Introduction to Partial Differential Equations - Week 5 & 6 - The Fundamental Solution to Laplace's/Poisson's Equations

Antonio León Villares

October 2022

Contents

1	Lap	place's and Poisson's Equations	2
	1.1	Definition: The Laplacian Operator	2
	1.2	Definition: Laplace's Equation	2
	1.3	Definition: Poisson's Equation	2
	1.4	Example: Electromagnetism and Poisson's Equation	3
	1.5	Example: Complex Analysis and Laplace's Equation	4
2	Pro	perties of Harmonic Functions	4
	2.1	Boundary Conditions and Well-Posed Problems	4
	2.2	Theorem: Uniqueness of Solutions to Poisson's Equation	Ę
	2.3	Theorem: Mean Value Properties of Harmonic Functions	7
		2.3.1 Intuition About Mean Value Theorems	Ć
	2.4	Theorem: Strong Maximum Principle	Ć
		2.4.1 Corollary: Comparison Principle	11
		2.4.2 Corollary: Stability Estimate	12
3	$Th\epsilon$	e Fundamental Solution to Poisson's Equation	12
	3.1	Intuition About the Fundamental Solution	13
	3.2	Definition: Fundamental Solution for Laplace's Equation	
	3.3	Lemma: Fundamental Solution at $\underline{x} = 0$	
	3.4	Theorem: Solution to Poisson's Equation	
4	Wo	rkshop	20

1 Laplace's and Poisson's Equations

1.1 Definition: The Laplacian Operator

The **Laplacian** is a:

- ullet second-order
- linear
- $\bullet \ constant\text{-}coefficient$

differential operator, defined as:

$$\nabla^2 = \Delta = \sum_{i=1}^n \partial_i^2$$

1.2 Definition: Laplace's Equation

Let $\Omega \subset \mathbb{R}^n$ be a **domain** (open connected subset). The **Laplace Equation** on Ω is the **homogeneous** PDE:

$$\Delta u(\underline{x}) = 0, \qquad \underline{x} \in \Omega$$

1.3 Definition: Poisson's Equation

Let $\Omega \subset \mathbb{R}^n$ be a **domain** (open connected subset). **Poisson's Equation** on Ω is the **inhomogeneous** PDE:

$$\Delta u(\underline{x}) = f(\underline{x}), \qquad \underline{x} \in \Omega$$

- What is a harmonic function?
 - a function $u \in C^2(\Omega)$ satisfying **Laplace's Equation**:

$$\Delta u = 0$$

1.4 Example: Electromagnetism and Poisson's Equation

Maxwell's Equations define electromagnetic behaviour. We consider:

- E (electric field)
- <u>B</u> (magnetic induction)
- \underline{J} (current density)
- ρ (charge density)

Maxwell's Equations are:

$$\partial_t \underline{E} - \nabla \times \underline{B} = -\underline{J}$$

$$\nabla \cdot \underline{E} = \rho$$

$$\partial_t \underline{B} + \nabla \times \underline{E} = \underline{0}$$

$$\nabla \cdot \underline{B} = 0$$

We can think of **Laplace's Equation** as the heat equation, when u is time-independent (known as a **steady state solution**).

However, it is more interesting to think about it from the physical point of view of electromagnetism. Again, let's consider steady-state solutions, such that:

$$\partial_t E = \partial_t B = J = 0$$

This tells us that:

$$\nabla \times E = 0$$

Since Ω is a **domain**, in particular it is a connected set, so by Poincaré's Lemma, \underline{E} must be a **conservative** vector field. That is, $\exists \phi$ such that:

$$E = -\nabla \phi$$

We call ϕ the **electric potential**. This then tells us that:

$$\nabla \cdot E = \rho \implies \nabla (-\nabla \cdot \phi) = -\Delta \phi = \rho$$

That is, the electric potential must be a solution to **Poisson's Equation**, with inhomogeneous term $-\rho$.

1.5 Example: Complex Analysis and Laplace's Equation

A complex function:

$$f(z) = u(z) + iv(z)$$

is differentiable at:

$$z_0 = z_0 + iy_0$$

if and only if u, v verify the Cauchy-Riemann Equations at z_0 :

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$
 $u_y(x_0, y_0) = -v_x(x_0, y_0)$

If we differentiate each of the equations:

$$u_{xx}(x_0, y_0) = v_{yx}(x_0, y_0)$$
 $u_{yy}(x_0, y_0) = -v_{xy}(x_0, y_0)$

$$u_{xy}(x_0, y_0) = v_{yy}(x_0, y_0)$$
 $u_{yx}(x_0, y_0) = -v_{xx}(x_0, y_0)$

Then, assumign that $u, v \in C^2$ near z_0 , we get that:

$$\Delta u = v_{yx} - v_{xy} = 0$$

$$\Delta v = -u_{yx} + u_{xy} = 0$$

That is, a differentiable complex function must be composed of harmonic real and imaginary parts!

2 Properties of Harmonic Functions

2.1 Boundary Conditions and Well-Posed Problems

- Does Poisson's Equation require an initial condition?
 - no, since it doesn't depend on **time**
 - we only need to prescribe **boundary** conditions
- Which boundary conditions produce a well-posed problem?
 - consider a **domain** $\Omega \subset \mathbb{R}^n$, with a **Lipschitz Boundary** (that is, $\partial \Omega$ is "locally regular", it can be described piecewise by regular functions)
 - the following produce well-posed problems foor $\Delta u = f$:
 - 1. Dirichlet Data:

$$u(\underline{x}) = h(x), \quad \forall \underline{x} \in \partial \Omega$$

2. Neumann Data:

$$\nabla u(x) \cdot \hat{N} = h(x), \quad \forall x \in \partial \Omega$$

where \hat{N} denotes the unit outward normal vector to $\partial\Omega$

3. Robin-Type Data:

$$\nabla u(\underline{x}) \cdot \underline{\hat{N}} + \alpha u(\underline{x}) = h(x), \ \alpha > 0 \qquad \forall \underline{x} \in \partial \Omega$$

4. Mixed Conditions: such as those arising by splitting $\partial\Omega$ into disjoint pieces:

$$\partial\Omega = S_D \cup S_N$$

and requiring that u satisfies some of the above conditions for $h(\underline{x})$ defined on S_D , and $g(\underline{x})$ defined on S_N

5. Conditions at Infinity: if $\Omega = \mathbb{R}^n$ we can specify that $u(\underline{x})$ satisfies asymptotic conditions as $||\underline{x}|| \to \infty$

2.2 Theorem: Uniqueness of Solutions to Poisson's Equation

Let $\Omega \subset \mathbb{R}^n$ be a **smooth**, **bounded** domain.

Then, under **Dirichlet**, **Robin** or **mixed boundary conditions**, there is **at most one** solution of regularity:

$$u \in C^2(\Omega) \cap C^1(\bar{\Omega})$$

to the **Poisson Equation**:

$$\Delta u = f$$

In the case of **Neumann** conditions, any 2 solution can differ by **at most** a constant.

