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1 Laplace’s and Poisson’s Equations

1.1 Definition: The Laplacian Operator

The Laplacian is a:

• second-order

• linear

• constant-coefficient

differential operator, defined as:

∇2 = ∆ =
n∑

i=1

∂2
i

1.2 Definition: Laplace’s Equation

Let Ω ⊂ Rn be a domain (open connected subset).
The Laplace Equation on Ω is the homogeneous PDE:

∆u(x) = 0, x ∈ Ω

1.3 Definition: Poisson’s Equation

Let Ω ⊂ Rn be a domain (open connected subset).
Poisson’s Equation on Ω is the inhomogeneous PDE:

∆u(x) = f(x), x ∈ Ω

• What is a harmonic function?

– a function u ∈ C2(Ω) satisfying Laplace’s Equation:

∆u = 0
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1.4 Example: Electromagnetism and Poisson’s Equation

Maxwell’s Equations define electromagnetic behaviour.
We consider:

• E (electric field)

• B (magnetic induction)

• J (current density)

• ρ (charge density)

Maxwell’s Equations are:

∂tE −∇×B = −J

∇ · E = ρ

∂tB +∇× E = 0

∇ ·B = 0

We can think of Laplace’s Equation as the heat equation, when u is time-independent (known as a steady
state solution).

However, it is more interesting to think about it from the physical point of view of electromagnetism.
Again, let’s consider steady-state solutions, such that:

∂tE = ∂tB = J = 0

This tells us that:
∇× E = 0

Since Ω is a domain, in particular it is a connected set, so by Poincaré’s Lemma, E must be a conservative
vector field. That is, ∃ϕ such that:

E = −∇ϕ

We call ϕ the electric potential. This then tells us that:

∇ · E = ρ =⇒ ∇ (−∇ · ϕ) = −∆ϕ = ρ

That is, the electric potential must be a solution to Poisson’s Equation, with inhomogeneous term −ρ.
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1.5 Example: Complex Analysis and Laplace’s Equation

A complex function:
f(z) = u(z) + iv(z)

is differentiable at:
z0 = z0 + iy0

if and only if u, v verify the Cauchy-Riemann Equations at z0:

ux(x0, y0) = vy(x0, y0) uy(x0, y0) = −vx(x0, y0)

If we differentiate each of the equations:

uxx(x0, y0) = vyx(x0, y0) uyy(x0, y0) = −vxy(x0, y0)

uxy(x0, y0) = vyy(x0, y0) uyx(x0, y0) = −vxx(x0, y0)

Then, assumign that u, v ∈ C2 near z0, we get that:

∆u = vyx − vxy = 0

∆v = −uyx + uxy = 0

That is, a differentiable complex function must be composed of harmonic real and imaginary parts!

2 Properties of Harmonic Functions

2.1 Boundary Conditions and Well-Posed Problems

• Does Poisson’s Equation require an initial condition?

– no, since it doesn’t depend on time

– we only need to prescribe boundary conditions

• Which boundary conditions produce a well-posed problem?

– consider a domain Ω ⊂ Rn, with a Lipschitz Boundary (that is, ∂Ω is “locally regular”, it can
be described piecewise by regular functions)

– the following produce well-posed problems foor ∆u = f :

1. Dirichlet Data:
u(x) = h(x), ∀x ∈ ∂Ω

2. Neumann Data:
∇u(x) · N̂ = h(x), ∀x ∈ ∂Ω

where N̂ denotes the unit outward normal vector to ∂Ω

3. Robin-Type Data:

∇u(x) · N̂ + αu(x) = h(x), α > 0 ∀x ∈ ∂Ω

4. Mixed Conditions: such as those arising by splitting ∂Ω into disjoint pieces:

∂Ω = SD ∪ SN

and requiring that u satisfies some of the above conditions for h(x) defined on SD, and g(x)
defined on SN

5. Conditions at Infinity: if Ω = Rn we can specify that u(x) satisfies asymptotic condi-
tions as ∥x∥ → ∞
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2.2 Theorem: Uniqueness of Solutions to Poisson’s Equation

Let Ω ⊂ Rn be a smooth, bounded domain.
Then, under Dirichlet, Robin or mixed boundary conditions, there
is at most one solution of regularity:

u ∈ C2(Ω) ∩ C1(Ω̄)

to the Poisson Equation:
∆u = f

In the case of Neumann conditions, any 2 solution can differ by at most
a constant.

