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1 The Weak Maximum Principle

1.1 Theorem: The Weak Maximum Principle

Let Q@ C R™ be a domain (open and connected subset). Recall the space-
time cylinder:
Qr=(0,T) x Q2

and the parabolic boundary:
9,Qr = {0} x QU (0,T] x 9Q
Letw € CY*(Qr) N C(Q7) be a solution to the heat equation:
wy — DAw = f
Then:

1. if f <0, w(w,t) achieves its mazimum in the region Qr at one or
more points of the parabolic boundary 0,QQr. Then, w is a
subsolution, and if w is strictly negative on 0,Qr, then w is
strictly negative on Qr.

2. if f >0, w(x,t) achieves its minimum in the region Qr at one or
more points of the parabolic boundary 0,Q)r. Then, w is a
supersolution, and if w is strictly positive on 0,Qr, then w is
strictly positive on Q.

1.2 Intuition on the Weak Maximum Principle

The gist of the weak maximum principle is that the parabolic boundary is what defines where the maxi-
mum/minimum of the solution to the heat equation will be.

In one dimension, the heat equation is simply:
Wy — Dwg, = f

Lets consider an even simpler scenario:

D f<o

The heat equation becomes:

—Wgy = f

In other words, w will be convex (we will have w > ma + b, so w is a curve which is always dominate its
tangent line):
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Hence, intuitively we see that the convex nature of the curve guarantees that at least one of the endpoints
leads to a maximum (in this case on the left boundary).

2)f>0

The heat equation becomes:
~Wgz =20 = W <0

In other words, w will be concave (we will have w < maz + b, so w is a curve which is always dominated by
its tangent line):

Hence, intuitively we see that the concave nature of the curve guarantees that at least one of the endpoints
leads to a minimum (in this case on the right boundary).

@ =0

The heat equation becomes:
Wz =0 = Wy =0

In other words, w will be a straight line w = mx + b:
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Hence, intuitively we see that w will be monotone, so it attains both a maximum and a minimum at the
endpoints.

1.3 Proving the Weak Maximum Principle

Proof. We shall prove the Weak Maximum Principle when the spacetime dimension is 2 (so « € R). We will
also only consider the case f < 0, since f > 0 is analogous.

Let € > 0, and let w be a solution to the heat equation and define the function:
u=w-—ct<w te (0,T)

If we can derive information about the behaviour of u, we can then take the limit as ¢ — 0% to obtain
information about w.

We begin by plugging in v into the heat equation:

Ut — Dugy = (wy — €) — Dwyy

= (wt — Dwyy) — €

since f <0 and € > 0.

We now seek to determine the maximum of u. For this, consider the spacetime cylinder confining u given
by Q7—_., and assume that u attains a maximum in Qr_. at (to, o) € OpQr—-.

We proceed by contradiction, and assume that (to,zfo) € Qr_.. We can assume that 0 < tog < T — ¢,
since if ¢p = 0, then the maximum is attained on {0} x €, which is part of the parabolic boundary d,Q7—-.
Moreover, we must have that xy € €, since if zy € € then again it is part of the parabolic boundary

If (to, o) is a maximum, then we will have:
Uy (to, Io) = 0

and:
(7 (to, xo) Z 0
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with equality when tg = T — ¢ (since t = ¢y is at the boundary of Qr_., u can attain a maximum at (to, xo)
on Qr—., but still be increasing for t > T — &, so the gradient need not be 0, it can be positive).

Now, recall Taylor’s Remainder Theorem, which allows us to approximate a function with a (truncated)
Taylor series:
(x — x0)?

2
where x* is a point in the neighbourhood of z( (if this proof were for higher dimensions, then we would use
Hessians, instead of derivatives).

u(to, x) = u(to, xo) + Uz (to, o) (T — o) + Ugs (to, ™)

But if we rearrange, noting the fact that u,(to, xo) = 0 we get:

2
o\ L — To
ulto,2) — ulto, 20) = a1, ) &2
But since u(tg, o) is a maximum:
2
-z
u(to, zg) > u(tp,x) = u:cm(to,x*)% <0

Since % > 0 for all z, this is only possible if uz, (tg, 2*) < 0. Thus, taking x* — x implies:

Uz (to, o) <0
Thus, since u¢(zg,t0) > 0 and ug,(tg, o) < 0 it follows that:
ug (o, to) — Dugy(to, xo) > 0
However, this is a direct contradiction with the fact that:
ug (o, to) — Dugy(to,x0) = f —e <0

Thus, if (tg,x0) € Qr—¢, it can’t be a maximum of w; thus, any maximum of v must lie in the parabolic
boundary 0,Q7—..