Proof. Consider 2 solutions u, v satisfying the Poisson Equation:

$$\Delta u = f$$
 $\Delta v = f$

Then, since this is a linear PDE w = u - v is a solution to:

$$\Delta w = f - f = 0$$

Now, we apply the **Energy Method**. Define the energy to be:

$$E = \int_{\Omega} w^2 d^n x$$

Now, if we multiply the Laplace Equation above by w, we obtain:

$$w\Delta w = 0$$

So integrating:

$$\int_{\Omega} w \Delta w d^n x = 0 \implies \int_{\Omega} w \Delta w + \|\nabla w\|^2 - \|\nabla w\|^2 d^n x = 0$$

But now notice that by the product rule, and using $\nabla \cdot \nabla w = \Delta w$:

$$\nabla \cdot (w\nabla w) = (\nabla w) \cdot (\nabla w) + w(\nabla \cdot \nabla w) = \|\nabla w\|^2 + w\Delta w$$

Hence, we can rewrite our integral as:

$$\int_{\Omega} \nabla \cdot (w \nabla w) d^n x - \int_{\Omega} \|\nabla w\|^2 d^n x = 0$$

It is now natural to apply the **Divergence Theorem**:

$$\int_{\partial\Omega} \underline{\hat{N}} \cdot (w \nabla w) d\underline{\sigma} - \int_{\Omega} \|\nabla w\|^2 d^n x = 0$$

where \hat{N} is the unit normal vector to the surface $\partial\Omega$

1 Dirichlet Data

If u, v satisfy the Dirichlet Data, then it follows that:

$$\forall \underline{x} \in \partial \Omega, \quad u(\underline{x}) = v(\underline{x}) = g(\underline{x})$$

where g is some function, Thus, it follows that:

$$\forall \underline{x} \in \partial \Omega, \quad w(\underline{x}) = g - g = 0$$

Hence, the first surface integral vanishes, and we have:

$$\int_{\Omega} \|\nabla w\|^2 d^n x = 0$$

The fact that $\|\nabla w\|^2$ is continuous and non-negative implies (by results from Analysis - we did this as a homework) that:

$$\|\nabla w\|^2 = 0 \iff \nabla w = 0$$

in Ω . In other words, w will be constant on $\bar{\Omega}$. As we saw above, w=0 on $\partial\Omega$, so w=0 on all of $\bar{\Omega}$. Finally, this then implies that u=v, as required.

(2) Robin Data

If u, v satisfy the Robin Data, then it follows that:

$$\forall \underline{x} \in \partial \Omega, \quad \nabla u(\underline{x}) \cdot \underline{\hat{N}} + \alpha u(\underline{x}) = h(x), \ \alpha > 0$$

$$\forall x \in \partial \Omega, \quad \nabla v(x) \cdot \underline{\hat{N}} + \alpha v(x) = h(x), \ \alpha > 0$$

So it follows that:

$$\forall \underline{x} \in \partial \Omega, \quad \nabla w(\underline{x}) \cdot \hat{\underline{N}} + \alpha w(\underline{x}) = h - h = 0, \ \alpha > 0$$

In other words, on the surface $\partial\Omega$ we have:

$$\nabla w(\underline{x}) \cdot \underline{\hat{N}} + \alpha w(\underline{x}) = 0 \implies w \nabla w(\underline{x}) \cdot \underline{\hat{N}} = -\alpha w^2(\underline{x})$$

Hence, our integral becomes:

$$\int_{\partial\Omega} -\alpha w^2(\underline{x}) d\underline{\sigma} - \int_{\Omega} \|\nabla w\|^2 d^n x = 0$$

But the fact that $\alpha w^2(\underline{x}), \|\nabla w\|^2 \geq 0$ imply as before that in particular:

$$\nabla w = 0$$

and the result follows.

(3) Neumann Data

If u, v satisfy the Neumann Data, then it follows that:

$$\forall \underline{x} \in \partial \Omega, \quad \nabla u(\underline{x}) \cdot \hat{\underline{N}} = \nabla v(\underline{x}) \cdot \hat{\underline{N}} = g(\underline{x})$$

so we must have:

$$\forall \underline{x} \in \partial \Omega, \quad \nabla w(\underline{x}) \cdot \hat{\underline{N}} = g - g = 0$$

and our integral becomes:

$$\int_{\Omega} \|\nabla w\|^2 d^n x = 0$$

which again implies that:

$$\nabla w = 0$$

so w must be constant. However, since this time we only know that on the surface $w(\underline{x}) \cdot \hat{\underline{N}} = 0$, this is all we can say. Hence, if u, v satisfy Neumann conditions, any 2 solutions will differ at most by a constant, as required.

2.3 Theorem: Mean Value Properties of Harmonic Functions

Let u(x) be harmonic in the domain $\Omega \subset \mathbb{R}^n$, and let:

$$B_R(\underline{x}) \subset \Omega$$

be a ball of radius R centered at $\underline{x} \in \mathbb{R}^n$. Then the following mean value formulae hold:

$$u(\underline{x}) = \frac{n}{\omega_n R^n} \int_{B_R(\underline{x})} u(\underline{y}) d^n y$$

$$u(\underline{x}) = \frac{1}{\omega_n R^{n-1}} \int_{\partial B_R(\underline{x})} u(\underline{\sigma}) d\underline{\sigma}$$

where ω_n is the **surface area** of the unit ball centered at $\underline{0} \in \mathbb{R}^n$.

1. The surface area of $B_1(\underline{0})$ in \mathbb{R}^n is given by:

$$\omega_n = \begin{cases} 2, & n = 0 \\ 2\pi, & n = 1 \\ \frac{2\pi}{n-1}\omega_{n-2}, & n > 1 \end{cases}$$

2. Alternatively, it can be defined in terms of the **volume** V_n of the **unit** sphere in \mathbb{R}^n :

$$\omega_n = (n+1)V_{n+1}$$

where we can define:

$$V_n = \begin{cases} 1, & n = 0 \\ 2\pi, & n = 1 \\ \frac{2\pi}{n} V_{n-2}, & n > 1 \end{cases}$$

3. More generally:

$$|B_R(\underline{x})| = \frac{\omega_n R^n}{n}$$

where $|B_R(\underline{x})|$ is the volume of $B_R(\underline{x})$. Similarly:

$$|\partial B_R(\underline{x})| = \omega_n R^{n-1}$$

where $|\partial B_R(\underline{x})|$ is the surface area of $B_R(\underline{x})$.

Proof. We consider the case n = 2; similar reasoning will give the higher dimensional cases. Moreover, we shall prove the claim when the ball is centered at the origin.

Define a ball $B_r(\underline{x})$ in \mathbb{R}^n of radius r centered at \underline{x} . Consider the function

$$g(r) = \frac{1}{\omega_n r^{n-1}} \int_{\partial B_r(\underline{x})} u(\underline{\sigma}) d\underline{\sigma}$$

where $\sigma = \underline{x} + r\underline{\omega}$, and $\underline{\omega}$ is an angular coordinate in the surface of the unit ball in \mathbb{R}^n .