Proof. Consider 2 solutions u, v satisfying the Poisson Equation:

∆u = f ∆v = f

Then, since this is a linear PDE w = u− v is a solution to:

∆w = f − f = 0

Now, we apply the Energy Method. Define the energy to be:

E =

∫
Ω

w2dnx

Now, if we multiply the Lapalce Equation above by w, we obtain:

w∆w = 0

So integrating: ∫
Ω

w∆wdnx = 0 =⇒
∫
Ω

w∆w + ∥∇w∥2 − ∥∇w∥2dnx = 0

But now notice that by the product rule, and using ∇ · ∇w = ∆w:

∇ · (w∇w) = (∇w) · (∇w) + w(∇ · ∇w) = ∥∇w∥2 + w∆w

Hence, we can rewrite our integral as:∫
Ω

∇ · (w∇w)dnx−
∫
Ω

∥∇w∥2dnx = 0

It is now natural to apply the Divergence Theorem:∫
∂Ω

N̂ · (w∇w)dσ −
∫
Ω

∥∇w∥2dnx = 0

where N̂ is the unit normal vector to the surface ∂Ω
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1 Dirichlet Data

If u, v satisfy the Dirichlet Data, then it follows that:

∀x ∈ ∂Ω, u(x) = v(x) = g(x)

where g is some function, Thus, it follows that:

∀x ∈ ∂Ω, w(x) = g − g = 0

Hence, the first surface integral vanishes, and we have:∫
Ω

∥∇w∥2dnx = 0

The fact that ∥∇w∥2 is continuous and non-negative implies (by results from Analysis - we did this as a
homework) that:

∥∇w∥2 = 0 ⇐⇒ ∇w = 0

in Ω. In other words, w will be constant on Ω̄. As we saw above, w = 0 on ∂Ω, so w = 0 on all of Ω̄. Finally,
this then implies that u = v, as required.

2 Robin Data

If u, v satisfy the Robin Data, then it follows that:

∀x ∈ ∂Ω, ∇u(x) · N̂ + αu(x) = h(x), α > 0

∀x ∈ ∂Ω, ∇v(x) · N̂ + αv(x) = h(x), α > 0

So it follows that:
∀x ∈ ∂Ω, ∇w(x) · N̂ + αw(x) = h− h = 0, α > 0

In other words, on the surface ∂Ω we have:

∇w(x) · N̂ + αw(x) = 0 =⇒ w∇w(x) · N̂ = −αw2(x)

Hence, our integral becomes: ∫
∂Ω

−αw2(x)dσ −
∫
Ω

∥∇w∥2dnx = 0

But the fact that αw2(x), ∥∇w∥2 ≥ 0 imply as before that in particular:

∇w = 0

and the result follows.

3 Neumann Data

If u, v satisfy the Neumann Data, then it follows that:

∀x ∈ ∂Ω, ∇u(x) · N̂ = ∇v(x) · N̂ = g(x)

so we must have:
∀x ∈ ∂Ω, ∇w(x) · N̂ = g − g = 0

and our integral becomes: ∫
Ω

∥∇w∥2dnx = 0

which again implies that:
∇w = 0

so w must be constant. However, since this time we only know that on the surface w(x) · N̂ = 0, this is all
we can say. Hence, if u, v satisfy Neumann conditions, any 2 solutions will differ at most by a constant, as
required.
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2.3 Theorem: Mean Value Properties of Harmonic Functions

Let u(x) be harmonic in the domain Ω ⊂ Rn, and let:

BR(x) ⊂ Ω

be a ball of radius R centered at x ∈ Rn. Then the following mean value
formulae hold:

u(x) =
n

ωnRn

∫
BR(x)

u(y)dny

u(x) =
1

ωnRn−1

∫
∂BR(x)

u(σ)dσ

where ωn is the surface area of the unit ball centered at 0 ∈ Rn.

1. The surface area of B1(0) in Rn is given by:

ωn =


2, n = 0

2π, n = 1
2π
n−1

ωn−2, n > 1

2. Alternatively, it can be defined in terms of the volume Vn of the unit
sphere in Rn:

ωn = (n+ 1)Vn+1

where we can define:

Vn =


1, n = 0

2π, n = 1
2π
n
Vn−2, n > 1

3. More generally:

|BR(x)| =
ωnR

n

n

where |BR(x)| is the volume of BR(x). Similarly:

|∂BR(x)| = ωnR
n−1

where |∂BR(x)| is the surface area of BR(x).
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Proof. We consider the case n = 2; similar reasoning will give the higher dimensional cases. Moreover, we
shall prove the claim when the ball is centered at the origin.

Define a ball Br(x) in Rn of radius r centered at x. Consider the function

g(r) =
1

ωnrn−1

∫
∂Br(x)

u(σ)dσ

where σ = x+ rω, and ω is an angular coordinate in the surface of the unit ball in Rn.

