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1 Proposition: The Wave Equation

Let u(t, x), t ∈ R, x ∈ Rn represent the “shape” of an oscillating body.
The wave equation is:

−utt + c2∆u = 0

where c2 is called the speed.

To derive the wave equation, we can think of a piece of string in 1 dimension, whose shape is given by
u(t, x). In particular, we consider applying Newton’s Second Law:∑

F = ma

to a section of infinitesimal length ∆x of the string. We have the following diagram:

The only non-negligible forces acing on the section of string are provided by the tension T at the endpoints
x and x+∆x. These are dependent on the angle which the string makes θ. Overall, Newton’s Second Law
tells us (using a = utt):

T (x+∆x, t) sin(θ(x+∆x, t))− T (x, t) sin(θ(x, t))︸ ︷︷ ︸
net force

= ρ∆x︸︷︷︸
mass

utt︸︷︷︸
acceleration

where ρ represents the density of the string.

Now, if we divide through by ∆x:

ρutt =
T (x+∆x, t) sin(θ(x+∆x, t))− T (x, t) sin(θ(x, t))

∆x

Now, assuming θ will be small, then sin(θ) ≈ tan(θ). Moreover:

tan(θ(x, t)) =
u(x+∆x, t)− u(x, t)

∆x
=
∂u

∂x

Hence, we can write:

ρutt =
∂u

∂x

T (x+∆x, t)∂u∂x − T (x, t)∂u∂x
∆x
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so taking ∆x→ 0 and using the definition of partial derivative:

ρutt =
∂d

∂dx

(
T
∂u

∂x

)
Thinking of T as constant, and rearranging by defining c2 = T

ρ we get:

−utt + c2uxx = 0

as required.

2 Solving the Wave Equation: 1+1 Spacetime Dimensions

2.1 Well-Posed Problems

• What is a well-posed problem?

– a PDE is well-posed if:

∗ a solution exists provided suitable data

∗ the solution is unique

∗ the solution depends continuously on the data

• What is the global Cauchy problem?

– the wave equation, over 1 + n spacetime dimensions, and over an infinite interval:
−utt(t, x) + ∆xu(t, x) = 0, t ∈ R, x ∈ Rn

u(0, x) = f(x), x ∈ Rn

ut(0, x) = g(x), x ∈ Rn

– we need to prescribe 2 initial conditions, since there are 2 time derivatives involved

– the global Cauchy problem is well-posed

• How can we generate a well-posed problem on a finite interval?

– in the cases of 1 + 1 spacetime dimensions, we might be interested in solutions u over finite
intervals of x

– the Cauchy data will be:
−utt(t, x) + ∆xu(t, x) = 0, t ∈ R, x ∈ [0, L]

u(0, x) = f(x), x ∈ [0, L]

ut(0, x) = g(x), x ∈ [0, L]

– due to the finiteness of [0, L], we need to provide additional information to generate awell-posed
problem:

1. Dirichlet Data:
u(t, 0) = a(t) u(t, L) = b(t) t > 0

2. Neumann Data:
ux(t, 0) = a(t) ux(t, L) = b(t) t > 0

3. Robin Data:

ux(t, 0)− ku(t, 0) = a(t) ux(t, L) + ku(t, L) = b(t) t > 0, k ∈ R+

4. Mixed Data: one kind of data at x = 0, and another one at x = L
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2.2 Theorem: d’Alembert’s Formula

Assume that:
f ∈ C2(R) g ∈ C1(R)

Then, the unique solution u(t, x) to the wave equation:
−utt(t, x) + c2uxx(t, x) = 0

u(0, x) = f(x)

ut(0, x) = g(x)

satisfies u ∈ C2([0,∞)× R) and can be represented by:

u(t, x) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ z=x+ct

z=x−ct

g(z)dz

This is d’Alembert’s formula

Proof. We begin by noticing that A(x− ct), B(x+ ct) are solutions to the wave equation, provided that A,B
are twice differentiable with respect to t, x. Defining z = x− ct and u(t, x) = A(x− ct):

ut = (−c)A′(z) =⇒ utt = c2A′′(z)

ux = A′(z) =⇒ uxx = A′′(z)

so:
−utt + c2uxx = −c2A′′(z) + c2A′′(z) = 0

Similarly, if we let z = x− ct and u(t, x) = B(x+ ct):

ut = cA′(z) =⇒ utt = c2A′′(z)

ux = A′(z) =⇒ uxx = A′′(z)

so:
−utt + c2uxx = −c2A′′(z) + c2A′′(z) = 0

Moreover, by linearity of the wave equation, we expect that:

αA(z) + βB(z)

is also a solution.

