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Based on the online notes here.

1 Recap: Bayesian Logistic Regression

We defined a Bayesian version for logistic regression, with prior
P(w) and likelihood P(D | w) = o(w’z):
P(D | w)P(w)
P(D)

Pw|D) =

The posterior is used, for instance, to make predictions using the pre-
dictive posterior:

P(y=1|z,D) = / o(w”2) P(w [D)dw

However, sampling from the posterior is very hard: we need to be able to
compute the marginal likelihood P (D).

Unless we are working with nicely parametrised distributions (i.e Gaus-
sian), computing P(D) and sampling from the posterior is extremely diffi-
cult. One way of approximating the posterior is to use a Laplace ap-

proximation:
P(w | D) = N (w;w*, H™)

where:
e w* is the MAP approximation of w for —log P(w | D)
e H is the Hessian of E(w) = —log P(w | D)

Using the Laplace approximation, we could also approximate the
marginal likelihood:

P(D) ~ P(w*, D)|2nH |/

which in turn allowed us to approximate the predictive posterior:
Ply=1|z,D)~ /a(a)N(a;w*Tg, 2" H 'zda

where a = w” x.
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2 Bayesian Logistic Regression via Importance Sampling
2.1 Importance Sampling
e What is importance sampling?

— allows us to sample from an arbitrary distribution when computing the predictive posterior

— if g(w) is some tractable distribution, then:

e What is the importance weight in importance sampling?
— the importance weight is the quotient:
o _ P | D)
q(w)

— upweights those parameters which are more likely under the posterior P(w | D) than the
sampling distribution ¢(w)

¢ Why can’t we sample from the posterior even with importance sampling?

— to use importance sampling, even if we don’t sample from the posterior, we still have to
evaluate it

— however, this involves computing P(D)

— we can approximate this by using importance sampling again:

D)= [ PID| wPw)dw

/P )q(w)d

q(w)
=Eyq) { o w))P }

S

Dlw” )P(w))
52 w®)

— if we define the unnormalised importance weights as:

#s) P(D | w®)P(w®)
q(w®)
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we can approximate the predictive posterior:

P(w® | D)

(s) ~
@) w q(w)

S
1
Ply=1|zD)~ 5> o z)

1S g P(D ] w®)P(w)

s=1
S N
1 7(®
_ = § (s)T
S s=1 U(w ‘ D)
S
1 7(s)
_ (s)T
=3 E :dw ) S o
S s=1 % D=1 (s
S
= E J(&(S)Tx)p(s)

where in the last step we have defined the normalised importance weights

o _
demg T

e What are the unnormalised importance weights if we use the prior as our sampling
distribution?

— we have that the unnormalised importance weights are:

NOTEACE w)P(w®)

— if we use ¢(w) = P(w), then:
#*) = P(D | w®)

so the unnormalised importance weight will be the likelihood
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Figure 1: Importance sampling applied to linear regression. Data (black) is generated by the dark, blue line.
We apply linear regression, and draw 10,000 samples from the prior (purple). The intensity of the purple
corresponds to the importance weight (which is proportional to likelihood). Some models are so unlikely
that they appear close to white.

2.2 Choosing the Sampling Distribution

e How should the sampling distribution ¢(w) be restricted to make sure importance sam-
pling is reasonable?

1.
2.

q(w) > 0: since we divide by g(w)

We can’t have q(w) << P(w | D): if we did, the importance weight r(*) would be large for many
different weight settings, so the estimator will have high variance

¢ When won’t importance sampling work well?

in principle, importance sampling works well, so long as we can sample from ¢(w) and can
evalute the likelihood (as is the case for logistic regression)

importance sampling might not work well if there are a lot of parameters

for example, if we use g(w) = P(w), when we draw the S samples it is unlikely that any of the
weights match the data well (since the weights are based on our prior knowledge), so we will have
poor estimates

we could try using ¢(w) to approximate the posterior, but with a lot of parameters this becomes
very difficult (at least if we want an approximation which is sufficiently useful fro importance
sampling)

in such cases, Markov Chain Monte Carlo can b used (this has been used successfully for
neural networks)
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3 Bayesian Logistic Regression via Variational Inference

