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1 Proposition: The Wave Equation

Letu(t,x),t € R,z € R" represent the “shape” of an oscillating body.
The wave equation is:
—uy +AAu=0

where ¢2 is called the speed.

To derive the wave equation, we can think of a piece of string in 1 dimension, whose shape is given by
u(t,z). In particular, we consider applying Newton’s Second Law:

ZF:ma

to a section of infinitesimal length Az of the string. We have the following diagram:

N\ T{x+Ax,1)
u Mﬂm,n

— 7'sing

X x+Ax

The only non-negligible forces acing on the section of string are provided by the tension 7" at the endpoints
x and x + Az. These are dependent on the angle which the string makes 6. Overall, Newton’s Second Law
tells us (using a = uy):

T(x + Az, t)sin(0(z + Az, t)) — T'(z,t) sin(0(z, t)) = L)SA’.%‘/ Ugt

net force mass acceleration

where p represents the density of the string.

Now, if we divide through by Ax:

T(x + Az, t)sin(0(z + Az, t)) — T(z,t) sin(0(z,t))
Az

putr =
Now, assuming 6 will be small, then sin(6) ~ tan(f). Moreover:

u(z + Az, t) —u(z,t) _ Ju
Az - Oz

tan(6(z,t)) =

Hence, we can write:
prigy = JuT(x+ Aamt)% - T(x,t)g—;
ox Az
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so taking Ax — 0 and using the definition of partial derivative:

od ou
Ut = B <Tam>

T

Thinking of T as constant, and rearranging by defining ¢ = L we get:

2
— Ut + C Uy = 0

as required.

2 Solving the Wave Equation: 14+1 Spacetime Dimensions

2.1 Well-Posed Problems
e What is a well-posed problem?

— a PDE is well-posed if:

* a solution exists provided suitable data
* the solution is unique
* the solution depends continuously on the data

e What is the global Cauchy problem?

— the wave equation, over 1 + n spacetime dimensions, and over an infinite interval:

—ug(t, z) + Azu(t,z) =0, teR,zeR"”
u(0,2) = f(z), z eR"
u (0, 2) = g(), zeR"

— we need to prescribe 2 initial conditions, since there are 2 time derivatives involved

— the global Cauchy problem is well-posed
e How can we generate a well-posed problem on a finite interval?

— in the cases of 1 + 1 spacetime dimensions, we might be interested in solutions w over finite
intervals of x

— the Cauchy data will be:

—ug(t, ) + Agu(t,z) =0, teR,xz €0, L]
U(O,l’) = f(‘r)a T e [Oa L]
ut (0, ) = g(x), x € [0, 1]

— due to the finiteness of [0, L], we need to provide additional information to generate a well-posed
problem:

1. Dirichlet Data:
u(t,0) = a(t) u(t, L) = b(t) t>0

2. Neumann Data:
uz(t,0) = a(t) ug(t, L) = b(t) t>0

3. Robin Data:
Uz (¢,0) — ku(t,0) = a(t) ug(t, L) + ku(t, L) = b(¢) t>0keR"

4. Mixed Data: one kind of data at x = 0, and another one at x = L
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2.2 Theorem: d’Alembert’s Formula

Assume that:

feC*R) geCY(R)

Then, the unique solution u(t,x) to the wave equation:

—ug(t, ) + Pug(t, ) =0
u(0,z) = f(z)
uy (0, z) = g(x)

satisfies u € C?([0,00) X R) and can be represented by:

z=x+ct
u(t,x) = % [f(x+ct) + flx —ct)] + i/ g(z)dz

20 =x—ct

This is d’Alembert’s formula

Proof. We begin by noticing that A(x — ct), B(x + ct) are solutions to the wave equation, provided that A, B
are twice differentiable with respect to t,z. Defining z = x — ¢t and u(t,z) = A(z — ct):

u = (—0)A'(2) = uy =*A"(2)

up, = A'(2) = ug = A"(2)

so:
—Ugp + gy = —2A"(2) + A" (2) =0

Similarly, if we let z = & — ¢t and u(t,z) = B(z + ct):
u = cA'(z2) = wuy = 2A"(2)
uy = A'(2) = up, = A"(2)

so:
—Upy + Py = —P A" (2) + A" (2) =0

Moreover, by linearity of the wave equation, we expect that:
QA(2) + BB(2)

is also a solution.