We now try to derive d’Alembert’s formula. To do so, without loss of generality assume c = 1 (we
can just redefine t ≡ cτ). Moreover, consider a change of variables (to null coordinates):

q(t, x) = x− t p(t, x) = x+ t
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Then:
ut = uppt + uqqt = up − uq

utt = upppt + upqqt − uqqqt − uqppt = upp +−2upq + uqq

and:
ux = uppx + uqqx = up + uq

uxx = upppx + upqqx + uqqqx + uqppx = upp + 2upq + uqq

Hence, subtracting, we get:
−utt + uxx = 4upq

But if u satisfies the wave equation −utt + uxx = 0, which means that:

upq = 0

But notice, this just says that:
∂

∂q

(
∂u

∂p

)
= 0 ⇐⇒ ∂u

∂p
= H(p)

where H is a function which only depends on p.

Now, we can think of t, x as functions of p, q:

p+ q = 2x =⇒ x =
1

2
(p+ q)

p− q = 2t =⇒ t =
1

2
(p− q)

so:

up = uttp + uxxp =
1

2
(ux + ut)

uq = uttq + uxxq =
1

2
(ux − ut)

Thus, we have that:

H(p(t, x)) = up(t, x) =
1

2
(ux(t, x) + ut(t, x))

But now notice, if (τ, y) ∈ R× R, then:

p(τ, y) = y + τ = 0 + (y + τ) = p(0, y + τ)

Hence, it follows that:

up(τ, y) = up(0, y + τ) =
1

2
(ux(0, y + τ) + ut(0, y + τ)) =

1

2
(f ′(y + τ) + g(y + τ))

by using the initial conditions that u must satify.

Similarly, we can have:

upq = uqp = 0 ⇐⇒ ∂u

∂q
= K(q)

and q(τ, y) = q(0, y − τ) so:

uq(τ, y) =
1

2
(f ′(y − τ)− g(y − τ))
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Now, we have that:

up − uq =
1

2
(ux + ut)−

1

2
(ux − ut) = ut

so coming back to t, x coordinates from τ, y:

ut =
1

2
(f ′(x+ t)− f ′(x− t) + g(x+ t) + g(x− t))

If we integrate with respect to t, from 0 to t (using τ as a dummy variable):

u(t, x) =

∫ t

0

uτdτ

=

∫ τ

0

1

2
(f ′(x+ τ)− f ′(x− τ) + g(x+ τ) + g(x− τ)) dτ

=
1

2
[f(x+ τ)− f(x− τ)]

t
0 +

1

2

∫ t

0

(g(x+ τ) + g(x− τ))dτ

=
1

2
[f(x+ t)− f(x− t) + f(x)− f(x)] +

1

2

∫ z=x+t

z=x−t

g(z)dz

=
1

2
(f(x+ t)− f(x− t)) +

1

2

∫ z=x+t

z=x−t

g(z)dz

which is d’Alembert’s Formula.

The technique of using variables p, q also works to solve more general equations. For instance:

utt − uxx = a(ut + ux)

can be solved by using the same substitution; we can then use an integrating factor to solve for u. However,
the solution will no longer be a sum of travelling waves.