3.1 Variational Inference: KL-Divergence
3.1.1 The KL-Divergence
e What is a major pitfall of the Laplace approximation?
— the Laplace Approximation finds a Gaussian which best approximates a distribution at its
mode
— however, the behaviour at the mode of a distribution might be misleading about the rest of the
distribution (i.e multimodal distributions)

e What are variational methods for inference?

— fit a target distribution, by using optimisation
— given a family of distributions {q(w;a)} (parametrised by a variational parameter «), seeks
to minimise a variational cost function (which measures the discrepancy between the target
and ¢(w; @)), by varying «
— for example, if we have a family of Gaussians, o would encompass the mean and covariance
of the distributions:
q(w; o = {m,mV'}) = N(w;m, V)

— for this course, we only consider Gaussian families, but naturally this method applies to other
families aswell

e Why is the Kullback-Leibler Divergence a good variational cost function?

— the KL-Divergence for 2 distributions P(z), Q(z) gives a measure of how distinct the distribution
are:

Dic1(PlIQ) = / P(2)log gg; dz

— being a divergence, KL-Divergence satisfies:

1.
Drr(Pll@) 20

Dkr(Pl|Q) 20 <= P(z) =Q(z)
3. it isn’t symmetric:

Dkr(P||Q) # Drr(Ql|P)

— these make the KL-Divergence appropriate as a variational cost function: minimising KL-
Divergence implies moving our target family @ closer to P

The KL-Divergence appears in the context of information theory:
it gives the average storage wasted by using 2 different compression sys-
tems.

At this point, there are 2 ways of minimising the KL-Divergence: we can either try to match our family
to the target directly (i.e minimise Dk, (P||Q)), or indirectly (i.e minimise D1 (Q||P)).
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3.1.2 Minimising KL-Divergence: Directly Matching the Posterior

e How is KL-Divergence minimised, if we directly match the family to the target?

— to minimise:
Dk (P||Q)

we set m, V' in our Gaussian approximation to the mean and covariance of the target

Figure 2: Recall this example from last week, where we considered the posterior for a Bayesian logistic
regression model.

If we use a Laplace approximation, the approximate posterior would be practically identical to the prior
(blue) (the posterior [red] has a nearly identical mode to the prior, since the logistic likelihood is nearly 1
in that region; because of this, the curvature at the mode will also be nearly identical; since the Lapalce
approximation assumes a Gaussian distribution, it’ll produce a posterior which looks nearly identical to the
prior).

On the other hand, if we minimise Dgr,(P||Q) by picking m,V to match the true posterior, we get a more
reasonable approximation (purple).

e Why don’t we typically minimise KL-Divergence by matching the family to the target
directly?

1. Evaluating Posterior: we might not have a parametric posterior, so it is hard to compute the
KL-Divergence; even if it were parametric, the integral might be very hard to compute

2. Posterior Parameters: we’d need to have access to the mean and covariance of P(w | D),
which we don’t always have

3. Not Always Sensible: even if we could evaluate the divergence, and had the posterior param-
eters, the result won’t always be sensible (i.e a bimodal distribution will have its mean at a
trough of the distribution, so we wouldn’t match any of the modes, and we’d have a high variance
distribution)

Page 7



s WD . <



We can justify why minimising Dk 1,(P||Q) with a Gaussian Q) is equiv-
alent to matching the mean and covariance of P.

Whilst this can be justified using calculus, multivariate gaussians can be
messy, so we choose a more general approach. In particular, let () be some
exponential family parametrised by 0:

Q(w) = exp (87 ¢(w))

Z(0)

where:

2(6) = / exp(07 $(w))duw

and ¢p(w) is a vector containing certain statistics (for example, ones
defining a Gaussian).