We now try to derive d’Alembert’s formula. To do so, without loss of generality assume ¢ = 1 (we
can just redefine ¢ = c7). Moreover, consider a change of variables (to null coordinates):

qit,z) =z —t p(t,x) =x+t
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Then:
Ut = UpPt + Ugqt = Up — Ugq

Ut = UppPt + UpqQt — Ugqqt — UgpPt = Upp + —2Upq + Ugq

and:
Uy = UpPgx + UgQz = Up + Ugq

Ugy = UppPa + UpgQa + UgqQz + UgpPe = Upp + 2Upg + Uqgq

Hence, subtracting, we get:
—Utt + Ugy = 4upq

But if u satisfies the wave equation —us + gz, = 0, which means that:
Upg = 0
0 [0Ou ou
= |5 )=0 <<= —=H
dq (317) ®)

where H is a function which only depends on p.

But notice, this just says that:

Now, we can think of ¢, x as functions of p, ¢:

1
ptqg=2r = fﬂzi(pﬂz)

1
p—q=2t = t=§(p—q)

S0:
1
Up = Uty + Upp = i(uw + ut)

Ug = Uty + Uz Tq = i(um — uy)

Thus, we have that:
1
H(p(t, ) = up(2) = 5 (a6, 2) + (1, )

But now notice, if (7,y) € R x R, then:
p(ry) =y+7=0+(y+7)=p0,y+7)

Hence, it follows that:

(f'ly+7)+gy+71))

N | =

1
up(T7 y) = “;0(07 ) + T) = i(um(ov ) + T) + ut(oa ) + T)) =
by using the initial conditions that v must satify.

Similarly, we can have:

and ¢q(7,y) = q(0,y — 7) so:
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Now, we have that:
1 1
Up — Ug = §(um +uy) — i(ux —up) = ug
so coming back to t,x coordinates from 7, y:
1
up =5 (f'(@+t) = flle —t) + gle + ) + g(z — 1))

If we integrate with respect to ¢, from 0 to ¢ (using 7 as a dummy variable):

u(t, x) :/0 urdr
(f'w+7)=f(e—7)+g(@+7)+g9(x—7))dr

fa+7) = Fa=lh+ 5 [ (ala+ )+ o= r)ir

z=x+t
[ﬂx+ﬂ—ﬂx—ﬂ+ﬂ@—f@ﬂ+1/' o(2)dz

2 =x—t

N = N [\D\)—'c\
3
N~

which is d’Alembert’s Formula.

The technique of using variables p, ¢ also works to solve more general equations. For instance:
Upt — Uge = Uy + Uy)

can be solved by using the same substitution; we can then use an integrating factor to solve for u. However,

the solution will no longer be a sum of travelling waves.
O

2.2.1 Corollary: d’Alembert’s Formula for a Half-Plane

d’Alembert’s formula above applies to solutions u where x € R:

t

(t,x) € [0,00) xR
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However, we can easily adapt it to work even if x € (0,00):

t

(t,2) € [0,00) x (0, 00)
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Let:
o feC?(0,00))
e g€ C([0,00))
e f(0)=9(0)=0

Then, the unique solution to the following initial + boundary value prob-

lem:
—uy(t, @) + Uz (t, ) =0, (t,z) € [0,00) + x(0, c0)]
u(t,0) =0, t €1]0,00)
u(0,z) = f(x), z € (0,00)
u(0,2) = g(x), z € (0,00)
satisfies:

u € C*([0,00) x [0, 00))
Moreover, we have that:

o if0<ct<u:

u(t,z) = 3 [f(a + et) + flz — )] + / _Tj: o(2)d>
o if0<ux<ct:
z=x+ct
ut,a) = 3 [f@+et) = flct =) + 5 [ NEE

The key is that we can extend this to the above problem by considering odd extensions of our functions:

- _Jult, x), t>0,2>0
wtw) = {_u(tv —), t>0,z<0
Nx — f(])), _0
/) {ﬂx), £ <0
() = J9@), >0
) {—g<—x>, <0

This is applicable since f(0) = g(0) = 0, so f, g will be continuous everywhere. Now, @, f, § define a standard
wave equation problem, with solution given by d’Alembert’s Formula:

z=x+ct

{f(x +ct) + f(x — ct)} + %/ g(z)dz

z=x—ct

N =

u(t,x) =
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so clearly u, f, g satisfy the wave equation on the quarter plane.