2.2.1 Corollary: d’Alembert’s Formula for a Half-Plane

d’Alembert’s formula above applies to solutions u where x ∈ R:

t

x

(t, x) ∈ [0,∞)× R
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However, we can easily adapt it to work even if x ∈ (0,∞):

t

x

(t, x) ∈ [0,∞)× (0,∞)
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Let:

• f ∈ C2([0,∞))

• g ∈ C1([0,∞))

• f(0) = g(0) = 0

Then, the unique solution to the following initial + boundary value prob-
lem: 

−utt(t, x) + uxx(t, x) = 0, (t, x) ∈ [0,∞) +×(0,∞)]

u(t, 0) = 0, t ∈ [0,∞)

u(0, x) = f(x), x ∈ (0,∞)

ut(0, x) = g(x), x ∈ (0,∞)

satisfies:
u ∈ C2([0,∞)× [0,∞))

Moreover, we have that:

• if 0 ≤ ct ≤ x:

u(t, x) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ z=x+ct

z=|x−ct|
g(z)dz

• if 0 ≤ x ≤ ct:

u(t, x) =
1

2
[f(x+ ct)− f(ct− x)] +

1

2c

∫ z=x+ct

z=|x−ct|
g(z)dz

The key is that we can extend this to the above problem by considering odd extensions of our functions:

ũ(t, x) =

{
u(t, x), t ≥ 0, x ≥ 0

−u(t,−x), t ≥ 0, x ≤ 0

f̃(x) =

{
f(x), x ≥ 0

−f(−x), x ≤ 0

g̃(x) =

{
g(x), x ≥ 0

−g(−x), x ≤ 0

This is applicable since f(0) = g(0) = 0, so f̃ , g̃ will be continuous everywhere. Now, ũ, f̃ , g̃ define a standard
wave equation problem, with solution given by d’Alembert’s Formula:

ũ(t, x) =
1

2

[
f̃(x+ ct) + f̃(x− ct)

]
+

1

2c

∫ z=x+ct

z=x−ct

g̃(z)dz
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so clearly u, f, g satisfy the wave equation on the quarter plane.

The explicit expression for u can then be found by decomposing the d’Alembert formula above in terms
of ũ, f̃ , g̃.

3 Solving the Wave Equation: 1+3 Spacetime Dimensions

We now seek to find an analogue for the wave equation in the physically relevant case: 1 + 3 spacetime
dimensions, where u(t, x) ∈ C2([0,∞)× R3).
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3.1 Proposition: Spherical Averages for Wave Equation

Let:
u(t, x) ∈ C2([0,∞)× R3)

be a solution to the 1+3 dimensional global Cauchy problem:
−utt(t, x) + ∆u(t, x) = 0, (t, x) ∈ [0,∞)× R3

u(0, x) = f(x), x ∈ R3

ut(0, x) = g(x), x ∈ R3

For each r > 0, define the spherically averaged quantities:

U(t, r;x) =
1

4πr2

∫
∂Br(x)

u(t, σ)dσ =
1

4π

∫
ω∈∂B1(0)

u(t, x+ rω)dω

F (r;x) =
1

4πr2

∫
∂Br(x)

f(σ)dσ

G(r;x) =
1

4πr2

∫
∂Br(x)

g(σ)dσ

and their related modifications:

Ũ(t, r;x) = rU(t, r;x)

F̃ (r;x) = rF (r;x)

G̃(r;x) = rG(r;x)

Then, for fixed x ∈ R3:

Ũ(t, r;x) ∈ C2([0,∞)× [0,∞))

is a solution to the IVP + BVP for the one-dimensional wave equa-
tion: 

−Ũtt(t, r;x) + Ũrr(t, r;x) = 0, (t, r) ∈ [0,∞)× [0,∞)

Ũ(t, 0;x) = 0, t ∈ [0,∞)

Ũ(0, r;x) = F̃ (r;x), r ∈ (0,∞)

Ũt(0, r;x) = G̃(r;x), r ∈ (0,∞)

Moreover:
lim
r→0

U(t, r;x) = u(t, x)
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Before the proof, we recap spherical coordinates in R3:

σ = (r, θ, ϕ) ∈ [0,∞)× [0, π)× [0, 2π)

If we consider a sphere centered at p = (p1, p2, p3), then the Cartesian coordinate for some point x =