If we plug in the approximating famaily into the KL-Divergence,
then:

Dia(PIQ) = [ Pwiog ggg o

—_ w) 1o P(w) -
- / P(w)log ﬁexp(ew(w))d_

- / P(w) [log P(w) — 67(w) + log Z(6)] dw

If we then differentiate this with respect to 6 and set to 0:
0=~ [ Pwstwdn + 5o [ olw) exp(6 o)
— 0= [ Pwstwin+ [ sweuw)e

which tmplies that:

Eynpw)¢(w)] = Ey g [¢(w)]

In other words, the statistics ¢(w) defining the distribution must match.
If Q) is Gaussian, this implies that the mean and covariance must be
equal to those of P.

3.1.3 Minimising KL-Divergence: Indirectly Matching the Posterior

e Why is often chosen to minimise KL-Divergence by matching our target indirectly?
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1. Optimisation: it is easier to optimise D, (Q||P)
2. Parameter Choice: optimising Dy, (Q||P) encourages that the chosen « is more plausible (i.e
instead of fitting to the trough, we’ll fit to one of the modes)
e How is KL-Divergence minimised when matching the posterior indirectly?
— if we tried to naively minimise Kpr,(Q||P), we'd still have the problem of being able to evaluate
the posterior
— instead, we can try to “break down” the terms in the divergence:

Qw; )

Plw [ D)™

DKL QHP /Q w; log

:/Q(w; @) logQ(w;a)dw*/Q(w;a) log P(w | D)dw

negative entropy: —H(Q) cross-entropy

— hence, to minimise the KL-Divergence:
1. we need to minimise —H (Q), or equivalently maximise the entropy H(Q): in other words,
we want a distribution () which is close to uniform - spread out, without any significant peaks
2. we need to maximise the cross-entropy: to do this, we need to select «, such that () and P
match well (as an extreme example, if we have some implausible weight w with P(w | D) — 0,
unless & makes it so that Q(w; «) — 0, the cross-entropy term will diverge to infinity)
— intuitively, the above tells us that by minimising Dy, (Q||P), we will pick @ which fits well to
one of the modes of P, and then spreads out as much as possible to encompass as much of the
probability mass of the mode as possible

e What is the evidence lower bound?

— we can further break down Dy (Q||P) by using the definition of the posterior:

Qw; a)

Plw [ D)™

Dk (Q||P) = /Q (w; a) log
=/Q(w; o) log Q(w; a)dw—/Q(w; a)log P(w | D)dw

negative entropy: —H(Q) cross-entropy
D|w)P(w
= Eyng;a)llog Q(w /Q (w; ) log (|())()dw

= EQNQ(Q;O{) [lOg Q(M)} - EwNQ(w a)[lOg P(D | w)] Ew ~Q(w;a) [logP( )} +10g P(D)
J(Q)

— the term log P(D) is
* the log-marginal likelihood
* the model evidence

— the term —J(Q) is known as the ELBO (Evidence Lower Bound), since:

Dgr(Q||IP) >0 = logP(D)>-J(Q)

— notice, minimising the divergence is equivalent to maximising the ELBO —J(Q), which is a
term dependent on distributions which we know:
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* the variational distribution Q(w;«a)
* the likelihood P(D | w)
* the prior P(w)

We compare our 2 methods for Gaussian approximation.

