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We have worked towards solving Poisson’s Equation:
Au=f

over all of R3. We now consider how to solve the PDE given some boundary conditions over some domain
Q C R3. For this, we develop Green Functions.

We consider the boundary value Poisson PDE:
Au(z) = f(z), z€QCR”

u(z) =g(z, z€N
If g € C(0N), then this PDE has a unique solution:

u € C*Q) N CO(Q)

1 Green Functions

1.1 Definition: Green Function

A Green function in () is a function on (z,y) € Q x Q such that for
each fized x € (:

AG(z,y) =6:(y) =6y —z), YEe

G(z,0) =0, c€N

1.2 Proposition: Green Function for a Domain

Let @ be the fundamental solution for A in R™:

= In ||z|| n=2
_ 2w ==Y

wnllz["=27
The Green function G(xz,y) for a domain (2 is given by:
Glz,y) = 2(z—y) — d(z,y)
such that for each x € Q, ¢(z,y) solves the Dirichlet Problem.:
Ayp(z,y) =0, yeN

p(z,0) =Pz —0), €N
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Proof. We verify that this indeed satisfies the requirements for a Green function:
AyGlz,y) = AQ(z —y) + Ayo(z,y) = 6(z — y) = 62(y)
since ¢ is harmonic from definition, and we already showed that A® = .

Moreover:
G(z,0) =Pz —0a) —d(z,0) =P(z—0) —P(x—02) =0

from definition of ¢ on 9.

1.3 Proposition: Representation Formula for Solutions to Poisson PDE

This representation for solutions will be particularly useful for when we compute actual solution to the
boundary value Poisson PDE.

Let @ be the fundamental solution for A in R™:

= In ||z n=2
D) =47 1 ’
_wn||£||n_27 n Z 3
Let ) C R™ be a domasin, and assume that:
u € C*(Q)

Then, Vz € Q we have:

u(z) = [ ®(z —y)Ayu(y)d”

@\

/m@ z—0) VU(Q) ﬂ@) do

/

single layer potential

-I-/ u(a V@x—a) N(a))dg

4

double layer potential
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Proof. We prove this when n = 3, such that:
1 1 1

Ba) =~ =
ws Tzl =l

For this, we employ Green’s Identity:
[ vl - v s - |
Q 1%}

Firstly, recall that we showed that A®(z) = 0 whenever z # 0. Thus:

1
A =
lz =yl

v (Vole) - N(@) - w (Volo) - N(o)) do

whenever x # y.

We begin by defining B.(z), the ball of radius & centered at z. Then, consider:
Q. =Q\ B:(2)

such that:
00, = 00 — OB (z)

J 0B (z)

\

Then, applying Green’s Identity:

1
T Au(y)d’y
/szg lz =yl ™=

1
= —Au(y) —u(y) A—7r d’y
/QEHHJ_ZJH = =z =yl
———

1 ( N 1 N
= | (V@) N(e)) - Ve (u(0) - N(0) ) de
/aczg |z — gl lz -l
Now, 09, is composed of 2 different surfaces: the outward normal vector to 92 faces outwards, whilst the
outward normal vector to dB.(z) will have to face inwards (for it to face outwards relative to 95, ):
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J OB:(z)

\

Thus, we write the integral as:

1
—— Au(y)d®y
f

L
1 A~
- —— (Vu(o)-N(o)) do
/69 HQ—QII( (@) 7(7)) -
Ry
/ ( )<v LA ))d
_ ulo L ]
oo\ llz—a T7)
Rs
1 A~
- — (Vulo) - N(o)) do
/aBs(z) |z — o]l ( (o) 7(7)) o
H,
1 .
v e (v.N@) "
OB. (x) z—a]
Ry
We now show that as ¢ — 07:
. 1
L_>/ oy vy = —47r/ Dz — y)Ayu(y)d’y
o llz—yl ™= o

Vu(a) ﬂ(g)) do (4mx single layer potential)

[ ]
Ry — —_—
' oo Iz — ol (
(]
1 A
Ry — — u(o) (V 'N(0)> do (—4mx double layer potential)
o0 lz — ol
[ ]
R3; —0
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Ry — —4wu(z)
from which the result follows by the fact that:

L=Ri+ Ry+ R3+ Ry

since the factors ﬁ cancel out.