The explicit expression for u can then be found by decomposing the d’Alembert formula above in terms
of u, f,g.

3 Solving the Wave Equation: 143 Spacetime Dimensions

We now seek to find an analogue for the wave equation in the physically relevant case: 1 + 8 spacetime
dimensions, where u(t,z) € C?([0,00) x R3).
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3.1 Proposition: Spherical Averages for Wave Equation

Let:
u(t,z) € C*([0,00) x R?)

be a solution to the 1+3 dimensional global Cauchy problem:
(t,z) € [0,00) x R?
zeR?
zeR?

—uy(t,z) + Au(t,z) =0,
u(0,z) = f(z),
u(0,z) = g(z),

For eachr > 0, define the spherically averaged quantities:
1

=
u(t,o)do = — u(t, z + rw)dw
Amr? 9By (z) AT Jweoni(0)

Ult,r;z) =

Then, for fizred x € R3:
U(t,r;z) € C3([0,00) x [0, 00))

15 a solution to the IVP + BVP for the one-dimensional wave equa-

tion:
—Uyu(t,7;2) + U, (t,r;2) = 0, (t,r) € [0,00) x [0, 00)
U(t,0;z) =0, t € [0,00)
U(0,r;z) = F(r;z), r € (0,00)
U,(0,7;2) = G(r; 2), r € (0,00)
Moreover:

lim U(t,r;z) = u(t, z)

r—0
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Before the proof, we recap spherical coordinates in R3:
o = (1,6,0) € [0,0) x [0,7) x [0,27)

If we consider a sphere centered at p = (pt,p?,p%), then the Cartesian coordinate for some point x =
(xt, 22, 23) is given by:
! = p' + rsinfcos ¢
z? = p?® + rsinfsin ¢
z® = p +rcosb

Moreover, when integrating, we have that:
dz = r? sin Odrdfde
and if we integrate over some surface parametrised by w = (6, ¢) € 0B1(0):

do = r?dw = r* sin 0dAde

Proof. We want to show that U satisfies the one-diemnsional wave equation. For this, we need to compute:

Utt Urr

oL
We first notice that:
Orlu(t,z +rw)] = (Vu) - w

Thus, and using the fact that we can differentiate under the integral defining U:

1
U =— ur(t, 2 + rw)dw
AT JweoB, (0)
1
= — (Vu) - w dw
AT JweaB, (0)

1 .
= N
Agr2 /msr(m)(vu) o) de

where we have applied the relation do = r?dw, alongisde the fact that w is the unit, outward, normal vector
to By(z).
Thus, if we apply the Divergence Theorem:

1
U, = Ayult,y) d
47TT2 /BT (&) yu( y) y
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Now, if we have a continuous function h on R3, and we use (p,w) to denote spherical coordinates centered
at z. Then:

Or h(y)dy = 3r/ / p*h(p,z + pw)dwdp
B, (z) - 0 weDB,.(z)
= / / Oy (p*h(p, z + pw))dpdw
w€eIB,(z) /O
= / [P*h(p,z + pw)], dw
wEIB,(z)

/ rgh(r,g + rw)dw
w€eIB,- (&)

/ h(o)do
wedB, (x)

Using this then we have that:

In other words: )

o (r?U,) = 2rU, + r*U,, = —
dm 0B, (z)

Ayu(t,o) do

Moreover: R
Upr = 0%(rU) = 0,(U +7U,) = Uy + U, +rUy, = 2U, + rU,,

In other words: )
o,.(r?U,)) = — Au(t, o) do
( 7«(7- 7)) T A y (77) g

Q
S| =

@) O
Again, given:

1
Ult,r;z) = — t,o)d
(t,r;z) gy /BBT(m)u( ,a)da

we differentiate under the integral twice with respect to ¢ to get:

= — t,o)d
472 /637,(@ uirlt,2)do

Using the fact that u satisfies the wave equation:

1
—uy+Au=0 = Uy= 72/ Au(t,g)dg
4mr 9B, (z)
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But then:

~ 1
’I"Utt = Utt = — Au(t,g)dg
47'("1" QBT(Q)
Hence, we have shown that:
- 1 -
U = — Au(t,o)do = Uy,
Arr Jop, (z)

In other words, U = rU satisfies the one-dimensional wave equation, as required.