Laplace Approximation:
e straightforward: compute MAP weight & Hessian
e the Hessian gives certainty of parameters
e incrementally improves MAP estimate

e gives an approximation for the marginal P(D)

Variational Methods:
e optimise using distribution famaly
o typically optimise indirectly (i.e using Drr(Q||P), not Dk (P||Q))
e gives bound for the marginal P(D

e hard to optimise (see next section)

3.2 Stochastic Variational Inference to Minimise KL-Divergence
3.2.1 The Optimisation Problem

We want to minimise the KL-Divergence:
DKL(QHP) = EQNQ(H;Q) [log Q(Q)] - ]EQNQ(Q;OZ) [log P(D | w)] - ]EENQ(E;OL)[IOg P(Q)} + log P(D)
with respect to oo = {m, V'}.
Notice, the model evidence doesn’t depend on «, so we seek to minimise:
J(mv V) = EﬂNQ(g;a)[log Q(w)] - E&’VQ(Q;(}) [IOgP(D ‘ Q)] - EMNQ(M;Q) [log P(&)]
with respect to m, V. Notice, since we have:
log P(D) > —J(m,V)

minimising J will increase the model likelihood P(D) (ideally we’d like to maximise this as well, but doing
so exactly is hard).

The entropy terms (entropy + cross-entropy):

EMNQ(Q;Q) [log Q(M)] EMNQ(&;&) [log P(Q)}
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are easy to compute in closed form. The log-likelihood:

N
Eynquwia) [log P(D | w)] = ZE&NQ(QNX) [log P(y(n) ‘ E(n)vw)}

n=1

on the other hand is a sum of integrals, which is hard to optimise in some closed-form way.

In practice, for optimising we:

2

<, we optimise the unconstrained quantity log o, instead

1. for any variance o

2. to optimise the covariance matrix V', we apply the Cholesky decomposition:
V=LL"

(easier to optimise triangular matrices). Since the diagonal elements are positive, we take the log of
the diagonal elements, and then optimise the resulting unconstrained matrix

3.2.2 Closed-Form Expression for Entropy and Cross-Entropy

e What is the expectation of the log of a Gaussian?

— consider a general Gaussian N (w; 1, %), where:
w~N(m,V)
— then:
Eyrn(m,v) [l0g N (w; 1, %)

1 1 _

_ 1
(M_H)Tz l(w—,u)} — 510g|2ﬂ'2|

[NoR

=Ewn(m,v) [—
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To deal with expectations of quadratic forms, it is useful to use the trace

trick.
Since the trace of a scalar is itself, and it is a linear operator:
1 _ 1 _
—w =) w—p) = =57 (w—p)"' S (w - p)

Moreover, a property of the trace is that:
Tr(AB) =Tr(BA)

S0:

e What is the closed-form expression for the negative entropy?

— we have the negative entropy:

_H(Q) = EQNQ(M;a) [lOg Q(M)]

where:

Qw; a) = N(w;m, V)

— thus, and using the trace trick:

By~ w;a) [log Q(w)]
=By (m,v) [l0g N (w; m, V)]

1 ~ 1
=E N (m, V) —§(w—m)TV Y(w —m) — 5 log |27V

1
== Tr (Bun(mv) [(w—m)(w—-m)"| V) - 3 log |27 V|

2
—_1p (vvh) - 11og |27V|
2 2
D 1

e What is the closed-form expression for the cross-entropy?

— we have the cross-entropy:
_EENQ(w;a)[log P(w)]
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— if we assume a spherical Gaussian Prior:
P(w) = N(w;0,07)

then the cross-entropy becomes (again, using the trace trick, and adapting to higher dimensions
the fact that Var(X) = E[X?] — (E[X])?):

- E@~Q(ﬂ;a) [log P(w)]
= E@NN(@,V)[IOgN(w; 0, 0'120)}

1 1 1
== Eyn(mv) [—QwT (02]1) w} — 5 log 2oy 1]

1
:ﬁEQNN(m,V) [QTQ] + 5 10g(27r05})

w

=%%~N(m\/) [whw] + glog(%ai)
1
202
1
202

D
Tr(Ewan (m,v) [MT]) + 5 10g(27r012”)

D
(Tr(V) +m"m) + 7 log(2m0y)

e How can we compute the gradients of the entropy terms?