Now, since u is continuous, we can apply the **Mean Value Theorem** (Integral Version), which tells us that:

$$\lim_{r\to 0^+}g(r)=\lim_{r\to 0^+}\frac{1}{\omega_n r^{n-1}}\int_{\partial B_r(x)}u(\underline{\sigma})d\underline{\sigma}=u(\underline{x})$$

The one-dimensional intuition is that if we have:

$$\frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} g(y) dy$$

By the Mean Value Theorem, we in fact have that $\exists c^* \in [x - \varepsilon, x + \varepsilon]$ such that:

$$\frac{1}{2\varepsilon} \int_{x-\varepsilon}^{x+\varepsilon} g(y) dy = g(c^*)$$

But then, as $\varepsilon \to 0$, the only possibility for c^* is $c^* = x$, so:

$$\lim_{\varepsilon \to 0^+} \frac{1}{2\varepsilon} \int_{x}^{x+\varepsilon} g(y) dy = g(x)$$

This is analogous to the case above, albeit with $r \to 0^+$.

Hence, if we can show that g'(r) = 0, then g is constant, and since $\lim_{r\to 0^+} g(r) = u(\underline{x})$, we will have that g(r) = u(x) for any r, which gives us the second mean value formula.

To this end, we compute g'(r). By using the change of variables $\underline{\sigma} = \underline{x} + r\underline{\omega}$, which gives:

$$d\sigma = r^{n-1}d\omega$$

we have that:

$$g'(r) = \frac{\partial}{\partial r} \left(\frac{1}{\omega_n} \int_{\partial B_1(\underline{x})} u(\underline{x} + r\underline{\omega}) d\underline{\omega} \right) = \frac{1}{\omega_n} \int_{\partial B_1(\underline{x})} \partial_r u(\underline{x} + r\underline{\omega}) d\underline{\omega}$$

This allows us to integrate over the unit ball centered at \underline{x} . Moreover, notice that $\partial_r u(\underline{\sigma})$ will be the gradient vector of u dotted with $\underline{\omega}$ (since a partial derivative is nothing but a directional derivative in the direction of one of the axes, and $\underline{\omega}$ always points in the direction of the radial variable r). Hence:

$$g'(r) = \frac{1}{\omega_n} \int_{\partial B_1(x)} (\nabla u(\underline{x} + r\underline{\omega}) \cdot \underline{\hat{N}}) d\underline{\omega}$$

since $\underline{\omega}$ is a unit normal vector to the ball by construction. But now, the **Divergence Theorem** applies, and so we can write:

$$g'(r) = \frac{1}{\omega_n} \int_{B_1(x)} \Delta u(\underline{x} + r\underline{\omega}) d\underline{\omega}$$

However, u is Harmonic, so $\Delta u = 0$, and as required:

$$g'(r) = 0$$

so as required:

$$u(\underline{x}) = \frac{1}{\omega_n r^{n-1}} \int_{\partial B_r(x)} u(\underline{\sigma}) d\underline{\sigma}$$

Now we consider the case where we integrate over the ball. We have that:

$$u(\underline{x})\omega_n r^{n-1} = \int_{\partial B_r(x)} u(\underline{\sigma})d\underline{\sigma}$$

But if we integrate with respect to r:

$$u(\underline{x})\frac{\omega_n r^n}{n} = \int_{B_r(\underline{x})} u(\underline{\sigma}) d\underline{\sigma} \ \implies \ u(\underline{x}) = \frac{n}{\omega_n r^n} \int_{B_r(\underline{x})} u(\underline{\sigma}) d\underline{\sigma}$$

as required.

2.3.1 Intuition About Mean Value Theorems

The mean value theorems tell us that the value of harmonic functions at a point is defined by mean value of the function for all points of in a sphere (or its surface) which is centered at the point.

2.4 Theorem: Strong Maximum Principle

Let $\Omega \subset \mathbb{R}^n$ be a **domain**, and assume that $u \in C(\Omega)$ satisfies the **mean** value property:

$$u(\underline{x}) = \frac{n}{w_n R^n} \int_{B_R(\underline{x})} u(\underline{y}) d^n y$$

Then:

- if $p \in \Omega$ is an extremum of u, then u is constant on Ω
- otherwise, if Ω is **bounded** and $u \in C(\bar{\Omega})$ is **not** constant, then we must have that:

$$\forall \underline{x} \in \Omega, \qquad u(x) < \max_{y \in \partial \Omega} u(y) \qquad u(x) > \min_{y \in \partial \Omega} u(y)$$

Proof. We argue for the minimum case when n=2.

Assume that $\exists \underline{p} \in \Omega$ such that $u(\underline{p}) = m$ is a **minimum**. Define $B(\underline{p})$ as **any** ball centered at \underline{p} . Moreover, consider a smaller ball, $B_r(\underline{z}) \subset B(p)$. Since m is a minimum, in particular we have that:

$$u(\underline{z}) \ge m$$

Now, since u satisfies the mean value property, we have:

$$\begin{split} m &= u(\underline{p}) \\ &= \frac{1}{|B(p)|} \int_{B(p)} u(\underline{y}) d^2 y \\ &= \frac{1}{|B(p)|} \left[\int_{B_r(\underline{z})} u(\underline{y}) d^2 y + \int_{B(\underline{p}) \backslash B_r(\underline{z})} u(\underline{y}) d^2 y \right] \\ &= \frac{1}{|B(p)|} \left[|B_r(\underline{z})| u(\underline{z}) + \int_{B(\underline{p}) \backslash B_r(\underline{z})} u(\underline{y}) d^2 y \right], \qquad since \ by \ MVP \ u(z) &= \frac{1}{|B_r(\underline{z})|} \int_{B_r(\underline{z})} u(\underline{y}) d^2 y \\ &\geq \frac{1}{|B(p)|} \left[|B_r(\underline{z})| u(\underline{z}) + \int_{B(\underline{p}) \backslash B_r(\underline{z})} m d^2 y \right] \\ &= \frac{1}{|B(p)|} \left[|B_r(\underline{z})| u(\underline{z}) + m(|B(p)| - |B_r(\underline{z})|) \right] \\ &= \frac{|B_r(\underline{z})|}{|B(p)|} u(\underline{z}) + m - \frac{|B_r(\underline{z})|}{|B(p)|} m \end{split}$$

But this implies that:

$$\frac{|B_r(\underline{z})|}{|B(p)|}(u(\underline{z}) - m) \le 0 \iff u(\underline{z}) \le m$$

Hence, since by definition of m we must also have $u(\underline{z}) \geq m$, we conclude that:

$$u(z) = m$$

However, \underline{z} was arbitrary, so this holds $\forall x \in B(\underline{p})$. Moreover, since Ω is a domain, it is **open** and **connected**, so:

$$\forall \underline{x} \in \Omega, \qquad u(\underline{x}) = m$$

and so, u is constant if it attains a minimum on Ω .