(x1, x2, x3) is given by:
x1 = p1 + r sin θ cosϕ

x2 = p2 + r sin θ sinϕ

x3 = p3 + r cos θ

Moreover, when integrating, we have that:

dx = r2 sin θdrdθdϕ

and if we integrate over some surface parametrised by ω = (θ, ϕ) ∈ ∂B1(0):

dσ = r2dω = r2 sin θdθdϕ

Proof. We want to show that Ũ satisfies the one-diemnsional wave equation. For this, we need to compute:

Ũtt Ũrr

1 Ũrr

We first notice that:
∂r[u(t, x+ rω)] = (∇u) · ω

Thus, and using the fact that we can differentiate under the integral defining U :

Ur =
1

4π

∫
ω∈∂B1(0)

ur(t, x+ rω)dω

=
1

4π

∫
ω∈∂B1(0)

(∇u) · ω dω

=
1

4πr2

∫
∂Br(x)

(∇u) · N̂(σ) dσ

where we have applied the relation dσ = r2dω, alongisde the fact that ω is the unit, outward, normal vector
to Br(x).

Thus, if we apply the Divergence Theorem:

Ur =
1

4πr2

∫
Br(x)

∆yu(t, y) dy
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Now, if we have a continuous function h on R3, and we use (ρ, ω) to denote spherical coordinates centered
at x. Then:

∂r

∫
Br(x)

h(y)dy = ∂r

∫ r

0

∫
w∈∂Br(x)

ρ2h(ρ, x+ ρω)dωdρ

=

∫
w∈∂Br(x)

∫ r

0

∂r(ρ
2h(ρ, x+ ρω))dρdω

=

∫
w∈∂Br(x)

[
ρ2h(ρ, x+ ρω)

]r
0
dω

=

∫
w∈∂Br(x)

r2h(r, x+ rω)dω

=

∫
w∈∂Br(x)

h(σ)dσ

Using this then we have that:

Ur =
1

4πr2

∫
Br(x)

∆yu(t, y) dy

=⇒ r2Ur =
1

4π

∫
Br(x)

∆yu(t, y) dy

=⇒ ∂r(r
2Ur) = ∂r

[
1

4π

∫
Br(x)

∆u(t, y) dy

]

=⇒ ∂r(r
2Ur) =

1

4π

∫
∂Br(x)

∆u(t, σ) dσ

In other words:

∂r(r
2Ur) = 2rUr + r2Urr =

1

4π

∫
∂Br(x)

∆yu(t, σ) dσ

Moreover:
Ũrr = ∂2r (rU) = ∂r(U + rUr) = Ur + Ur + rUrr = 2Ur + rUrr

In other words:

Ũrr =
1

r

(
∂r(r

2Ur)
)
=

1

4πr

∫
∂Br(x)

∆yu(t, σ) dσ

2 Ũtt

Again, given:

U(t, r;x) =
1

4πr2

∫
∂Br(x)

u(t, σ)dσ

we differentiate under the integral twice with respect to t to get:

Utt =
1

4πr2

∫
∂Br(x)

utt(t, σ)dσ

Using the fact that u satisfies the wave equation:

−utt +∆u = 0 =⇒ Utt =
1

4πr2

∫
∂Br(x)

∆u(t, σ)dσ
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But then:

rUtt = Ũtt =
1

4πr

∫
∂Br(x)

∆u(t, σ)dσ

Hence, we have shown that:

Ũtt =
1

4πr

∫
∂Br(x)

∆u(t, σ)dσ = Ũrr

In other words, Ũ = rU satisfies the one-dimensional wave equation, as required.

We now need to verify that it satisfies the initial/boundary conditions:


−Ũtt(t, r;x) + Ũrr(t, r;x) = 0, (t, r) ∈ [0,∞)× [0,∞)

Ũ(t, 0;x) = 0, t ∈ [0,∞)

Ũ(0, r;x) = F̃ (r;x), r ∈ (0,∞)

Ũt(0, r;x) = G̃(r;x), r ∈ (0,∞)

1 Ũ(0, r;x) = F̃ (r;x)

Ũ(0, r;x) = rU(0, x)

= r

(
1

4πr2

∫
∂Br(x)

u(0, σ)dσ

)

= r

(
1

4πr2

∫
∂Br(x)

f(σ)dσ

)
= rF (r;x)

where we have used the fact that u(0, x) = f(x) when u solves the 1+3 global Cauchy problem.