Now, since u is continuous, we can apply the Mean Value Theorem (Integral Version), which tells us
that:

lim
r→0+

g(r) = lim
r→0+

1

ωnrn−1

∫
∂Br(x)

u(σ)dσ = u(x)

The one-dimensional intuition is that if we have:

1

2ε

∫ x+ε

x−ε

g(y)dy

By the Mean Value Theorem, we in fact have that ∃c∗ ∈ [x− ε, x+ ε] such
that:

1

2ε

∫ x+ε

x−ε

g(y)dy = g(c∗)

But then, as ε → 0, the only possibility for c∗ is c∗ = x, so:

lim
ε→0+

1

2ε

∫ x+ε

x−ε

g(y)dy = g(x)

This is analogous to the case above, albeit with r → 0+.

Hence, if we can show that g′(r) = 0, then g is constant, and since limr→0+ g(r) = u(x), we will have
that g(r) = u(x) for any r, which gives us the second mean value formula.

To this end, we compute g′(r). By using the change of variables σ = x+ rω, which gives:

dσ = rn−1dω

we have that:

g′(r) =
∂

∂r

(
1

ωn

∫
∂B1(x)

u(x+ rω)dω

)
=

1

ωn

∫
∂B1(x)

∂ru(x+ rω)dω

This allows us to integrate over the unit ball centered at x. Moreover, notice that ∂ru(σ) will be the gradient
vector of u dotted with ω (since a partial derivative is nothing but a directional derivative in the direction
of one of the axes, and ω always points in the direction of the radial variable r). Hence:

g′(r) =
1

ωn

∫
∂B1(x)

(∇u(x+ rω) · N̂)dω
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since ω is a unit normal vector to the ball by construction. But now, the Divergence Theorem applies,
and so we can write:

g′(r) =
1

ωn

∫
B1(x)

∆u(x+ rω)dω

However, u is Harmonic, so ∆u = 0, and as required:

g′(r) = 0

so as required:

u(x) =
1

ωnrn−1

∫
∂Br(x)

u(σ)dσ

Now we consider the case where we integrate over the ball. We have that:

u(x)ωnr
n−1 =

∫
∂Br(x)

u(σ)dσ

But if we integrate with respect to r:

u(x)
ωnr

n

n
=

∫
Br(x)

u(σ)dσ =⇒ u(x) =
n

ωnrn

∫
Br(x)

u(σ)dσ

as required.

2.3.1 Intuition About Mean Value Theorems

The mean value theorems tell us that the the value of harmonic
functions at a point is defined by mean value of the function for all
points of in a sphere (or its surface) which is centered at the point.

2.4 Theorem: Strong Maximum Principle

Let Ω ⊂ Rn be a domain, and assume that u ∈ C(Ω) satisfies the mean
value property:

u(x) =
n

wnRn

∫
BR(x)

u(y)dny

Then:

• if p ∈ Ω is an extremum of u, then u is constant on Ω

• otherwise, if Ω is bounded and u ∈ C(Ω̄) is not constant, then we
must have that:

∀x ∈ Ω, u(x) < max
y∈∂Ω

u(y) u(x) > min
y∈∂Ω

u(y)
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Proof. We argue for the minimum case when n = 2.

Assume that ∃p ∈ Ω such that u(p) = m is a minimum. Define B(p) as any ball centered at p.
Moreover, consider a smaller ball, Br(z) ⊂ B(p). Since m is a minimum, in particular we have that:

u(z) ≥ m

Now, since u satisfies the mean value property, we have:

m = u(p)

=
1

|B(p)|

∫
B(p)

u(y)d2y

=
1

|B(p)|

[∫
Br(z)

u(y)d2y +

∫
B(p)\Br(z)

u(y)d2y

]

=
1

|B(p)|

[
|Br(z)|u(z) +

∫
B(p)\Br(z)

u(y)d2y

]
, since by MVP u(z) =

1

|Br(z)|

∫
Br(z)

u(y)d2y

≥ 1

|B(p)|

[
|Br(z)|u(z) +

∫
B(p)\Br(z)

md2y

]

=
1

|B(p)|
[|Br(z)|u(z) +m(|B(p)| − |Br(z)|)]

=
|Br(z)|
|B(p)|

u(z) +m− |Br(z)|
|B(p)|

m

But this implies that:
|Br(z)|
|B(p)|

(u(z)−m) ≤ 0 ⇐⇒ u(z) ≤ m

Hence, since by definition of m we must also have u(z) ≥ m, we conclude that:

u(z) = m

However, z was arbitrary, so this holds ∀x ∈ B(p). Moreover, since Ω is a domain, it is open and connected,
so:

∀x ∈ Ω, u(x) = m

and so, u is constant if it attains a minimum on Ω.
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2.4.1 Corollary: Comparison Principle

Let Ω ⊂ Rn be a bounded domain, and let f ∈ C(∂Ω). Then, the PDE:{
∆u = 0, x ∈ Ω

u(x) = f(x), x ∈ ∂Ω

has at most one solution:

uf ∈ C2(Ω) ∩ C(Ω̄)

If uf and ug are the solutions to f, g ∈ C(∂Ω), then:

∀x ∈ ∂Ω, f ≥ g, f ̸= g =⇒ ∀x ∈ Ω, uf > ug

Proof. Define w = uf − ug. By linearity, and since f ≥ g, w solves:{
∆w = 0, x ∈ Ω

w(x) = f − g ≥ 0, x ∈ ∂Ω

Since w is harmonic, the Strong Maximum Principle applies, so either w > 0 is constant (a positive
constant, since f ̸= g) or w is non-constant, and so, attains a minimum on ∂Ω:

∀x ∈ Ω, w(x) > min
y∈∂Ω

w(y) = min
y∈∂Ω

f(y)− g(y) ≥ 0

Hence, no matter if w is a positive constant or non-constant on Ω, we have:

∀x ∈ Ω, w(x) > 0 =⇒ uf (x) > ug(x)

as required.
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2.4.2 Corollary: Stability Estimate

Let Ω ⊂ Rn be a bounded domain, and let f ∈ C(∂Ω). Then, the PDE:{
∆u = 0, x ∈ Ω

u(x) = f(x), x ∈ ∂Ω

has at most one solution:

uf ∈ C2(Ω) ∩ C(Ω̄)

If uf and ug are the solutions to f, g ∈ C(∂Ω), then:

∀x ∈ Ω, |uf (x)− ug(x)| ≤ max
y∈∂Ω

|f(y)− g(y)|

Proof. We perform the same argument as for the Comparison Principle, with ±w, which gives us:

w(x) > min
y∈∂Ω

f(y)− g(y) > −max
y∈∂Ω

|f(y)− g(y)|

−w(x) > min
y∈∂Ω

− f(y) + g(y) > −max
y∈∂Ω

|f(y)− g(y)|

so
−w < max

y∈∂Ω
|f(y)− g(y)|

w < max
y∈∂Ω

|f(y)− g(y)|

so combining them:
|w| = |uf − ug| ≤ max

y∈∂Ω
|f(y)− g(y)|

as required.

3 The Fundamental Solution to Poisson’s Equation

The following illustrate the intuition and derivation for the Fundamental solution:

• by Li Chen

• by R.E Hunt
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3.1 Intuition About the Fundamental Solution

We want to construct a fundamental solution which behaves like the Dirac-delta distribution. As we saw
with the fundamental solution to the heat equation, this gave us the property that through convolution,
we could solve the inhomogeneous problem (in our case, Poisson’s Equation). In particular, we shall see
that the fundamental solution Φ satisfies:

Φ(x) = δ(x)

Moreover, we notice that unlike with the Heat Equation, Poisson’s Equation is time independent.
Hence, instead of imposing initial conditions, we should impose some form of “decay” condition, such as:

lim
∥x∥→∞

|u(x)| = 0

This idea can be physically motivated by considering gravity or electromagnetism: away from a body, the
potential of the body (i.e gravitational potential, electric potential), should be negligible.

3.2 Definition: Fundamental Solution for Laplace’s Equation

The fundamental solution Φ corresponding to the Laplacian opera-
tor ∆ is:

Φ(x) =

{
1
2π

ln ∥x∥, n = 2

− 1
ωn∥x∥n−2 , n ≥ 3

where:

• ∥x∥ is the standard vector norm

• ωn is the surface area of the unit sphere in Rn

3.3 Lemma: Fundamental Solution at x = 0

If x ̸= 0, then ∆Φ(x) = 0.

Proof. Consider the case n = 3:

Φ(x) = − 1

4π∥x∥
Since x ̸= 0, we exploit the radial symmetry of Φ and can define a change of variables:

r2 = ∥x∥2 = x2 + y2 + z2

Then:

2r
∂r

∂xi
= 2x =⇒

(
∂r

∂xi

)2

+ r
∂2r

∂(xi)2
= 1
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and:
∂Φ

∂xi
=

∂Φ

∂r

∂r

∂xi

∂2Φ

∂(xi)2
=

∂2Φ

∂r2

(
∂xi

∂r

)2

+
∂Φ

∂r

∂2r

∂(xi)2
=

∂2Φ

∂r2

(
xi

r

)2

+
∂Φ

∂r

1

r

(
1−

(xi

r

)2)
Hence:

∆Φ =

3∑
i=1

∂2Φ

∂r2

(xi

r

)2
+

∂Φ

∂r

1

r

(
1−

(xi

r

)2)
=

∂2Φ

∂r2
+

∂Φ

∂r

1

r
(3− 1)

=
∂2Φ

∂r2
+

2

r

∂Φ

∂r

Thus, the Laplace Equation can be expressed via:

∂Φ

∂r
=

1

4πr2
∂2Φ

∂r2
= − 1

2πr3

Hence:

∆Φ = − 1

2πr3
+

2

r

1

4πr2
= 0

as expected.
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3.4 Theorem: Solution to Poisson’s Equation

Let:
f(x) ∈ C∞

0 (Rn)

Then:

• if n ≥ 3:
∆u(x) = f(x)

has a unique, smooth solution satisfying:

lim
∥x∥→∞

|u(x)| = 0

• if n = 2:
∆u(x) = f(x)

has a unique solution provided that:

lim
∥x∥→∞

u(x)

∥x∥
= 0 lim

∥x∥→∞
∥∇u(x)∥ = 0

In particular, these unique solutions are given by:

u(x) = (ϕ ∗ f)(x) =

{
1
2π

∫
R2 ln ∥y∥f(x− y)d2y, n = 2

− 1
ωn

∫
Rn ∥y∥2−nf(x− y)dny, n ≥ 3

Moreover, ∃Cn > 0 such that we can estimate the decay of u(x) as
∥x∥ → ∞:

|u(x)| ≤

{
C2 ln ∥x∥, n = 2

Cn

∥x∥n−2 , n ≥ 3

Proof. We shall prove this for the case n = 3. Moreover, we use ∆x,∆y to specify the variable with respect
to which we compute the Laplacian (since we will take convolution, sometimes we will have functions in
terms of x, and others in terms of y, so using ∆x,∆y adds clarity). In this regard, due to symmetry we can
see that:

∆xf(x− y) = ∆yf(x− y)

Now, recall the Theorem on differentiation under the integral:
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Let I(a, b) be a function on R× R, and let b0 ∈ R. Then if:

1. ∀b in a neighbourhood of b0∫
R
|I(a, b)|da < ∞

2. there exists a neighbourhood N of b0 such that for almost every a
∂bI(a, b) exists for b ∈ N (that is, the derivative at b is undefined at
countably many points)

3. there exists a function U(a) (defined for almost every a) such that if
b ∈ N :

|∂bI(a, b)| ≤ U(a)

∫
R
U(a)da < ∞

Then the function:

J(b) =

∫
R
I(a, b)da

is differentiable near b0, and:

∂bJ(b) =

∫
R
∂bI(a, b)da

The same applies if I(a, b) ∈ Rm × Rn.

Our functions are well-behaved, and so, we can bring the Laplacian into the integral:

∆xu(x) = − 1

4π

∫
R3

1

∥y∥
∆xf(x− y)d3y

= − 1

4π

∫
R3

1

∥y∥
∆yf(x− y)d3y

Now, u(x) satisfies the Poisson Equation if we can show that:

∆xu(x) = f(x)

To do this, we shall split R3 into a sphere and its complement. In particular, let ε > 0 and define a ball
Bε(0) centred at the origin. Then, we can rewrite the integral as:

∆xu(x) = − 1

4π

∫
Bε(0)

1

∥y∥
∆yf(x− y)d3y︸ ︷︷ ︸

I

+− 1

4π

∫
BC

ε (0)

1

∥y∥
∆yf(x− y)d3y︸ ︷︷ ︸

II

We now claim the following:

1. I goes to 0 as ε → 0+

2. |f(x)− II| → 0 as ε → 0+

from which it follows that ∆xu(x) = f(x) as required.
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Before anything, define the following constant:

M = sup
y∈R3

{|f(y)|+ ∥∇f(y)∥+ |∆yf(y)|}

1 I → 0

We use spherical coordinates (r, ω) (here ω encodes all the angular information ϕ, θ). Then, we have
that:

d3y = r2drdω

where ω ∈ ∂Bε(0) is an angular coordinate denoting a position on the surface of Bε(0), and dω = sin(θ)dθdϕ.

Thus, we have that:

|I| ≤ 1

4π

∫
Bε(0)

∣∣∣∣ 1

∥y∥
∆yf(x− y)

∣∣∣∣ d3y
=

1

4π

∫ ε

0

∫
∂Bε(0)

∣∣∣∣1r∆yf(x− y)

∣∣∣∣ r2dωdr
≤ 1

4π

∫ ε

0

r

∫
∂Bε(0)

Mdωdr

=
1

4π

∫ ε

0

Mr(4πε2)dr

=
Mε4

2

So clearly:

lim
ε→0+

|I| ≤ lim
ε→0+

Mε4

2
= 0 =⇒ lim

ε→0+
|I| = 0

by Squeeze Theorem.