2.4.1 Corollary: Comparison Principle

Let $\Omega \subset \mathbb{R}^n$ be a **bounded domain**, and let $f \in C(\partial\Omega)$. Then, the PDE:

$$\begin{cases} \Delta u = 0, & \underline{x} \in \Omega \\ u(\underline{x}) = f(\underline{x}), & x \in \partial \Omega \end{cases}$$

has at most one solution:

$$u_f \in C^2(\Omega) \cap C(\bar{\Omega})$$

If u_f and u_g are the solutions to $f, g \in C(\partial\Omega)$, then:

$$\forall \underline{x} \in \partial \Omega, \quad f \geq g, f \neq g \implies \forall \underline{x} \in \Omega, \quad u_f > u_g$$

Proof. Define $w = u_f - u_g$. By linearity, and since $f \geq g$, w solves:

$$\begin{cases} \Delta w = 0, & \underline{x} \in \Omega \\ w(\underline{x}) = f - g \ge 0, & x \in \partial \Omega \end{cases}$$

Since w is harmonic, the Strong Maximum Principle applies, so either w>0 is constant (a **positive** constant, since $f\neq g$) or w is non-constant, and so, attains a minimum on $\partial\Omega$:

$$\forall \underline{x} \in \Omega, \quad w(\underline{x}) > \min_{\underline{y} \in \partial \Omega} \, w(\underline{y}) = \min_{\underline{y} \in \partial \Omega} \, f(\underline{y}) - g(\underline{y}) \geq 0$$

Hence, no matter if w is a positive constant or non-constant on Ω , we have:

$$\forall \underline{x} \in \Omega, \quad w(\underline{x}) > 0 \implies u_f(\underline{x}) > u_q(\underline{x})$$

as required.

2.4.2 Corollary: Stability Estimate

Let $\Omega \subset \mathbb{R}^n$ be a **bounded domain**, and let $f \in C(\partial\Omega)$. Then, the PDE:

$$\begin{cases} \Delta u = 0, & \underline{x} \in \Omega \\ u(\underline{x}) = f(\underline{x}), & x \in \partial \Omega \end{cases}$$

has at most one solution:

$$u_f \in C^2(\Omega) \cap C(\bar{\Omega})$$

If u_f and u_g are the solutions to $f, g \in C(\partial\Omega)$, then:

$$\forall \underline{x} \in \Omega, \qquad |u_f(x) - u_g(x)| \le \max_{y \in \partial \Omega} |f(\underline{y}) - g(\underline{y})|$$

Proof. We perform the same argument as for the Comparison Principle, with $\pm w$, which gives us:

$$\begin{split} w(\underline{x}) &> \min_{\underline{y} \in \partial \Omega} \, f(\underline{y}) - g(\underline{y}) > - \max_{\underline{y} \in \partial \Omega} \, |f(\underline{y}) - g(\underline{y})| \\ -w(\underline{x}) &> \min_{\underline{y} \in \partial \Omega} \, - f(\underline{y}) + g(\underline{y}) > - \max_{\underline{y} \in \partial \Omega} \, |f(\underline{y}) - g(\underline{y})| \\ -w &< \max_{\underline{y} \in \partial \Omega} \, |f(\underline{y}) - g(\underline{y})| \end{split}$$

so

so combining them:

$$|w| = |u_f - u_g| \le \max_{y \in \partial\Omega} |f(\underline{y}) - g(\underline{y})|$$

as required.

3 The Fundamental Solution to Poisson's Equation

The following illustrate the intuition and derivation for the Fundamental solution:

- by Li Chen
- by R.E Hunt

3.1 Intuition About the Fundamental Solution

We want to construct a fundamental solution which behaves like the **Dirac-delta distribution**. As we saw with the **fundamental solution** to the **heat equation**, this gave us the property that through **convolution**, we could solve the inhomogeneous problem (in our case, **Poisson's Equation**). In particular, we shall see that the **fundamental solution** Φ satisfies:

$$\Phi(x) = \delta(x)$$

Moreover, we notice that unlike with the **Heat Equation**, **Poisson's Equation** is **time independent**. Hence, instead of imposing initial conditions, we should impose some form of "decay" condition, such as:

$$\lim_{\|\underline{x}\| \to \infty} |u(\underline{x})| = 0$$

This idea can be physically motivated by considering gravity or electromagnetism: away from a body, the **potential** of the body (i.e gravitational potential, electric potential), should be **negligible**.

3.2 Definition: Fundamental Solution for Laplace's Equation

The fundamental solution Φ corresponding to the Laplacian operator Δ is:

$$\Phi(\underline{x}) = \begin{cases} \frac{1}{2\pi} \ln \|\underline{x}\|, & n = 2\\ -\frac{1}{\omega_n \|\underline{x}\|^{n-2}}, & n \ge 3 \end{cases}$$

where:

- ||x|| is the standard vector norm
- ω_n is the surface area of the unit sphere in \mathbb{R}^n

3.3 Lemma: Fundamental Solution at x = 0

If
$$\underline{x} \neq \underline{0}$$
, then $\Delta \Phi(\underline{x}) = 0$.

Proof. Consider the case n=3:

$$\Phi(\underline{x}) = -\frac{1}{4\pi \|\underline{x}\|}$$

Since $\underline{x} \neq \underline{0}$, we exploit the **radial symmetry** of Φ and can define a change of variables:

$$r^2 = ||x||^2 = x^2 + y^2 + z^2$$

Then:

$$2r\frac{\partial r}{\partial x^i} = 2x \implies \left(\frac{\partial r}{\partial x^i}\right)^2 + r\frac{\partial^2 r}{\partial (x^i)^2} = 1$$

and:

$$\begin{split} \frac{\partial \Phi}{\partial x^i} &= \frac{\partial \Phi}{\partial r} \frac{\partial r}{\partial x^i} \\ \frac{\partial^2 \Phi}{\partial (x^i)^2} &= \frac{\partial^2 \Phi}{\partial r^2} \left(\frac{\partial x^i}{\partial r} \right)^2 + \frac{\partial \Phi}{\partial r} \frac{\partial^2 r}{\partial (x^i)^2} = \frac{\partial^2 \Phi}{\partial r^2} \left(\frac{x^i}{r} \right)^2 + \frac{\partial \Phi}{\partial r} \frac{1}{r} \left(1 - \left(\frac{x_i}{r} \right)^2 \right) \end{split}$$

Hence:

$$\Delta \Phi = \sum_{i=1}^{3} \frac{\partial^{2} \Phi}{\partial r^{2}} \left(\frac{x_{i}}{r}\right)^{2} + \frac{\partial \Phi}{\partial r} \frac{1}{r} \left(1 - \left(\frac{x_{i}}{r}\right)^{2}\right)$$

$$= \frac{\partial^{2} \Phi}{\partial r^{2}} + \frac{\partial \Phi}{\partial r} \frac{1}{r} \left(3 - 1\right)$$

$$= \frac{\partial^{2} \Phi}{\partial r^{2}} + \frac{2}{r} \frac{\partial \Phi}{\partial r}$$

Thus, the Laplace Equation can be expressed via:

$$\frac{\partial \Phi}{\partial r} = \frac{1}{4\pi r^2} \qquad \frac{\partial^2 \Phi}{\partial r^2} = -\frac{1}{2\pi r^3}$$

Hence:

$$\Delta \Phi = -\frac{1}{2\pi r^3} + \frac{2}{r} \frac{1}{4\pi r^2} = 0$$

as expected.

