if a = 1, Σ−1 doesn’t exist. Alternatively, notice that if a = 1, x2 = az1 = ax1, so all points will
lie on the same line, and we lose information about z2, so this transformation can’t be reversed.

4 Tutorial

1. If a, b ∈ RD and M ∈ RD×D is a symmetric matrix, show that:

aTMb = bTMa

aTMb = aTMT b = bTMa

2. Suppose that:
P (x) ∝ exp

(
−xTAx− xT c

)
where A is a symmetric invertible matrix. This distirbution is Gaussian, since it is propor-
rtional to the exponential of a quadratic in x. Identify the Gaussian from which x comes
from, by identifying the mean mu and covariance Σ in terms of A and c.
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We can just match terms. For a “normal” Gaussian:

P (x) ∝ exp

(
−1

2
((x− µ)TΣ−1(x− µ)

)
= exp

(
−1

2

[
xTΣ−1x− xTΣ−1µ− µΣ−1x+ µTΣ−1µ

])
= exp

(
−1

2

[
xTΣ−1x− 2xTΣ−1µ+ µTΣ−1µ

])

Thus, comparing with
P (x) ∝ exp

(
−xTAx− xT c

)
we see that:

A =
1

2
Σ−1 =⇒ Σ =

1

2
A−1

−c = Σ−1µ =⇒ µ = −Σc = −1

2
A−1c

3. The first element of a vector has:
x1 ∼ N (m,σ2)

the second element is generated via:

x2 = αx1 + ν, ν ∼ N (0, n2)

The joint distribution of the vector x = (x1, x2) is Gaussian. Identify the µ,Σ such that:

x ∼ N (µ,Σ)

1. Using expectations and probability theory:

E[x1] = m

E[x2
1] = V ar(x1) + (E[x1])

2

= σ2 +m2

E[x2] = E[αx1 + ν]

= αE[x1] + E[ν]
= αm

E[x1x2] = E[x1(αx1 + ν)]

= αE[x2
1] + E[x1]E[ν]

= α(σ2 +m2)

V ar(x2) = V ar[αx1 + ν]

= α2V ar[x1] + V ar[ν]

= α2σ2 + n2

From this, we can just read off:

µ =

 m

αm

 Σ =

 V ar[x1] E[x1x2]− E[x1]E[x2]

E[x1x2]− E[x1]E[x2] V ar[x2]

 =

 σ2 ασ2

ασ2 α2σ2 + n2


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2. Using Gaussian distribution knowledge. Say that:

z ∼ N (0, I)

then:
x = µ+ Lz

where L is such that Σ = LLT . If we have z1 ∼ N (0, 1) and z2 ∼ N (0, 1), then:

x1 = m+ σz1

x2 = αx1 + ν = α(m+ σz1) + nz2

Then, we can read:

µ =

 m

αm


L =

 σ 0

ασ n


which implies that:

Σ = LLT =

 σ2 ασ2

ασ2 α2σ2 + n2


as above

4. We can sample from:
x ∼ N (0,Σ)

by drawing a vector of standard normals:

ν ∼ N (0, I)

and setting:
x = Aν

for any matrix A, where AAT = Σ.
Real symmetric matrices, like covariance matrices, can always be written in the form:

Σ = QΛQT

where Λ is a diagonal matrix of eigenvalues, and the columns of Q are the eigenvectors of
Σ.

(a) Describe how to sample from N (0,Σ) using this decomposition.

• since Λ is a diagonal matrix, we can write:

Λ = Λ1/2Λ1/2

where Λ1/2 denotes the matrix obtained by taking an elementwise square root of Λ

• then we have that:
Σ = QΛ1/2Λ1/2QT = QΛ1/2(QΛ1/2)T

• thus, using A = QΛ1/2 we can sample from the distribution with covariance Σ
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(b) Q is an orthogonal matrix, corresponding to a rigid rotation (and possible a reflection).
Describe geometrically how you sampling process transforms a cloud of points drawn
from a standard normal.

• Q is orthogonal - its columns are orthonormal vectors, which thus give rise for a new basis
of space; hence, multiplying by Q is equivalent to mapping data to this new basis, which is
nothing but rotations (and potential reflections)

• to sample, we sample x ∼ N (0, I and:

Ax = Q(Λ1/2x)

• Λ1/2 is a diagonal matrix, which stretches each xi by a factor of
√
λi; this converts the sphere

of points into an ellipsoid of points

• Q then rotates the points, by mapping them to the orthogonal basis spanned by its columns;
this rotates the ellipsoid, such that its principal axes align with the eigenvectors of Σ

5. The notes introduced the lower-triangular Cholesky decomposition Σ = LLT , which can be
applied to symmetric positive- definite (but not semi-definite) matrices. As well as being
useful for sampling, common computations involving triangular matrices (determinants,
matrix inverses, solving equations) are quick, so many library routines involving Gaussians
use the Cholesky decomposition.

(a) Sometimes instead of decomposing th covaraince matrix, we have the Cholesky decom-
position of the precision matrix:

Σ−1 = CCT

where C is lower-triangular. How could we use C to sample from N (0,Σ)?

Since Σ−1 = CCT , then:
Σ = (C−1)TC−1

We can then sample by using:
L = (C−1)T

in our standard strategy.

(b) Yet another possible decomposition is the principal square root:

Σ = Σ1/2Σ1/2

where Σ1/2 is symmetric. We now try to understand how these decompositions are
related.

i. Consider 2 different decompositions:

Σ = AAT = BBT

We’ll assume the matrices are full rank, so that we can write B = AU . Show that:

UUT = I

and so, U is orthogonal.

AAT = BBT = (AU)(AU)T = A(UUT )AT =⇒ UUT = I
since A is invertible.

ii. Explain geometrically why if computing Aν from ν ∼ N (0, I) is a way to sample
from N (0,Σ), computing:

Bν = AUν

will be as well.
• U just rotates the points of ν, so they remain spherically distributed

• hence, Uν ∼ N (0, I
• hence, applying A to Uν to sample is equivalent to sampling by applying A to ν directly
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