2 |f(x)− II| → 0

We begin by recalling Green’s Identity:∫
Ω

v(x)∆w(x)− w(x)∆v(x)dnx =

∫
∂Ω

v
(
∇w(σ) · N̂(σ)

)
− w

(
∇v(σ) · N̂(σ)

)
dσ

In our case, we integrate over the region BC
ε (0). Let:

v(y) = − 1

∥y∥

w(y) = f(x− y)

Then: ∫
BC

ε (0)

v(y)∆w(y)− w(y)∆v(y)d3y =

∫
BC

ε (0)

− 1

∥y∥
∆yf(x− y) + f(x+ y)∆y

1

∥y∥
d3y

=

∫
BC

ε (0)

− 1

∥y∥
∆yf(x− y)d3y

= 4πII
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where we have used the fact that, as we saw above with polar coordinates:

∆y
1

∥y∥
= − 2

r3
+

2

r

1

r2
= 0

Hence, we can use Green’s Identity with II. Notice, N̂(σ) will be the inward facing normal vector to the
surface of the sphere Bε(0) (since we are integrating over the complement). Because of this, we need to
“flip” the sign of the normal vector. Thus:

4πII =

∫
∂BC

ε (0)

1

∥σ∥

(
∇f(x− σ) · N̂(σ)

)
− f(x− σ)

(
∇ 1

∥σ∥
· N̂(σ)

)
dσ

We note the following:

• since we integrate over the surface of a sphere of radius ε, our surface coordinate σ must satisfy:

∥σ∥ = ε

• as we did above, we can do a spherical change of coordinates, such that:

dσ = ε2dω

where σ = εω

Now, the first integrand will disappear as ε → 0+, since:(
∇f(x− σ) · N̂(σ)

)
≤
∣∣∣∇f(x− σ) · N̂(σ)

∣∣∣
≤ |∇f(x− σ)|

≤

∣∣∣∣∣ sup
σ∈∂BC

ε (0)

∇f(x− σ)

∣∣∣∣∣
≤ M

Moreover, we claim that:

∇ 1

∥σ∥
· N̂ = − 1

∥σ∥2

Indeed:

∂

∂σi

1

∥σ∥
=

∂

∂σi

(∑
i

σ2
i

)− 1
2

= −1

2

1

(
∑

i σ
2
i )

3
2

× 2σi = − σi

∥σ∥3

so it follows that:

∇ 1

∥σ∥
=

1

∥σ∥3
σ

Moreover, reasoning geometrically, the unit normal vector at σ, given by N̂(σ) is an inward facing vector
perpendicular to the surface ∂Bε(0) (since it the normal vector is outward facing relative to the complement
of the ball). But now, by definition, σ is a vector from the origin to the surface of the ball, so by definition,
it incides perpendicularly on the surface.
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σ

N̂(σ)

ε

BC
ε (0)

∂Bε(0)

In other words:

N̂(σ) =
1

∥σ∥
σ

Thus, we have that:

∇ 1

∥σ∥
· N̂ = − 1

∥σ∥2
=

1

∥σ∥3
σ · 1

∥σ∥
σ = − 1

∥σ∥2
= − 1

ε2

Then, we can bound 4πII as:

4πII ≤
∫
∂BC

ε (0)

(
M

ε
+ f(x− εω)

1

ε2

)
ε2dω

=

∫
∂BC

ε (0)

Mε+ f(x− εω)dω

Now, f is continuous, so by the Mean Value Theorem for Integrals we have that ∃ω∗ such that:

f(x− εω∗) =
1

|∂BC
ε (0)|

∫
BC

ε (0)

f(x− εω)dω

Hence, and noting that |∂BC
ε (0)| = 4π in R3, we obtain the bound:

4πII ≤ 4πMε+ 4πf(x− εω∗) =⇒ II ≤ Mε+ f(x− εω∗)

Hence, as ε → 0+, we get that:
II → f(x)

as required.

Hence, we have shown that ∆xu(x) = f(x), as required.
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We still have to show our decay estimates for u as ∥x∥ → ∞. Assume that f(x) vanishes outside of the
ball BR(0). It suffices to estimate |u(x)| when ∥x∥ > 2R (since we are going to consider ∥x∥ → ∞, it is
sufficient to show a bound past some finite magnitude of x).