2 Ũt(0, r;x) = G̃(r;x)

Ũt(0, r;x) = rUt(0, x)

= r

(
1

4πr2

∫
∂Br(x)

ut(0, σ)dσ

)

= r

(
1

4πr2

∫
∂Br(x)

g(σ)dσ

)
= rG(r;x)
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where we have used the fact that ut(0, x) = g(x) when u solves the 1+3 global Cauchy problem.

Finally, we have that:
lim
r→0

U(t, r;x) = u(t, x)

since u is continuous and:

lim
r→0

U(t, r;x) = lim
r→0

1

4π

∫
ω∈∂B1(0)

u(t, x+ rω)dω

=
1

4π

∫
ω∈∂B1(0)

lim
r→0

(u(t, x+ rω))dω

=
1

4π

∫
ω∈∂B1(0)

u(t, x)dω

=
1

4π
(4πu(t, x))

this also tells us that:
Ũ(t, 0;x) = 0

by using:
lim

r→0+
(rU(t, r;x) = 0(u(t, x)) = 0

3.1.1 Corollary: Representation formula for Ũ

Under the assumptions of the above Proposition, and for 0 ≤ r ≤ t, we
have that:

Ũ(t, r;x) =
1

2

(
F̃ (t+ r;x)− F̃ (t− r;x)

)
+

1

2

∫ ρ=t+r

ρ=t−r

G̃(ρ;x)dρ

Proof. This follows immediately by the fact that Ũ satisfies the one-dimensional wave equation on the quarter
plane. We just need to apply the Corollary to d’Alembert’s formula.

3.2 Theorem: Kirchhoff’s Formula

Kirchhoff’s Formula provides us with a solution to the global Cauchy problem in 1+3 spacetime dimensions.
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Assume that:
f ∈ C3(R3) g ∈ C2(R3)

Then, the unique solution u(t, x) to the global Cauchy problem:
−utt(t, x) + ∆u(t, x) = 0, (t, x) ∈ [0,∞)× R3

u(0, x) = f(x), x ∈ R3

ut(0, x) = g(x), x ∈ R3

satisfies:
u ∈ C2([0,∞)× R3)

and can be represented by:

u(t, x) =
1

4πt2

∫
∂Bt(x)

f(σ)dσ

+
1

4πt

∫
∂Bt(x)

∇f(σ) · N̂(σ)dσ

+
1

4πt

∫
∂Bt(x)

g(σ)dσ

Proof. By the Proposition above we know that:

u(t, x) = lim
r→0+

U(t, r;x)

= lim
r→0+

Ũ(t, r;x)

r

= lim
r→0+

[
1

2r

(
F̃ (t+ r;x)− F̃ (t− r;x)

)
+

1

2r

∫ ρ=t+r

ρ=t−r

G̃(ρ;x)dρ

]
= F̃t(t;x) + G̃(t;x)

where we have used the definition of the partial derivative to obtain F̃t, alongside the Mean Value Theorem
to get G̃.
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If we apply the definition of F̃ , G̃, it thus follows that:

u(t, x) = ∂t

(
t

1

4πt2

∫
∂Bt(x)

f(σ)dσ

)
+ t

1

4πt2

∫
∂Bt(x)

g(σ)dσ

=
1

4πt2

∫
∂Bt(x)

f(σ)dσ + t∂t

(
1

4πt2

∫
∂Bt(x)

f(σ)dσ

)
+

1

4πt

∫
∂Bt(x)

g(σ)dσ

=
1

4πt2

∫
∂Bt(x)

f(σ)dσ + t∂t

(
1

4πt2

∫
∂B1(0)

f(x+ tω)t2dω

)
+

1

4πt

∫
∂Bt(x)

g(σ)dσ

=
1

4πt2

∫
∂Bt(x)

f(σ)dσ +
t

4π

∫
∂B1(0)