(DL

Define:

M = maxAu(y)
yeQ -

Then:
(/;—LfA()ﬁ 4
u(y)d’y —
ollz—yl =
/71 Auly)d® /71 Auly)d®
= u(y)d’y — u(y)d’y
olz—yl = o llz—yl =
1 3

T Au(y)d’y

B.( llz =yl

1
=< ——|Au(y)|d®y
Jo o g2

1 3

B.(x) llz =yl

IN

Thus, as ¢ — 0%, the ball over which we integrate becomes a point, so we can make this difference arbitrarily
small. That is:

1
L— | ——Au(y)d®y
allz—yl =

as expected.

@ n
This one doesn’t depend on ¢, so the result is immediate.
@) R
This one doesn’t depend on &, so the result is immediate.

@ Ry

Define:
M’ = max||Vu(y)|

yeN
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Then:

|R3| =

/am m (Vulo) - N(o)) do

<[ V)

9B, (2) Iz — all

- €
/

=d4ne? x —
€

1
< / ~M'do, (since we are on the surface of the ball)
BBE(I)

so |R3| — 0 as € — 07 as required.

® R

We begin by recalling a result from last week:

1 “ 1
Ve N= -7
=d =d]
@
9B.(0) 5O
a
Moreover, let:

Ml/ — _

gerggf@lu@) u(g)|
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Using this, we estimate:

1
ER4 - (*U

Consider spherical coordinates centered at z:

such that:

Then, we can write:

Thus:

1 1 ~
@)= @+ [ st (Vg M) ) do

1 1

- /8 o (80—l
1 1

= AT Jop.(a) lulz) ~ ula)] |z — g\l2dg
1 L

=M /aBEm lz— o

(r,0,¢) € [0,00) x [0,7) x [0,27)]

do = r?sin 0dd¢

27
=4
/dwnzaw //d€d¢ T

Ry — (—u(z)| < M"

But notice, M" depends on ¢, so the above difference becomes arbitarirly small, and:

as required.

Ry — —4wu(z)
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Hence:

/ #Au(g)d?’y
Q

iz =yl
L

e (V) Ble)) ao

Ry

vt (vt v e

Ra2

B /635 (2) m (V“(g) 'ﬁ(g)) do

R3

+/685(x)U(J) <v||x—10|| N(a)) iz

Ry

— [ty = [ (Vi) K@) dz - [ ate) (Vi i) ) de - dru(w
= ulz) :/Qq)( y)Ayuly)d’y /(,;Q@@*Q) (Vulo) - N(e)) dg+/ggﬂ(g) (Vo@-o) N(o)) do

as required.

O

1.4 Proposition: Representation Formula for Solutions to Boundary Value Pois-
son PDE

The above representation formula is inconvenient, in the sense that we require 8 pieces of information.
Instead, we can use Green Functions to obtain a simpler representation.

Let € be a domain with a smooth boundary, and assume that:
fec) g € C(09)

Then, any solutionu € C?(Q) (which will be unique in C(2)) to the
boundary value Poisson problem :

Au(z) = f(z), z€QCR”
u(z) =g(z), 1z €N

can be represented as:

0= [ fwG@yry+ [ o) (V6lzo)- Ne)de

Vv
Poisson kernel

where G(z,y) is the Green function for ().
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Here, having a smooth boundary isn’t strictly necessary: for instance if  is a cube, or some regular
shape, we can still have a representation formula. Smoothness is just convenient.