3.4 Theorem: Solution to Poisson's Equation

Let:

$$f(\underline{x}) \in C_0^{\infty}(\mathbb{R}^n)$$

Then:

• if n > 3:

$$\Delta u(x) = f(x)$$

has a unique, smooth solution satisfying:

$$\lim_{\|\underline{x}\| \to \infty} |u(\underline{x})| = 0$$

• if n=2:

$$\Delta u(\underline{x}) = f(\underline{x})$$

has a unique solution provided that:

$$\lim_{\|\underline{x}\| \to \infty} \frac{u(x)}{\|\underline{x}\|} = 0 \qquad \lim_{\|\underline{x}\| \to \infty} \|\nabla u(\underline{x})\| = 0$$

In particular, these **unique solutions** are given by:

$$u(\underline{x}) = (\phi * f)(\underline{x}) = \begin{cases} \frac{1}{2\pi} \int_{\mathbb{R}^2} \ln \|\underline{y}\| f(\underline{x} - \underline{y}) d^2 y, & n = 2\\ -\frac{1}{\omega_n} \int_{\mathbb{R}^n} \|\underline{y}\|^{2-n} f(\underline{x} - \underline{y}) d^n y, & n \ge 3 \end{cases}$$

Moreover, $\exists C_n > 0$ such that we can **estimate** the **decay** of u(x) as $||\underline{x}|| \to \infty$:

$$|u(x)| \le \begin{cases} C_2 \ln \|\underline{x}\|, & n = 2\\ \frac{C_n}{\|x\|^{n-2}}, & n \ge 3 \end{cases}$$

Proof. We shall prove this for the case n=3. Moreover, we use Δ_x, Δ_y to specify the variable with respect to which we compute the Laplacian (since we will take convolution, sometimes we will have functions in terms of \underline{x} , and others in terms of \underline{y} , so using Δ_x, Δ_y adds clarity). In this regard, due to symmetry we can see that:

$$\Delta_x f(\underline{x} - y) = \Delta_y f(\underline{x} - y)$$

Now, recall the Theorem on differentiation under the integral:

Let I(a,b) be a function on $\mathbb{R} \times \mathbb{R}$, and let $b_0 \in \mathbb{R}$. Then if:

1. $\forall b \ in \ a \ neighbourhood \ of \ b_0$

$$\int_{\mathbb{R}} |I(a,b)| da < \infty$$

- 2. there exists a neighbourhood \mathcal{N} of b_0 such that for **almost every** a $\partial_b I(a,b)$ exists for $b \in \mathcal{N}$ (that is, the derivative at b is undefined at countably many points)
- 3. there exists a function U(a) (defined for almost every a) such that if $b \in \mathcal{N}$:

$$|\partial_b I(a,b)| \le U(a)$$
 $\int_{\mathbb{R}} U(a)da < \infty$

Then the function:

$$J(b) = \int_{\mathbb{R}} I(a, b) da$$

is differentiable near b_0 , and:

$$\partial_b J(b) = \int_{\mathbb{R}} \partial_b I(a,b) da$$

The same applies if $I(a,b) \in \mathbb{R}^m \times \mathbb{R}^n$.

Our functions are well-behaved, and so, we can bring the Laplacian into the integral:

$$\Delta_x u(\underline{x}) = -\frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{1}{\|\underline{y}\|} \Delta_x f(\underline{x} - \underline{y}) d^3 y$$
$$= -\frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{1}{\|\underline{y}\|} \Delta_y f(\underline{x} - \underline{y}) d^3 y$$

Now, $u(\underline{x})$ satisfies the Poisson Equation if we can show that:

$$\Delta_x u(x) = f(x)$$

To do this, we shall split \mathbb{R}^3 into a sphere and its complement. In particular, let $\varepsilon > 0$ and define a ball $B_{\varepsilon}(\underline{0})$ centred at the origin. Then, we can rewrite the integral as:

$$\Delta_x u(\underline{x}) = \underbrace{-\frac{1}{4\pi} \int_{B_{\varepsilon}(\underline{0})} \frac{1}{\|\underline{y}\|} \Delta_y f(\underline{x} - \underline{y}) d^3 y}_{I} + \underbrace{-\frac{1}{4\pi} \int_{B_{\varepsilon}^C(\underline{0})} \frac{1}{\|\underline{y}\|} \Delta_y f(\underline{x} - \underline{y}) d^3 y}_{II}$$

We now claim the following:

- 1. I goes to 0 as $\varepsilon \to 0^+$
- 2. $|f(x) II| \to 0 \text{ as } \varepsilon \to 0^+$

from which it follows that $\Delta_x u(\underline{x}) = f(\underline{x})$ as required.

Before anything, define the following constant:

$$M = \sup_{y \in \mathbb{R}^3} \{ |f(\underline{y})| + ||\nabla f(\underline{y})|| + |\Delta_y f(\underline{y})| \}$$

$$(1)I \rightarrow 0$$

We use **spherical coordinates** (r, ω) (here ω encodes all the angular information ϕ, θ). Then, we have that:

$$d^3 y = r^2 dr d\omega$$

where $\omega \in \partial B_{\varepsilon}(\underline{0})$ is an angular coordinate denoting a position on the surface of $B_{\varepsilon}(\underline{0})$, and $d\omega = \sin(\theta)d\theta d\phi$.