∂t(f(x+ tω))dω +
1

4πt

∫
∂Bt(x)

g(σ)dσ

=
1

4πt2

∫
∂Bt(x)

f(σ)dσ +
t

4π

∫
∂B1(0)

(∇f)(x+ tω) · ω dω +
1

4πt

∫
∂Bt(x)

g(σ)dσ

=
1

4πt2

∫
∂Bt(x)

f(σ)dσ +
t

4π

∫
∂Bt(0)

∇f(σ) ·N(σ)t2 dσ +
1

4πt

∫
∂Bt(x)

g(σ)dσ

=
1

4πt2

∫
∂Bt(x)

f(σ)dσ +
1

4πt

∫
∂Bt(0)

∇f(σ) ·N(σ) dσ +
1

4πt

∫
∂Bt(x)

g(σ)dσ

as required.

4 Workshop

1. Let B1 denote the solid open unit ball in R3 centered at the origin. Recall that the Green
function G(x, y) for B1 satisfies:

G(x, y) = − 1

4π∥x− y∥
+

1

4π∥x∥
∥∥∥ 1
∥x∥2x− y

∥∥∥ , x, y ∈ B1, x ̸= 0

G(0, y) = − 1

4π∥y∥
+

1

π
, y ∈ B1

∇G(x, σ) · N̂(σ) =
1− ∥x∥2

4π

1

∥x− σ∥3
, x ∈ B1, σ ∈ ∂B1

Show that G(x, y) ≤ 0 for all x, y ∈ B1.

2. Let B1 denote the solid open unit ball in R3. Let f(x) be smooth on B1, and let g(σ) be
smooth on ∂B1, and let u(x be the unique smooth solution to:{

∆u(x) = f(x), x ∈ B1

u(σ) = g(σ) σ ∈ ∂B1

Recall that the solution u(x) can be represented as:

u(x) =

∫
B1

f(y)G(x, y)dy +

∫
∂B1

g(σ)∇G(x, σ) · N̂(σ)dσ

Show that:

• ∫
B1

G(x, y)dy =
1

6
∥x∥2 − 1

6
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• Conclude that:

x ∈ B1 =⇒ −
∫
B1

G(x, y)dy ≤ 1

6

• Show that ∃C > 0, independent of f, g, such that:

max
B1

|u(x)| ≤ C

(
max
B1

|f(x)|+max
∂B1

|g(σ)|
)

Let u(x) = 1
6∥x∥

2 − 1
6 . Then:

∆u = 1 u(σ) = 0, σ ∈ ∂B1

Hence, u satisfies the PDE: {
∆u(x) = 1, x ∈ B1

u(σ) = 0 σ ∈ ∂B1

so by the representation formulae:

u(x) =

∫
B1

G(x, y)dy

as required.

We have that: ∫
B1

G(x, y)dy =
1

6
∥x∥2 − 1

6
≥ −1

6
=⇒ −

∫
B1

G(x, y)dy ≤ 1

6

Using the representation formula once again, we have that:

|u(x)| ≤
∫
B1

|f(y)||G(x, y)|dy +
∫
∂B1

|g(σ)||∇G(x, σ) · N̂(σ)|dσ

≤ 1

6
max
B1

|f |+max
∂B1

|g(σ)|1− ∥x∥2

4π

∫
∂B1

1

∥x− σ∥3
dσ

=
1

6

(
max
B1

|f(x)|+max
∂B1

|g(σ)|
)

where we have used Poisson’s Representation Formula:

u(x) =
R2 − ∥x∥2

4πR

∫
∂BR(0)

g(σ)

∥x− σ∥3
dσ

with u = 1, R = 1 to determine that:

1− ∥x∥2

4π

∫
∂B1

1

∥x− σ∥3
dσ = 1

3. Let u be a harmonic function on R3, and assume that:

∀x ∈ R3, |u(x)| ≤ ln(|x|+ 1)