— both the entropy and cross entropy are differentiable functions of m and V'

— the terms involving V are functions of the Cholesky decomposition:
L) VI)> logL
51lo og Li;
5 108 1’ 123
Tr(V)=> L
ij
— hence, we can easily compute gradients

3.2.3 Approximating the Log-Likelihood

e How is the log-likelihood approximated?

the log-likelihood we have is a sum of integrals:

N
Euwquia) 108 P(D | w)] = Byrnr(m. v [l0g P(D | w)] = > Eynr(m. v llog P(y™ | 2™, w)]

n=1

approximating each integral (as a 1D integral) is very expensive
— instead, we use Monte Carlo, to compute an unbiased estimate by sampling a random weight
w:

N
Euwn(m)og P(D | w)] = Y log P(y™ | 2™, w),  w~N(m,V)
n=1

alternatively, we can randomly select a sample, and scale up its contribution:

Ey~nr(m,v)llog P(D | w)] ~ N log P(y(”) | Q("),w), w~ N(m,V),n~ Uniform[l, N]
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— finally, we could consider the average log-likelihood, for a random minibatch of S sample
weights, and then scale this up by NV:

B (m,v) [l0g P(D | w) Z log P(y™ | 2, w®),  w' ~ N(m,V),n ~ Uniform|l, N]

e How can we compute the gradients for the log-likelihood?
— we begin by using a reparametrisation: let v ~ N(0,1), and define:
w=m+ Lv

(where V = LL" according to the Cholesky decmposition)

— then:
EwnN(m,V) [log P(D | w)] = Ey a1 [log P(D | (m + Lv))]

— since the expectation is now over a constant distribution, we can compute (or approximate) the
gradients much more easily. If we write:

f(w) =log P(D | w)
then:

vagmaN(Q,]l) [f (M)] =E,n (0,I) [me (M)]
~ Vo f(m+ Lv)

ViE,nonlf(w)] =EyonenVef(w)]
~ Vif(m+ Ly)
= Vu f(w)(Viw)
= Vo f(w)r"

— hence, to estimate the gradients we just need to be able to find the gradient of log-likelihood
(which we know from MLE)

4 Question

4.1 Notes Questions

1. Consider a 1-dimensional bimodal posterior, alongside a Gaussian sampling distribution
q(w) centered at the trough of the posterior:
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7 i

Would you expect a large or small importance weight at the mode of ¢(w)? What about
the importance weights at the modes of P(w | D)?

e recall, the importance weight is given by:

() — 713(@(8) | D)
q(w®))

e at the mode of ¢ we have the the trough of the posterior; here, the posterior is near 0, so the
importance weight will be near 0 too

e at the modes, ¢ is small, whilst the posterior is the largest, so we will have the highest importance
weight

2. For logistic regression, if you just wanted to make hard decisions (i.e just report if P(y =
1| z,D) > 0.5), would there be any point in doing variational inference rather than just
using the Laplace approximation?

e we saw above that with the Laplace approximation, the approximate posterior will be nearly iden-
tical to the prior:

4

w

e as such, the MAP weights would be close to 0

e on the other hand, with variational inference, and assuming that the observations used to define
the model are representative, the approximate posterior better matches the true posterior, so the
decision boundary formed by the weights sampled using variational inference could yield better
hard decisions
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3. If we have derivatives of a cost with respect to the prior variance 02, how do we convert
them into derivatives with respect to:

Sw = log oy,
e we have that:

Sw __ 28w _ 2
e =0, = e =0,

© thus d de do? d d
c c do c c
et wo_ 9 284 =9 2
dsy  do2 ds, — do? (2e7) =20, do2

4. When attempting to fit m and V by stochastic gradient descent, you might find that the

updates are quite noisy, and the variational parameters don’t converge. What is a way
that you might fix this issue?

e reduce the learning rate

e instead of drawing a single Gaussian weight for each step, use a minibatch, and compute the
average gradient; this should average out the noise and give less erratic updates
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