Thus, we have that:

$$|I| \leq \frac{1}{4\pi} \int_{B_{\varepsilon}(\underline{0})} \left| \frac{1}{\|\underline{y}\|} \Delta_{y} f(\underline{x} - \underline{y}) \right| d^{3}y$$

$$= \frac{1}{4\pi} \int_{0}^{\varepsilon} \int_{\partial B_{\varepsilon}(\underline{0})} \left| \frac{1}{r} \Delta_{y} f(\underline{x} - \underline{y}) \right| r^{2} d\omega dr$$

$$\leq \frac{1}{4\pi} \int_{0}^{\varepsilon} r \int_{\partial B_{\varepsilon}(\underline{0})} M d\omega dr$$

$$= \frac{1}{4\pi} \int_{0}^{\varepsilon} M r(4\pi \varepsilon^{2}) dr$$

$$= \frac{M \varepsilon^{4}}{2}$$

So clearly:

$$\lim_{\varepsilon \to 0^+} |I| \leq \lim_{\varepsilon \to 0^+} \frac{M \varepsilon^4}{2} = 0 \implies \lim_{\varepsilon \to 0^+} |I| = 0$$

by Squeeze Theorem.

$$(2) |f(\underline{x}) - II| \to 0$$

We begin by recalling **Green's Identity**:

$$\int_{\Omega} v(\underline{x}) \Delta w(\underline{x}) - w(\underline{x}) \Delta v(\underline{x}) d^n x = \int_{\partial \Omega} v\left(\nabla w(\underline{\sigma}) \cdot \underline{\hat{N}}(\underline{\sigma})\right) - w\left(\nabla v(\underline{\sigma}) \cdot \underline{\hat{N}}(\underline{\sigma})\right) d\underline{\sigma}$$

In our case, we integrate over the region $B_{\varepsilon}^{C}(\underline{0})$. Let:

$$v(\underline{y}) = -\frac{1}{\|\underline{y}\|}$$

$$w(\underline{y}) = f(\underline{x} - \underline{y})$$

Then:

$$\begin{split} \int_{B_{\varepsilon}^{C}(\underline{0})} v(\underline{y}) \Delta w(\underline{y}) - w(\underline{y}) \Delta v(\underline{y}) d^{3}y &= \int_{B_{\varepsilon}^{C}(\underline{0})} -\frac{1}{\|\underline{y}\|} \Delta_{y} f(\underline{x} - \underline{y}) + f(\underline{x} + \underline{y}) \Delta_{y} \frac{1}{\|\underline{y}\|} d^{3}y \\ &= \int_{B_{\varepsilon}^{C}(\underline{0})} -\frac{1}{\|\underline{y}\|} \Delta_{y} f(\underline{x} - \underline{y}) d^{3}y \\ &= 4\pi II \end{split}$$

where we have used the fact that, as we saw above with polar coordinates:

$$\Delta_y \frac{1}{\|y\|} = -\frac{2}{r^3} + \frac{2}{r} \frac{1}{r^2} = 0$$

Hence, we can use Green's Identity with II. Notice, $\underline{\hat{N}}(\underline{\sigma})$ will be the **inward** facing normal vector to the surface of the sphere $B_{\varepsilon}(\underline{0})$ (since we are integrating over the complement). Because of this, we need to "flip" the sign of the normal vector. Thus:

$$4\pi II = \int_{\partial B_{+}^{C}(0)} \frac{1}{\|\underline{\sigma}\|} \left(\nabla f(\underline{x} - \underline{\sigma}) \cdot \underline{\hat{N}}(\underline{\sigma}) \right) - f(\underline{x} - \underline{\sigma}) \left(\nabla \frac{1}{\|\underline{\sigma}\|} \cdot \underline{\hat{N}}(\underline{\sigma}) \right) d\underline{\sigma}$$

We note the following:

• since we integrate over the surface of a sphere of radius ε , our surface coordinate $\underline{\sigma}$ must satisfy:

$$\|\underline{\sigma}\| = \varepsilon$$

• as we did above, we can do a spherical change of coordinates, such that:

$$d\sigma = \varepsilon^2 d\omega$$

where $\underline{\sigma} = \varepsilon \omega$

Now, the first integrand will disappear as $\varepsilon \to 0^+$, since:

$$\begin{split} \left(\nabla f(\underline{x} - \underline{\sigma}) \cdot \underline{\hat{N}}(\underline{\sigma})\right) &\leq \left|\nabla f(\underline{x} - \underline{\sigma}) \cdot \underline{\hat{N}}(\underline{\sigma})\right| \\ &\leq \left|\nabla f(\underline{x} - \underline{\sigma})\right| \\ &\leq \left|\sup_{\underline{\sigma} \in \partial B_{\varepsilon}^{C}(\underline{0})} \nabla f(\underline{x} - \underline{\sigma})\right| \\ &\leq M \end{split}$$

Moreover, we claim that:

$$\nabla \frac{1}{\|\underline{\sigma}\|} \cdot \underline{\hat{N}} = -\frac{1}{\|\underline{\sigma}\|^2}$$

Indeed:

$$\frac{\partial}{\partial \sigma_i} \frac{1}{\|\underline{\sigma}\|} = \frac{\partial}{\partial \sigma_i} \left(\sum_i \sigma_i^2 \right)^{-\frac{1}{2}} = -\frac{1}{2} \frac{1}{\left(\sum_i \sigma_i^2 \right)^{\frac{3}{2}}} \times 2\sigma_i = -\frac{\sigma_i}{\|\underline{\sigma}\|^3}$$

so it follows that:

$$\nabla \frac{1}{\|\sigma\|} = \frac{1}{\|\sigma\|^3} \underline{\sigma}$$

Moreover, reasoning geometrically, the unit normal vector at $\underline{\sigma}$, given by $\underline{\hat{N}}(\underline{\sigma})$ is an inward facing vector perpendicular to the surface $\partial B_{\varepsilon}(\underline{0})$ (since it the normal vector is outward facing relative to the complement of the ball). But now, by definition, $\underline{\sigma}$ is a vector from the origin to the surface of the ball, so by definition, it incides perpendicularly on the surface.

In other words:

$$\underline{\hat{N}}(\underline{\sigma}) = \frac{1}{\|\underline{\sigma}\|}\underline{\sigma}$$

Thus, we have that:

$$\nabla \frac{1}{\|\underline{\sigma}\|} \cdot \underline{\hat{N}} = -\frac{1}{\|\underline{\sigma}\|^2} = \frac{1}{\|\underline{\sigma}\|^3} \underline{\sigma} \cdot \frac{1}{\|\underline{\sigma}\|} \underline{\sigma} = -\frac{1}{\|\underline{\sigma}\|^2} = -\frac{1}{\varepsilon^2}$$

Then, we can bound $4\pi II$ as:

$$4\pi II \leq \int_{\partial B_{\varepsilon}^{C}(\underline{0})} \left(\frac{M}{\varepsilon} + f(\underline{x} - \varepsilon \omega) \frac{1}{\varepsilon^{2}} \right) \varepsilon^{2} d\omega$$
$$= \int_{\partial B_{\varepsilon}^{C}(\underline{0})} M\varepsilon + f(\underline{x} - \varepsilon \omega) d\omega$$

Now, f is continuous, so by the Mean Value Theorem for Integrals we have that $\exists \omega^*$ such that:

$$f(x - \varepsilon \omega^*) = \frac{1}{|\partial B_{\varepsilon}^C(\underline{0})|} \int_{B_{\varepsilon}^C(\underline{0})} f(\underline{x} - \varepsilon \omega) d\omega$$

Hence, and noting that $|\partial B_{\varepsilon}^{C}(\underline{0})| = 4\pi$ in \mathbb{R}^{3} , we obtain the bound:

$$4\pi II \le 4\pi M\varepsilon + 4\pi f(x - \varepsilon\omega^*) \implies II \le M\varepsilon + f(x - \varepsilon\omega^*)$$

Hence, as $\varepsilon \to 0^+$, we get that:

$$II \to f(x)$$

as required.