Show that u(x) = 0 for all x
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Recall Harnack’s Inequality:

Rn−2(R− ∥x∥)
(R+ ∥x∥)n−1

u(0) ≤ u(x) ≤ Rn−2(R+ ∥x∥)
(R− ∥x∥)n−1

u(0)

For fixed R, define:
v(x) = u(x) + ln(R+ 1)

Clearly, v ≥ 0, so for each fixed fixed ∥x∥ ≤ R, we can apply Harnack’s Inequality for v:

Rn−2(R− ∥x∥)
(R+ ∥x∥)n−1

v(0) ≤ v(x) ≤ Rn−2(R+ ∥x∥)
(R− ∥x∥)n−1

v(0)

We focus on the first inequality: the second inequality will proceed in a similar manner:

Rn−2(R− ∥x∥)
(R+ ∥x∥)n−1

(u(0) + ln(R+ 1)) ≤ u(x) + ln(R+ 1)

which implies that:

u(x) ≥ Rn−2(R− ∥x∥)
(R+ ∥x∥)n−1

u(0) +

[
Rn−2(R− ∥x∥)
(R+ ∥x∥)n−1

− 1

]
ln(R+ 1)

The right term vanishes as R→ ∞ (by L’Hôpital’s or the following approximation):

lim
R→∞

[
Rn−2(R− ∥x∥)
(R+ ∥x∥)n−1

− 1

]
ln(R+ 1)

≤ lim
R→∞

[
Rn−1

Rn−1
− 1

]
(R+ 1)

=0

Hence, we must have that:

u(x) ≥ lim
R→∞

[
Rn−2(R− ∥x∥)
(R+ ∥x∥)n−1

u(0) +

[
Rn−2(R− ∥x∥)
(R+ ∥x∥)n−1

− 1

]
ln(R+ 1)

]
= u(0)

By the other inequality, we get that u(x) ≤ u(0), so we must have that:

u(x) = u(0)

for all x. But now:
|u(0)| ≤ ln(1) = 0 =⇒ u(0) = 0

so:
u(x) = 0

as required.

4. Consider the equation:
L[u] = ∆u(x) + k2u(x) = 0, x ∈ R3

called Helmoltz or reduced wave equation.

(a) Show that the radial solutions:

u = u(r), r = |x|
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satisfying the outgoing Sommerfeld condition:

ur + iku = O
(

1

r2

)
, r → ∞

are of the form:

ϕ(r, k) = c
e−ikr

r
, c ∈ C

We have that in radial coordinates the Laplacian becomes:

∆u = urr +
2

r
ur

Moreover:
∂

∂r
(ru) = u+ rur

∂

∂r2
(ru) = ur + ur + rurr = rurr + 2ur

Thus, if u satisfies the Helmoltz equation:

L[u] = ∆u(x) + k2u(x) = 0, x ∈ R3

=⇒ urr +
2

r
ur + k2u = 0

=⇒ rurr + 2ur + rk2u = 0

=⇒ ∂

∂r2
(ru) + k2(ru) = 0

If we define:
v(r) = ru(r)

then we have a second order ODE:
v′′ + k2v = 0

with characteristic polynomial:
P (η) = η2 + k2

which has roots η = ±ik. Thus, the solutions will be:

v(r) = Aeikr +Be−ikr

which implies:

u(r) =
A

r
eikr +

B

r
e−ikr

where A,B ∈ C.

If we differentiate u with respect to r:

ur = A

(
r(ik)eikr − eikr

r2

)
+B

(
r(−ik)e−ikr − e−ikr

r2

)
Notice, if u is to satisfy the outgoing Sommerfeld condition, we must set A = 0, because then:

ur = −(ik)u−B
e−ikr

r2
=⇒ ur + iku = O

(
1

r2

)
Hence, solution to the Helmoltz equation satisfying the outgoing Sommerfeld condition must be of
the form:

u(r, k) = B
e−ikr

r
as required.
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(b) For f smooth and compactly supported in R3 define the potential:

U(x) = c

∫
R3

f(y)
e−ik∥x−y∥

∥x− y∥
dy

Show that setting c = 1
4π leads to:

L[U(x)] = −f(x)

We make the variable substitution:
z = y − x

to obtain:

U = c

∫
R3

f(x+ z)
e−ik∥z∥

∥z∥
dz

Let ε > 0. We can then write the integral as:

LU = c

∫
Bε(0)

L

[
f(x+ z)

e−ik∥z∥

∥z∥

]
dz + c

∫
R3\Bε(0)

L

[
f(x+ z)

e−ik∥z∥

∥z∥

]
dz

We now show that the first integral goes to 0 as ε→ 0. Recall by Green’s Identity:∫
Ω

u(x)∆v(x)− v(x)∆u(x)dx =

∫
∂Ω

u(σ)(∇v(σ) · N̂(σ))− v(σ)(∇u(σ) · N̂(σ))dσ

Moreover, since the operator L is defined over x:

c

∫
Bε(0)

L

[
f(x+ z)

e−ik∥z∥

∥z∥

]
dz = c

∫
Bε(0)

(∆f(x+ z) + k2f(x+ z))
e−ik∥z∥

∥z∥
dz

If we use v = f , it follows that by Green’s Identity:∫
Bε(0)

∆f(x+z)
e−ik∥z∥

∥z∥
dz =

∫
Bε(0)

f(x+z)∆
e−ik∥z∥

∥z∥
dz+

∫
∂Bε(0)

e−ik∥σ∥

∥σ∥

(
∇f · N̂(σ)

)
−f
(
∇e−ik∥σ∥

∥σ∥
· N̂
)
dσ

But notice, since e−ik∥z∥

∥z∥ solves the Helmholtz equation, we have that:

∆
e−ik∥z∥

∥z∥
= −k2 e

−ik∥z∥

∥z∥

Thus, we will get a cancellation, such that:

c

∫
Bε(0)

L

[
f(x+ z)

e−ik∥z∥

∥z∥

]
dz = c

∫
∂Bε(0)

e−ik∥σ∥

∥σ∥

(
∇f(x+ σ) · N̂(σ)

)
− f(x+ σ)

(
∇e−ik∥σ∥

∥σ∥
· N̂
)
dσ

Using the compact support of f (which in particular implies that it is bounded) alongside the fact that
|eiθ| = 1: ∣∣∣∣∣

∫
∂Bε(0)

e−ik∥σ∥

∥σ∥

(
∇f(x+ σ) · N̂(σ)

)
dσ

∣∣∣∣∣
≤
∫
∂Bε(0)

1

∥σ∥
|∇f |dσ

=
1

ε
sup

∂Bε(0)

|∇f |4πε2

= sup
∂Bε(0)

|∇f |4πε
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so:

lim
ε→0

∣∣∣∣∣
∫
∂Bε(0)

e−ik∥σ∥

∥σ∥

(
∇f(x+ σ) · N̂(σ)

)
dσ

∣∣∣∣∣ = 0

5. Suppose that:
u ∈ C2((0,∞)× R) ∩ C1([0,∞)× R)

is a solution to:
utt = uxx

in (0,∞)× R. Let:

E(t) =
1

2

∫
R
u2x(t, x) + u2t (t, x)dx

and suppose that:
E(0) <∞

Prove that E(t) is constant.

6. Suppose that
u ∈ C2((0,∞)× R) ∩ C1([0,∞)× R)

is a solution to: 
utt − uxx = f(t, x), (t, x) ∈ (0,∞)× R
u(0, x) = ϕ(x)

ut(0, x) = ψ(x)

Assuming that f, ϕ, ψ have compact support, prove that the solution u is unique.

7. Consider the initial boundary value problem:
utt + uxt − 12uxx = 0, (t, x) ∈ (0,∞)× R
u(0, x) = ϕ(x)

ut(0, x) = ψ(x)

where ϕ, ψ have compact supports. Make a change of variables to redcue the PDE to
canonical form:

Uζζ − Uηη = 0

and hence express u in terms of ϕ and ψ.
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