Proof. Recall, a Green function on a domain {2 is of the form:

G(z,y) = ®(z —y) — ¢(z,y)

where for fixed x € :
Ayd(z,y) =0, ye

d(z,0) = Pz — o), o €N

and:
G(z,0) =0, z€Q, o€

Moreover, we have the representation formula for u as:

ue) = [ a-pauay— [ de-o) (Vule) K)o+ [ o) (Voa-a) M) de

- [oa-ntway— | 2e-o) (Vue) K)o+ [ glo) (Vilz—a) Kie)) de

Q

where we have used the fact that if u solves the boundary value Poisson porblem, then on 2:
Au=f

and on 99

Once again, recall Green’s Identity:
| r@au - v = [ (Vo) Ma)) - w (Vole) Ne) dz

If we let u = w and v = ¢, we get that:

[ o n)a,ut) - uwa,owpds= [ oy (Vu) Ko@) - ulo) (Vo - o) M(o) do
Q

o0

But notice:

e since u solves the boundary Poisson problem, on 2:
Ayju=f

and on 02
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e by construction, ¢ is such that on :
Ayp=0

and on 0$2:
d(z,0) =P(z—0)
Hence:

9(0) (Vo —0)- N(o)) do

Now, if we add the above to the representation for u:
ue) = [ de-pi@ay- [ oe-o) (Vi) @)z + [ glo) (Volz-0) Ki)) d
+ [ o= (Vo) @) do— [ gle) (Vota o) §(@)) dz ~ [ o)1)
- [@e—y - seiwdy+ [ o) (V@0 - o) Kie)) de

- 19}

:/QG(L )f(y)d”y+/mg(g) (VG(LQ).MQD do

as required.
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2 Solving the Boundary Value Poisson PDE

2.1 Lemma: Green Function for a Ball Centered at the Origin

on Br(0) is:

b e —ulen - (1)
Glay) =4 "L =
(n—2)wn, [HQH =R _n:|

Furthermore, if x € Br(0) and o € 0BRr(0) then:

1=

1=

~h
1o

Consider a ball Bg(0) C R™ wheren > 3. Then, the Green Function

[e)

In particular, when n = 3:

1 R
T Anllz— + ) z 7é 0
ey - { TR FEET 27
T Inly] T TR =2
) R —zf* 1

Proof. Recall, a Green function over a domain 2 is given by:

G(z,y) = ®(z —y) — ¢(z,y)

where @ is the fundamental solution to Vu = 0, and for each z € €, ¢(z,y) solves the Dirichlet Problem:

d(z,0) = P(z — o), o €09

Lets operate with n = 3, and consider a ball Br(0) of radius R centered at the origin. To find G, we
need to come up with a suitable ¢(z,y). One idea is to think of G' as some sort of electric field. ® represents
the potential experienced by a point charge at some location in Br(0). Now, place an imaginary charge with

charge ¢ at some point z* € Bg (0). Then, we can think of G as:

1 q
G =
(z,9) inlz—y " dalz — g
N——————
—¢(a,y?
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(here we use 47 are our area elemnet over the sphere)

But then, if G is a Green function, it will vanish on the boundary 9 Bg(0):
G(z,0) =0, c€dBg(0), o]l =R

and we can use this to determine ¢, z*.

Since G vanishes when y = g, we will have that:

1 q

_ — N2 2. )2
Tz —al ~ Iz =g 2" —all” = ¢° ||z — o

The strategy is to now put all the ¢ on the same side. Indeed:

lz* = gl = ¢*|lz — a?

(" —o,z"—0)=q¢*(z—0o,z—0)

(z*,2") — 2(0,2*) + (0,0) = ¢* (z,2) — 2¢° (0. z) + ¢* (0, 0)
(z*,2%) — ¢* (z,z) + R? = 2 (0, 2") — 2¢° (0, z) + ¢*R?
(z*,2") — ¢ (z,z) + (1 — ¢*)R* =2 (0, 2" — ¢’z)

But notice, the RHS depends on ¢, whilst the LHS doesn’t, and will be fixed. Since z,c are completely
independent, equality holds if and only if both sides are equal to 0. In particular, by linearity of the dot
product this implies that:

=0 = " =q¢z

In turn, we then get a quadratic equation in ¢ by considering the LHS:
(@2~ (z,2) + 1 - )R =0 = ¢"|lz[I* - ¢*(|z]* + R*) + R* =0

Using the quadratic formula:

. lz)|* + B2 + /(lz]]> + R?)? — 4]z]]R?