Hence, we have shown that $\Delta_x u(\underline{x}) = f(\underline{x})$, as required.

We still have to show our decay estimates for u as $\|\underline{x}\| \to \infty$. Assume that $f(\underline{x})$ vanishes outside of the ball $B_R(\underline{0})$. It suffices to estimate $|u(\underline{x})|$ when $\|\underline{x}\| > 2R$ (since we are going to consider $\|\underline{x}\| \to \infty$, it is sufficient to show a bound past some finite magnitude of x).

Now, if $||y|| \le R$ and $||\underline{x}|| > 2R$, we have that:

$$\frac{1}{\|\underline{x} - y\|} \le \frac{1}{R} \le \frac{2}{\|\underline{x}\|}$$

Thus, and recalling:

$$M = \sup_{y \in \mathbb{R}^3} \{ |f(\underline{y})| + ||\nabla f(\underline{y})|| + |\Delta_y f(\underline{y})| \}$$

we have that integrating over our ball $B_R(\underline{0})$

$$\begin{split} |u(\underline{x})| &= \left| -\frac{1}{4\pi} \int_{\mathbb{R}^3} \|\underline{y}\|^{-1} |f(\underline{x} - \underline{y})| d^n y \right| \\ &\leq \frac{1}{4\pi} \int_{B_R(\underline{0})} \|\underline{y}\|^{-1} |f(\underline{x} - \underline{y})| d^n y, \quad (since \ f \ vanishes \ outside \ of \ B_R(\underline{0})) \\ &= \frac{1}{4\pi} \int_{B_R(\underline{0})} \|\underline{x} - \underline{y}\|^{-1} |f(\underline{y})| d^n y, \quad (by \ commutativity \ of \ convolution) \\ &\leq \frac{1}{4\pi} \int_{B_R(\underline{0})} \frac{2}{\|\underline{x}\|} M d^n y \\ &\leq \frac{1}{4\pi} \int_{B_R(\underline{0})} \frac{2}{\|\underline{x}\|} M d^n y \\ &= |B_R(\underline{0})| \frac{1}{4\pi} \frac{2}{\|\underline{x}\|} M \\ &= \frac{4}{3} \pi R^3 \frac{1}{2\pi} \frac{1}{\|\underline{x}\|} M \\ &= \frac{2R^3 M}{3\|\underline{x}\|} \end{split}$$

Hence, our bound is as required, and:

$$C_3 = \frac{2R^3M}{3}$$

To prove uniqueness, we will rely on **Liouville's Theorem**, which shall be proven in the following weeks.

4 Workshop

1. Show that if $u \in C^{\infty}(\Omega)$ is harmonic in a domain Ω , also the derivatives of u of any order are harmonic in Ω .

It is sufficient to show that for any $x^i, i \in [1, n]$, we have that:

$$v = u_{x^i}$$

is harmonic (since then v is a harmonic function, and its derivatives will be harmonic, so any derivative of u will be harmonic)

We thus compute:

$$\Delta v = \sum_{j=1}^{n} v_{x^{j}x^{j}} = \sum_{j=1}^{n} u_{x^{i}x^{j}x^{j}} = \sum_{j=1}^{n} u_{x^{j}x^{j}x^{i}} = \frac{\partial}{\partial x^{i}} (\Delta u) = 0$$

so v is harmonic, and the result follows.

2. We say that a function $u \in C^{2}(\Omega), \Omega \subset \mathbb{R}^{n}$ is subharmonic in Ω if:

$$\Delta u > 0$$

(if $\Delta u \leq 0$ then its superharmonic). Show that:

(a) If u is subharmonic, then, for every $B_R(\underline{x}) \subset \Omega$:

$$u(\underline{x}) \le \frac{1}{\omega_n R^{n-1}} \int_{\partial B_R(x)} u(\underline{\sigma}) d\underline{\sigma}$$

(if u is superharmonic, the reverse inequality holds)

This follows immediately from the fact that harmonic functions obey the mean value property. Indeed, define a function:

$$g(r) = \frac{1}{\omega_n R^{n-1}} \int_{\partial B_R(\underline{x})} u(\underline{\sigma}) d\underline{\sigma}$$

where $\underline{\sigma} = \underline{x} + r\underline{\omega}$, and $\underline{\omega}$ represents an angular coordinate on the surface of a unit sphere. In particular, by applying the Mean Value Theorem, we see that:

$$\lim_{r \to 0^+} g(r) = u(\underline{x})$$

Moreover, we can now compute g'(r). By using the change of variables $\underline{\sigma} = \underline{x} + r\underline{\omega}$, which gives:

$$d\underline{\sigma} = r^{n-1}d\underline{\omega}$$

we have that:

$$g'(r) = \frac{\partial}{\partial r} \left(\frac{1}{\omega_n} \int_{\partial B_1(\underline{x})} u(\underline{x} + r\underline{\omega}) d\underline{\omega} \right) = \frac{1}{\omega_n} \int_{\partial B_1(\underline{x})} \partial_r u(\underline{x} + r\underline{\omega}) d\underline{\omega}$$

This allows us to integrate over the unit ball centered at \underline{x} . Moreover, notice that $\partial_r u(\underline{\sigma})$ will be the gradient vector of u dotted with $\underline{\omega}$ (since a partial derivative is nothing but a directional derivative in the direction of one of the axes, and $\underline{\omega}$ always points in the direction of the radial variable r). Hence:

$$g'(r) = \frac{1}{\omega_n} \int_{\partial B_1(x)} (\nabla u(\underline{x} + r\underline{\omega}) \cdot \underline{\hat{N}}) d\underline{\omega}$$

since $\underline{\omega}$ is a unit normal vector to the ball by construction. But now, the **Divergence Theorem** applies, and so we can write:

$$g'(r) = \frac{1}{\omega_n} \int_{B_1(\underline{x})} \Delta u(\underline{x} + r\underline{\omega}) d\underline{\omega}$$

Since u is subharmonic, it thus follows that:

$$g'(r) \geq 0$$

But now, by the Fundamental Theorem of Calculus:

$$g(R) - \lim_{r \to 0^+} g(r) = \int_0^R g'(t)dt \ge 0$$

which implies that:

$$g(R) \ge u(\underline{x})$$

which is the result we were looking for.

(b) If u is harmonic in Ω , then u^2 is subharmonic

We have that:

$$\Delta u = \sum_{i=1}^{n} u_{x^i x^i} = 0$$

Then:

$$\frac{\partial u^2}{\partial x^i} = 2uu_{x^i} \implies \frac{\partial^2 (u^2)}{\partial (x^i)^2} = 2\left[(u_{x^i})^2 + uu_{x^i x^i} \right]$$

Thus:

$$\Delta(u^2) = 2\sum_{i=1}^n \left[(u_{x^i})^2 + u u_{x^i x^i} \right] = 2\left[\sum_{i=1}^n (u_{x^i})^2 + u \sum_{i=1}^n u_{x^i x^i} \right] = 2\sum_{i=1}^n (u_{x^i})^2 \ge 0$$

so u^2 is subharmonic.