We now need to verify that it satisfies the initial/boundary conditions:

_ﬁtt(tv 7’;@) _'_ Urr(ta T;@) = 07 (ta ’l“) € Oa OO) X [07 OO)
t

U(t,0;z) =0, € [0, 00)
U(0,r;z) = F(r; z), r € (0, 00)
Ut(O,r;g) = é(r;g), r € (0,00)

@ U0,r;z) = F(r; z)

U0,r;z) =rU(0,z)

1
=r| —= u(0, 0)do
<47rr2 /@)BT(z) 0.2) )
S e
=r o)do
arr? Jop,@)

— rF(r;z)

where we have used the fact that «(0,2) = f(z) when u solves the 1+3 global Cauchy problem.

(2) U:(0,7;2) = G(r; z)

U(0,r;2) = rU(0, 2)

1
=r|— 0,0)d
" <4ﬂ'r2 /53,‘(@ u(0:9) J)
: /
=r g(a)da
<47rr2 9B, (z) (@) >

=rG(r;z)
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where we have used the fact that u;(0,2) = g(x) when u solves the 143 global Cauchy problem.

Finally, we have that:
lim U(t,r;z) = u(t, z)

r—0
since u is continuous and:
. . 1
lim U(t,r;z) = lim — u(t,z + rw)dw
r—0 r—0 47 w€edB1(0)
1

— lim (u(t, z + rw))dw
471' ge@Bl(Q) 7"—)0( ( ))

1

= — u(t, z)dw
A Jyeon, (o)

= - (dmu(t,2))

this also tells us that:

U(t,0;z) =0
by using:
lim (rU(¢,7r;2) = 0(u(t,z)) =0

r—0+

3.1.1 Corollary: Representation formula for U

Under the assumptions of the above Proposition, and for0 < r < t, we
have that:

Ut,r;z) = (F(t +752) — Pt — r;z)) i1 /p:t+ré(p;z)dp

2 =t—r

N | —

Proof. This follows immediately by the fact that U satisfies the one-dimensional wave equation on the quarter

plane. We just need to apply the Corollary to d’Alembert’s formula.
O

3.2 Theorem: Kirchhoff’s Formula

Kirchhoff’s Formula provides us with a solution to the global Cauchy problem in 1+3 spacetime dimensions.
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Assume that:
feC®R’) geCYR’

Then, the unique solution u(t, x) to the global Cauchy problem:
—uy(t,z) + Au(t,z) =0, (t,x) € [0,00) x R?
u(0,2) = f(z), zeR?
uy(0,2) = g(), zeR?
satisfies:
u € C*([0,00) x R?)
and can be represented by:
1
u(t,z) = = /{jBt(x) f(a)da

1 X
— Vf(e) - N(g)do
T Jom (¢) - N(a)

1
47Tt 8Bt(g)

g(o)da

Proof. By the Proposition above we know that:

u(t,z) = Tlir(r)l+ U(t,r;z)

o U(t,r;z)

r—0t r

= lim {217“ (F(t+r;£) *F(t*T;@) +

1 p=t+r _
/ G(p;z) dp}
p

277“ =t—r
= Fy(t;z) + G(t; z)

where we have used the definition of the partial derivative to obtain F}, alongside the Mean Value Theorem

to get G.
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If we apply the definition of F', G, it thus follows that:

1 1
u(t,z) = 0 <t4m2 /83@) f(U)da> i . g(a)da

1 / 1 1
=— f(o)do +t0 7/ f(a)da +—/ g(a)da
Amt? JoB, (x) (@) "\ 48 Jop, o) (@) ant JoB, (x) (@)
! / f(o)do + to, ! / flz + tw)t?dw | + ! / g(o)d
= — o)do — — o)do
ant? Jopw '\ Jop ") At Jopwy
1 t 1
= ——3 flo)de + — O (flz +tw))dw + — g(o)do
Amt? JoB, (x) (@) 4m JoB, (0) HA ) art Jop, (x) (@)
1 / ' 1
=— flo)da + — (VHz+tw) wdw+ — g(o)da
ATt? Jop. () T JoB, (0) Ant JoB, (2)
1 / ' ) 1
=— fla)da + — Vf(e) N(a)t” doa + — g(a)da
ATt Jop, () ™ Jos. () Amt Jop,(2)
1 1 1
=— fla)da + — Vf(eg) N(g) da+ -— g(a)da
Amt? Jop, (2) 4t JaB,(0) At JoB, (x)
as required.
O
4 Workshop