2|2
lz)? + R? + /[lz]* = 2a]PR? + R
- 2|2
el + R £ (2l - R)?
2|2
izl + R % (llzl® - R?)
- 2|z
Thus: 2”33”2
C]2: e =1 = ¢g=1
2 2R*  R? .- R
L) YRR B ST

(notice, we enforce that g > 0)
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If ¢ = 1, we will get that ¢(z,y) = ®(z — y), which is uninteresting,

Hence, we have that:

since it corresponds to G(z,y) = 0.

R . R?
=75 =iz
llz| llz]?
Notice, x and z* are collinear, and as + — R, 2* — .
Hence, we have that:

q 1 R 1

AL,y) =~ = T

S o R i oy

o

Moreover, if we consider what happens as z — 0, and noting that i

|

will be a unit vector:

. 1 R 1 . R 1 R 1
#(0,y) = — lim — — = —lim — = — S
= z—0 47 ||z]| ’ R . _ H z—0 47 HR2L — |z H 47 R? 47R
TzZL ™ Y Tz — 1ZIY
This then gives us the desired Green Function for n = 3:
1 R
47r||gfy|| 47"“$H ‘ Hljﬁzi_yH
23) = 1 1 ) .
_ =0
4|yl + AR’ ==

We now compute the gradient (with respect to y, since with Green Functions we always think of z as

being fixed):

V,G(z,0) - N(o)

With n = 2, and using ¢ as our coordinate on the surface of the unit ball, we’d have:

1

= 50

N(o)

This follows geometrically from:
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N(o) = Lo 0B (0) B3 (0)

Hence, now we “just” need to compute V,G(c). To this regard, we consider:

1 + i
drllz —y|l  4x|z]| ||z* — y]|

G(z,y) =

to reduce clutter.

Then:

i=1
n —2/2 n
o DO B by .
2 ay’
Jj=1 j=1
1 1 .0 ;
2z — ') =— («* — ¢
2|z -yl ( )8111 ( )
B Tt — yi
lz — yl?
Thus, it follows that:
x—0o R(z* — o)
“ drllz —cl* x|l z* - ol

Hence, and using the fact that when deriving G, we showed that:

R2
lz* = o|® = ¢?llz — o|)* = WH&—QII2
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we get that:

V,G(z,0) - N(o) = <4ﬂx_00”3 n R(z* — o) 10>

|z dr||z|| lz* — o|® R

1 <<0,x0> R<o,:c*a>>

C R\ Jz—alP T )z - ol

_ 1 (g, —0) R{o,z* — o)

 Ank <_ lz = olP ||x|’§f3||x—a||3>

_ 1 <_ loz-a) ||x||2<07w*—a>>
AanR \ [z —qaf? R?||z — a3

SR N
T mRz- o

= -t (R2 (o,z — o) — ||z||? <g Rizx _ J>>
dn B3|z — of|3 e AT 22T T
= SR S <<0’ x—o)— <O’ T — ”x”20>)
re e G
1 [Eds
:-_4ﬂRwr—wﬂ3<<J’lP U__U>>

1 2 2
= e op (1)

_R—z® 1
irR |z —af?

R*(o,z—0) — ||z|* (o, 2" — 0))

as required.
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2.2 Lemma: Green Function for a Ball

Consider a ball Br(p) C R™ wheren > 3. Then, the Green Function

on Br(p) is:
Glay) =g =yl
_ (@)2% ﬁ(z —p)—(y—p) 2_1
when x # 0 and:
GOy = m [y — pl>™" — R*™]

when x = 0. Furthermore, if v € Br(p) and o € OBg(p) then:

R —|z—pl™" 1

w2z = g

VG(z,0) - N(o) =

In particular, when n = 3:
1 R

Tanfz—yl R
s i Ol )

, T

4|z — pl|

G(z,y) =
(z,9) . .

— _.l_ ,
47r|\g = B” AT R

RE—z—pl* 1

arR |z —af?