(c) Let U be harmonic in Ω and $F:\mathbb{R}\to\mathbb{R}$ smooth. Under what conditions on F is F(u) subharmonic?

We compute:

$$\frac{\partial}{\partial x^i}(F(u)) = F'(u)u_{x^i}$$
$$\frac{\partial^2}{\partial (x^i)^2}(F(u)) = F''(u)(u_{x^i})^2 + F'(u)u_{x^ix^i}$$

Thus, and using the fact that u is harmonic:

$$\Delta(F(u)) = \sum_{i=1}^{n} F''(u)(u_{x^{i}})^{2} = F''(u) \|\nabla u\|^{2}$$

since $\|\nabla u\|^2 \ge 0$, it follows that F(u) is subharmonic **if and only if** $F''(u) \ge 0$.

3. Let $\Omega \subset \mathbb{R}^2$ be a bounded domain, and $v \in C^2(\Omega) \cap C^2(\bar{\Omega})$ be a solution of the torsion problem:

$$\begin{cases} v_{xx} + v_{yy} = -2 & \text{in } \Omega \\ v = 0 & \text{in } \partial \Omega \end{cases}$$

Show that $u = \|\nabla v\|^2$ attains its maximum on $\partial\Omega$.

We have that:

$$u = v_x^2 + v_y^2$$

such that:

$$u_x = 2(v_x v_{xx} + v_y v_{yx})$$

$$u_{xx} = 2(v_{xx}^2 + v_x v_{xxx} + v_{yx}^2 + v_y v_{yxx})$$

By symmetry we thus have:

$$u_{yy} = 2(v_{yy}^2 + v_y v_{yyy} + v_{yx}^2 + v_x v_{xyy})$$

Hence:

$$\Delta u = 2([v_{xx}^2 + v_{yy}^2 + 2v_{xy}^2] + v_x(v_{xxx} + v_{xyy}) + v_y(v_{yyy} + v_{yxx}))$$

But notice:

$$v_{xxx} + v_{xyy} = \frac{\partial}{\partial x}(v_{xx} + v_{yy}) = \frac{\partial}{\partial x}(-2) = 0$$

$$v_{yyy} + v_{yxx} = \frac{\partial}{\partial y}(v_{xx} + v_{yy}) = \frac{\partial}{\partial y}(-2) = 0$$

Hence:

$$\Delta u = 2(v_{xx}^2 + v_{yy}^2 + 2v_{xy}^2) \ge 0$$

Hence, the maximum principle applies, and since v is not constant, clearly u won't be constant. Thus, u attains its maximum on $\partial\Omega$.

4. Let B_1 be the unit disc centered at (0,0), and let U be a solution to:

$$\begin{cases} \Delta u = y & \text{in } B_1 \\ u = 1 & \text{in } \partial B_1 \end{cases}$$

Find an explicit formula for u. Using knowledge from ODEs, it might make sense to seek for a polynomial, since the boundary condition is a polynomial.

Notice, on ∂B_1 we have that:

$$x^2 + y^2 = 1$$

Hence, we satisfy the boundary condition by using:

$$u(x,y) = F(x,y)(x^2 + y^2 - 1) + 1$$

Moreover, we know that:

$$\Delta y^3 = 6y$$

so we can guess that F(x,y) should contain y. Indeed, if we use F(x,y) = y:

$$u_x = 2xy$$

$$u_{xx} = 2y$$

$$u_y = x^2 + 3y^2$$

$$u_{yy} = 6y$$

so:

$$\Delta u = 8y$$

Hence, we set:

$$F(x,y) = \frac{1}{8}y \implies u(x,y) = \frac{y(x^2 + y^2 - 1)}{8} + 1$$

5. Let u be harmonic in \mathbb{R}^n , and let M be an orthogonal matrix of order N. Using the mean value property, show that $v(\underline{x}) = u(M\underline{x})$ is harmonic in \mathbb{R}^n .

Since M is an orthogonal matrix, we have that det(M) = 1, so any transformation by M will be volume-preserving. Hence, $u(M\underline{x})$ will satisfy the mean value property, and so, $v(\underline{x})$ must be harmonic.

6. Let u be harmonic in \mathbb{R}^3 such that:

$$\int_{\mathbb{D}^3} |u(x)|^2 d^n x < \infty$$

Show that $u \equiv 0$.

Let $M \in \mathbb{R}$ such that:

$$\int_{\mathbb{R}^3} |u(x)|^2 d^n x = M$$

Moreover, we know that if $B_R(x)$ represents a ball of radius R>0 in \mathbb{R}^3 centered at $x\in\mathbb{R}^3$

$$\lim_{R\to\infty}\int_{B_R(x)}|u(x)|^2dx=\int_{\mathbb{R}^3}|u(x)|^2d^nx=M$$

Furthermore, recall the Cauchy-Schwarz Inequality, given integrable functions $f, g \in L^2(\mathbb{R}^3)$:

$$\left| \int_{\mathbb{R}^3} f(x) g(x) d^3 x \right|^2 \le \left(\int_{\mathbb{R}^3} |f(x)|^2 d^3 x \right) \left(\int_{\mathbb{R}^3} |g(x)|^2 d^3 x \right)$$

Since u is harmonic, by the mean value property of harmonic functions, we have that if $x \in \Omega \subset \mathbb{R}^3$ and $B_R(x) \subset \Omega$, then:

$$u(x) = \frac{3}{4\pi R^3} \int_{B_R(x)} u(y)d^3y$$

where R > 0.

Thus, applying the Cauchy-Schwarz Inequality with f(y) = |u(y)|, g(y) = 1 (which are in L^2 by assumption):

$$\begin{aligned} |u(x)| &= \left| \frac{3}{4\pi R^3} \int_{B_R(x)} u(y) d^3 y \right| \\ &\leq \frac{3}{4\pi R^3} \int_{B_R(x)} |u(y)| |1| d^3 y \\ &\leq \frac{3}{4\pi R^3} \sqrt{\int_{B_R(x)} |u(y)|^2 d^3 y} \sqrt{\int_{B_R(x)} 1 d^3 y} \\ &\leq \frac{3}{4\pi R^3} \sqrt{\int_{\mathbb{R}^3} |u(y)|^2 d^3 y} \sqrt{\frac{4\pi R^3}{3}} \\ &= \sqrt{\frac{3}{4\pi R^3}} M \end{aligned}$$

Hence, since $|u(x)| \leq \sqrt{\frac{3}{4\pi R^3}} M$, as $R \to \infty$:

$$|u(x)| \to 0$$

since M is constant.

Hence, over \mathbb{R}^3 (which we can think of the ball $B_R(x)$ with $R \to \infty$), we will have:

$$|u(x)| = 0 \implies u(x) = 0$$

as required.