1. Let B; denote the solid open unit ball in R? centered at the origin. Recall that the Green
function G(z,y) for B; satisfies:

1 1
G(g,y):— + ) LyGBl,Q#Q
LT iz — 47T||£H’ ”;Hﬁng B
1
G(0 =4 — B
(77y) 4’/THQ|| + 71_7 ye 1
- 1—|z|? 1
VG(lv Q) M(Q) = 4|7|T7H ||Jj — O'||3’ T € Bl,g S 8B1

Show that G(z,y) <0 for all 2,y € B;.

2. Let B; denote the solid open unit ball in R?. Let f(z) be smooth on Bj, and let g(c) be
smooth on 9By, and let u(z be the unique smooth solution to:

Au(z) = f(z), z€ B
u(ag) = g(a) o € 9By

Recall that the solution u(z) can be represented as:
ue) = [ 106w iy+ [ ge)V6.a)- Koy

Show that:

[ ]
1 1
G(z,y)dy = ~||z|* — =
/Bl Y= 6
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e Conclude that:

ze€B = — | Gz, ydy<
Bl - -

e Show that 3C > 0, independent of f, g, such that:

|~

g u(o)] < € (g 1(2)] + g o))

Let u(z) = ¢[lz/|* — ¢. Then:

Au=1 u(c) =0, o€ 0B
Hence, u satisfies the PDE:

so by the representation formulae:

as required.

‘We have that:
G(z,y)d

<

I
S| =
5

[\v]

I

B1

Using the representation formula once again, we have that:

u@l< [ G+ [ 1o@Ve.o) - Mo

By

< Lmae [7] 4 max lg( >1‘”””2/ !
—max max o g
=65 om I o e — P

1
= & (e @)+ g o))

where we have used Poisson’s Representation Formula:

() = R? — ||z|* g9(a) do

h ATR /aBRm) lz - al®

with v = 1, R = 1 to determine that:

1—||z||? 1
[E] / -1
dr 8B, |z —all

. Let v be a harmonic function on R3, and assume that:
vz e R, |u(z)| < In(jz|+1)

Show that u(z) =0 for all &
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Recall Harnack’s Inequality:

R"*(R — ||lz|))
(R + [lz[[)"~

R"*(R + |lz|)

u(0) < u(z) < Rz

u(0)
For fixed R, define:
v(@) = u(z) + n(R+1)
Clearly, v > 0, so for each fixed fixed ||z|| < R, we can apply Harnack’s Inequality for v:

R"2(R + ||z]))

@zt @

We focus on the first inequality: the second inequality will proceed in a similar manner:

R 2Rzl (o) 4 1n ) I
Rtz O+ R+ 1)< u(z)+In(R+1)
which implies that:
BB Nlzl) ooy 4 [BR2R =l )
)2 G e M0+ [ et 1 A

The right term vanishes as R — oo (by L’Hopital’s or the following approximation):

- [RP2(R — |z]])
1 _— = 1|1 1
A |y 1w
. Rnfl
g [ e
=0
Hence, we must have that:
. [R"2(R—|lz])) [R”Z(RIIID } }
u(z) > lim |———u(0)+ |[————— — 1| In(R+1)| =u(0
@2 i | s w0+ [ g 1 e 0] =uo

By the other inequality, we get that u(z) < u(0), so we must have that:
u(z) = u(0)

for all z. But now:
w(©0) <In(1) =0 = u(0)=0

so:
u(z) =0
as required.
. Consider the equation:
L[u] = Au(z) + k*u(z) = 0, reR3

called Helmoltz or reduced wave equation.
(a) Show that the radial solutions:

w=u(r), =z
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satisfying the outgoing Sommerfeld condition:

1
ur—|—iku:(’)(2>, r — 00
r
are of the form:
e—ikr
o(r,k)=c pa ceC

We have that in radial coordinates the Laplacian becomes:
Au = Upp + —U,
r

Moreover:

—(ru) = u + ru,

or

—(ru) = up + Up + TUpp = TUpr + 2u,

or?
Thus, if u satisfies the Helmoltz equation:

Lu] = Au(z) + k*u(z) = 0, reR?
2
= Uy + ~up + k2u =0
T
= ru,r + 2u, + rk*u =0

= %(ru) +E*(ru) =0
If we define:
v(r) = ru(r)
then we have a second order ODE:
v+ k=0
with characteristic polynomial:
P(n) =n* + k°
which has roots 7 = £¢k. Thus, the solutions will be:
v(r) = Ae’*" 4 Bem T
which implies:
A . B .
’U,(’I“) — 7ezkr + 7e—zkr
r T
where A, B € C.

If we differentiate u with respect to 7:

: ikr _ _ikr i —ikr _ _—ikr
w = A (r(zk)e e ) LB (r( ik)e e )

r2 r2

Notice, if u is to satisfy the outgoing Sommerfeld condition, we must set A = 0, because then:

) —ikr ' 1
up = —(tk)u — B 7 = ur—i—zku:(’)(ﬂ)

Hence, solution to the Helmoltz equation satisfying the outgoing Sommerfeld condition must be of

the form: .
e—zkr
u(r,k) =B

r
as required.
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(b) For f smooth and compactly supported in R? define the potential:

e—tkllz—yll
U(z) = C/]R3 f(y)mdy

Show that setting c = ﬁ leads to:

LlU(z)] = —f(x)
‘We make the variable substitution:
z=y—z
to obtain:
e—ikllzll
U=c| flza+z)——dz
RS [ 2]]

Let € > 0. We can then write the integral as:

e—ikllzl

=ikl
LU = L — 1 d L —— | d
o/ o [f(“z) B ] ”"/Rs\sgm {f @+ } 2

We now show that the first integral goes to 0 as € — 0. Recall by Green’s Identity:

[ wl@to@) ~ @) dul)iz = | ule)(Vo(a) - B(a)) - o(o)(Vule) - Koz
Q a0
Moreover, since the operator L is defined over x:

o—ikllzl

CAMmLPu+dWH]MZCLMJAﬂx+d+k%W+d)

e—tklzl
[E]

If we use v = f, it follows that by Green’s Identity:

e—iklzl

/ Af(ztz)—d / [Py / ¢ el (V5 5(o) f(ve_““””' N
z+z)———dz = T+z)A——dz+ ——— (Vf-N(@))-f (V== N
) B ) E S o]

But notice, since (Tk”g‘ solves the Helmholtz equation, we have that:

e—ikllzl e E

E 2]l
Thus, we will get a cancellation, such that:
e—tklell

e~ tklzll e~ kllell . .
C/BE<0>L{f(“Z) B }d“c/@w - (Ve+ ) Ke) - fa+o) (V Te 'N)d"

Using the compact support of f (which in particular implies that it is bounded) alongside the fact that
le??| = 1:

e~ tklall .
/aBE @ el (Viz+0) M) do

led]

1
< / |V f|do
8B.(0) llell

1
=~ sup |Vf|dre?
€0B:(0)

sup |V fldme
9B:(0)
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SO:

lim =0
e—0

e—tkllell R
/BBE © el (Vie+o) N(@)de

el

. Suppose that:
u € C?((0,00) x R) N C*(]0,00) x R)

is a solution to:

Ut = Uz
in (0,00) x R. Let:
1
E(t) = 5 / u?(t, ) + ul(t, z)de
R
and suppose that:
E(0) < o0

Prove that E(t) is constant.

. Suppose that
u € C?((0,00) x R) N C*(]0,00) x R)

is a solution to:
Ut — Ugy = f(t,x),  (t,x) € (0,00) xR

u(0,z) = ¢(z)
ug(0,2) = ¥(x)

Assuming that f,¢,9 have compact support, prove that the solution v is unique.

. Consider the initial boundary value problem:
Upt + Uyt — 12Uz =0,  (t,2) € (0,00) xR

u(0,z) = ¢(z)
ug(0,2) = ¥(x)

where ¢,9 have compact supports. Make a change of variables to redcue the PDE to
canonical form:

U =Upy =0

and hence express u in terms of ¢ and 1.
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