Now, if ∥y∥ ≤ R and ∥x∥ > 2R, we have that:

1

∥x− y∥
≤ 1

R
≤ 2

∥x∥

Thus, and recalling:
M = sup

y∈R3

{|f(y)|+ ∥∇f(y)∥+ |∆yf(y)|}

we have that integrating over our ball BR(0)

|u(x)| =
∣∣∣∣− 1

4π

∫
R3

∥y∥−1|f(x− y)|dny
∣∣∣∣

≤ 1

4π

∫
BR(0)

∥y∥−1|f(x− y)|dny, (since f vanishes outside of BR(0))

=
1

4π

∫
BR(0)

∥x− y∥−1|f(y)|dny, (by commutatitivity of convolution)

≤ 1

4π

∫
BR(0)

2

∥x∥
Mdny

≤ 1

4π

∫
BR(0)

2

∥x∥
Mdny

= |BR(0)|
1

4π

2

∥x∥
M

=
4

3
πR3 1

2π

1

∥x∥
M

=
2R3M

3∥x∥

Hence, our bound is as required, and:

C3 =
2R3M

3

To prove uniqueness, we will rely on Liouville’s Theorem, which shall be proven in the following weeks.

4 Workshop

1. Show that if u ∈ C∞(Ω) is harmonic in a domain Ω, also the derivatives of u of any order
are harmonic in Ω.

It is sufficient to show that for any xi, i ∈ [1, n], we have that:

v = uxi

is harmonic (since then v is a harmonic function, and its derivatives will be harmonic, so any derivative
of u will be harmonic)
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We thus compute:

∆v =

n∑
j=1

vxjxj =

n∑
j=1

uxixjxj =

n∑
j=1

uxjxjxi =
∂

∂xi
(∆u) = 0

so v is harmonic, and the result follows.

2. We say that a function u ∈C 2(Ω),Ω ⊂ Rn is subharmonic in Ω if:

∆u ≥ 0

(if ∆u ≤ 0 then its superharmonic). Show that:

(a) If u is subharmonic, then, for every BR(x) ⊂ Ω:

u(x) ≤ 1

ωnRn−1

∫
∂BR(x)

u(σ)dσ

(if u is superharmonic, the reverse inequality holds)

This follows immediately from the fact that harmonic functions obey the mean value property.
Indeed, define a function:

g(r) =
1

ωnRn−1

∫
∂BR(x)

u(σ)dσ

where σ = x + rω, and ω represents an angular coordinate on the surface of a unit sphere. In
particular, by applying the Mean Value Theorem, we see that:

lim
r→0+

g(r) = u(x)

Moreover, we can now compute g′(r). By using the change of variables σ = x+ rω, which gives:

dσ = rn−1dω

we have that:

g′(r) =
∂

∂r

(
1

ωn

∫
∂B1(x)

u(x+ rω)dω

)
=

1

ωn

∫
∂B1(x)

∂ru(x+ rω)dω

This allows us to integrate over the unit ball centered at x. Moreover, notice that ∂ru(σ) will be the
gradient vector of u dotted with ω (since a partial derivative is nothing but a directional derivative
in the direction of one of the axes, and ω always points in the direction of the radial variable r).
Hence:

g′(r) =
1

ωn

∫
∂B1(x)

(∇u(x+ rω) · N̂)dω

since ω is a unit normal vector to the ball by construction. But now, the Divergence Theorem
applies, and so we can write:

g′(r) =
1

ωn

∫
B1(x)

∆u(x+ rω)dω

Since u is subharmonic, it thus follows that:

g′(r) ≥ 0

But now, by the Fundamental Theorem of Calculus:

g(R)− lim
r→0+

g(r) =

∫ R

0

g′(t)dt ≥ 0

which implies that:
g(R) ≥ u(x)

which is the result we were looking for.
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(b) If u is harmonic in Ω, then u2 is subharmonic

We have that:

∆u =

n∑
i=1

uxixi = 0

Then:
∂u2

∂xi
= 2uuxi =⇒ ∂2(u2)

∂(xi)2
= 2

[
(uxi)2 + uuxixi

]
Thus:

∆(u2) = 2

n∑
i=1

[
(uxi)2 + uuxixi

]
= 2

[
n∑

i=1

(uxi)2 + u

n∑
i=1

uxixi

]
= 2

n∑
i=1

(uxi)2 ≥ 0

so u2 is subharmonic.

(c) Let U be harmonic in Ω and F : R → R smooth. Under what conditions on F is F (u)
subharmonic?