VG(z,0) - N(o) =

This is immediate by using x — x — P and Y= y—p.
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2.3 Theorem: Poisson’s Formula

Let Br(p) C R™ be a ball of radius R centered at p € R™ and let x € R™.
Let:

g € C(0Bg(p))
Then, the unique solution:
u € OQ(BR(E)) N C(Bg(p))
of the PDE:

u(z) = g(z), z € 0Bg(p)
can be represented using the Poisson formula:

RQ _ _ 2
u(z) = |z Q” / || g9(o) do
O0Br(p)

wnR z—a|”

{Au(g) =0, z € Bg(p)

In particular, when n = 3:

u@):R—Hz—gH/a 9@

4R Br(p) lz—¢al® —

Proof. This follows immediately by using the Representation Formula for solutions to the boundary value
Poisson problem:

M@=K#@W@QM%+L;%ﬂWG@@%M@D@

Poisson kernel

alongside the Green function we just derived (we work for n = 3):

L
drflz -yl

=

G(z,y) =

drl|z||

R .
Tzl? £ EH
and the normal gradient (known as Poisson kernel):

R~ z—pl* 1
R Jz—alP

VG(z,0) - N(o) =

Hence, plugging it all in, and using the fact that on Q, Au= f =0 so:

R —|z—-pl* 1 R? — |z — p||? g(o)
u(z) = o —= do = —= —— —do
() /(m e R e A 1R /BBR@ lz—alP*
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3 Harnack’s Inequality

3.1 Theorem: Harnack’s Inequality

Let Br(0) C R™ be the ball of radius R centered at the origin, and let:
u € C*(Bg(p)) N C(Bg(p))

be the unique solution of the PDE:

Au(@) = 07 HARS BR(E)
u(z) = g(z), x € 0Bg(p)

Assume that u is non-negative on Br(0). Then, for any z € Bg(0), we
have that:

R"*(R — |lzl)
Rtz W su@) s

R"2(R + ||z]|)
(R — [~

u(0)

Proof. We prove this for n = 3.

By Poisson’s Formula, we have that:

u(z) = R? — Hi”Q / g(a) do
o 4T R o8R0 Iz —al®

On the surface of our ball (¢ € dBr(0)) we will have that, by the Triangle Inequality:
Iz =l < llzll + ||

and by the Reverse Triangle Inequality:
lz = all = lllzll - llell]

SO
Rzl <llz -l <zl + R

where we have used that ||| = R, and that R > ||z|| always.
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JdBr(0)

Hence, if we use R — ||z|]| < ||z — g]| alongside the fact that ¢ is non-negative by assumption, we get that:
R? — ||z||® g(o)
TR o8R0y (B —[z[)3

_ (B z[)(R — |lz]]) 9le) .
- AmR /aBR(O) (R~ ||£||)3d*

R+ ||z /
|| g(o)do
drR(R — [|z[))? Joagg o) (@)

But now, since u solves the Poisson PDE, it is Harmonic, and so, by the mean value property:

1

0) =——
U() dm R? 9BR(0)

g(a)da

Hence:

R+ ||z /
z) < s 9(e)de
drR(R — [|z[))? Joagg(o) @)
R(R+ ||lz|)) 1 /

_ g(o)da
(R —[lz]})* 47R* Jap,(0) )
R(R+ ||zl

= =0
(R — [|z][)? v

as required.

The other inequality follows identically by using ||z — ¢/ < ||z|| + R instead.

3.2 Corollary: Liouville’s Theorem

As a corollary of Harnack’s Inequality, we get Liouville’s Theorem, which is what we need to prove
that the solution to the Poisson equation is indeed unique.
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Suppose that u € C*(R") is harmonic on R".
Assume that:

dM eR :Vz e R, u(z) > Moru(z) <M

Then, u is a constant-valued function.

Proof. We begin with the case u(z) > M. Define:
v=u+|M]|

Clearly:
Av=Au+A|M|=0

so v is harmonic. Moreover, by adding |M| we ensure that v(z) > 0 for any x. Hence, Harnack’s Inequality
applies, from which we get:

2) ) o < o) < B 2R D)
) <o) < s ERe)

But then, as R — oo, and using the Squeeze Theorem, we conclude that:
v(z) = v(0)
so v is constant, and thus, © must be constant.

If u(z) < M, then use w(z) = —u(z) + | M| instead of v, and argue in the same way.
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