We compute:
∂

∂xi
(F (u)) = F ′(u)uxi

∂2

∂(xi)2
(F (u)) = F ′′(u)(uxi)2 + F ′(u)uxixi

Thus, and using the fact that u is harmonic:

∆(F (u)) =

n∑
i=1

F ′′(u)(uxi)2 = F ′′(u)∥∇u∥2

since ∥∇u∥2 ≥ 0, it follows that F (u) is subharmonic if and only if F ′′(u) ≥ 0.

3. Let Ω ⊂ R2 be a bounded domain, and v ∈ C2(Ω)∩C2(Ω̄) be a solution of the torsion problem:{
vxx + vyy = −2 in Ω

v = 0 in ∂Ω

Show that u = ∥∇v∥2 attains its maximum on ∂Ω.

We have that:
u = v2x + v2y

such that:
ux = 2(vxvxx + vyvyx)

uxx = 2(v2xx + vxvxxx + v2yx + vyvyxx)

By symmetry we thus have:
uyy = 2(v2yy + vyvyyy + v2yx + vxvxyy)

Hence:
∆u = 2([v2xx + v2yy + 2v2xy] + vx(vxxx + vxyy) + vy(vyyy + vyxx))

But notice:

vxxx + vxyy =
∂

∂x
(vxx + vyy) =

∂

∂x
(−2) = 0
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vyyy + vyxx =
∂

∂y
(vxx + vyy) =

∂

∂y
(−2) = 0

Hence:
∆u = 2(v2xx + v2yy + 2v2xy) ≥ 0

Hence, the maximum principle applies, and since v is not constant, clearly u won’t be constant. Thus,
u attains its maximum on ∂Ω.

4. Let B1 be the unit disc centered at (0, 0), and let U be a solution to:{
∆u = y in B1

u = 1 in ∂B1

Find an explicit formula for u. Using knowledge from ODEs, it might make sense to seek
for a polynomial, since the boundary condition is a polynomial.

Notice, on ∂B1 we have that:
x2 + y2 = 1

Hence, we satisfy the boundary condition by using:

u(x, y) = F (x, y)(x2 + y2 − 1) + 1

Moreover, we know that:
∆y3 = 6y

so we can guess that F (x, y) should contain y. Indeed, if we use F (x, y) = y:

ux = 2xy

uxx = 2y

uy = x2 + 3y2

uyy = 6y

so:
∆u = 8y

Hence, we set:

F (x, y) =
1

8
y =⇒ u(x, y) =

y(x2 + y2 − 1)

8
+ 1

5. Let u be harmonic in Rn, and let M be an orthogonal matrix of order N . Using the mean
value property, show that v(x) = u(Mx) is harmonic in Rn.

Since M is an orthogonal matrix, we have that det(M) = 1, so any transformation by M will be
volume-preserving. Hence, u(Mx) will satisfy the mean value property, and so, v(x) must be harmonic.

6. Let u be harmonic in R3 such that: ∫
R3

|u(x)|2dnx < ∞

Show that u ≡ 0.

Let M ∈ R such that: ∫
R3

|u(x)|2dnx = M
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Moreover, we know that if BR(x) represents a ball of radius R > 0 in R3 centered at x ∈ R3

lim
R→∞

∫
BR(x)

|u(x)|2dx =

∫
R3

|u(x)|2dnx = M

Furthermore, recall the Cauchy-Schwarz Inequality, given integrable functions f, g ∈ L2(R3):∣∣∣∣∫
R3

f(x)g(x)d3x

∣∣∣∣2 ≤
(∫

R3

|f(x)|2d3x
)(∫

R3

|g(x)|2d3x
)

Since u is harmonic, by the mean value property of harmonic functions, we have that if x ∈ Ω ⊂ R3 and
BR(x) ⊂ Ω, then:

u(x) =
3

4πR3

∫
BR(x)

u(y)d3y

where R > 0.

Thus, applying the Cauchy-Schwarz Inequality with f(y) = |u(y)|, g(y) = 1 (which are in L2 by assump-
tion):

|u(x)| =

∣∣∣∣∣ 3

4πR3

∫
BR(x)

u(y)d3y

∣∣∣∣∣
≤ 3

4πR3

∫
BR(x)

|u(y)||1|d3y

≤ 3

4πR3

√∫
BR(x)

|u(y)|2d3y
√∫

BR(x)

1d3y

≤ 3

4πR3

√∫
R3

|u(y)|2d3y
√

4πR3

3

=

√
3

4πR3
M

Hence, since |u(x)| ≤
√

3
4πR3M , as R → ∞:

|u(x)| → 0

since M is constant.

Hence, over R3 (which we can think of the ball BR(x) with R → ∞), we will have:

|u(x)| = 0 =⇒ u(x) = 0

as required.
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