So now lets consider maxima of w. From definition, u < w. Moreover, by definition 0,Qr—-. C 9,Qr, so
by definition any maximum in 0,Qr—. must lie in 9,Qr too. Hence, we have the following inequality:

maxu = max u < maxu < maxw
QT—E 8pQsz 6pQT apQT

Now, we also have that:
w<u-+el

since u = w — et with ¢ € (0,7T). Hence, the maximum of w will be bounded above by the maximum of
u+el:

maxw < max(u+ €T) = maxu + T < maxw + €T
Qr—- Qr—e Qr—c p QT

But now, since 0,Qr is a parabolic boundary, it is clear that:

maxw < maxw
OpQr QT

However, using the uniform continuity of w, we can take the limit as € — 04 such that:

maxw < maxw + &7’

Qr—c SPQT

= lim [ maxw | < lim | maxw + €T
e—0t \Qr_. e—0T \0,Qr

= maxw < maxw
Qr 9pQr
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In conclusion, we must thus have equality:

maxw = maxuw
Qr 0pQr

which is what we required.

1.4 Corollary: Comparison Principle and Stability

This corollary allows us to compare 2 different solutions to the heat equation, given that they have (possibly)
different inhomogeneous terms.

Suppose v, w are solutions to the heat equations:
Ut — Dvxx = f
wy — Dw,e = g
Then:

1. Comparison: if v > w on 0,Qr and f > g, thenv > w on all of

Qr.
2. Stability:

T D

max|v — w| < max|v — w| + Tmax|f — ¢
Q QT Qr

Proof. Define:

Uu=w-—v

u also solves the heat equation, and by linearity:
Ut — Dugy =g —f<0
since f > g.
@ Comparison

Now, the Weak Maximum Principle applies, which implies that u attains a maximum on 9,Qr. But
since v > w on 9,Qr, we have that u < 0 on the parabolic boundary, so it follows that v < 0 on all of Qr,
so v > w always, as required.

(2) Stability

Define:
M = max|f — g|
Qr
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u=w-—v—tM
Then:
up — Duge =(g—f) =M <0

Hence, the Weak Maximum Principle applies to u, and:

max u = max u
Qr opQr
Moreover:

max (w —v) = max (w — v —tM) + max tM < max u+ Tmax|f — g|
Qr Qr Qr opQr Qr

Here it is claimed that:

max u < max |w — v|
OpQT OpQT

Thus, it follows that:

Qr

If we define u = v — w, we similarly get:

max (w —v) < max |w— v| + +Tmax|f — g|
IpQT Qr

max (v —w) < max |w —v| + +Tmax|f —
o (v~ ) < o fu —v| ++Tmax]f — |

So we have that:

max |w — v| < max |w —v| + +Tmax|f — g|
T opQr Qr

as required.

2 The Fundamental Solution to the Heat Equation

2.1 The Fundamental Solution to the Homogeneous Heat Equation
2.1.1 Definition: The Fundamental Solution to the Inhomogeneous Heat Equation

Consider the inhomogeneous heat equation:
uy — DAu = f
The fundamental solution to this is:

1 e .
FD(t,x):We A t>0,xER

where:
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2.1.2 Lemma: The Fundamental Solution Solves the Homogeneous Heat Equation

The fundamental solution I'p(t, z) solves the homogeneous heat
equation for allz € R™ t > 0.

2.1.3 Lemma: Properties of the Fundamental Solution

The fundamental solution I'p(t,x) satisfies the following:

1.
r#0 = tl_l)rg%rFD(t,m):O
2.
r=0 = lim I'p(t,z) =0
t—0+
52

vt > 0, / Ip(t,z)d"z =1

2.1.4 Definition: The Delta Distribution

The delta distribution (Dirac delta function) 0 centered at 0 acts
on functions ¢(x) via:
(0, 9) = 6(0)

More generally:

which follows by defining:

S0:
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2.1.5 Lemma: The Fundamental Solution is a Delta Distribution at the Limit

Suppose that:

e ¢(x) is continuous on R"

[}
Ja,b>0 : |p(z)| < aehl*’
Then:
lim [ To(t,2)ola) s = 6(0)
That is, at t = 0, I'p(t, x) behaves like the delta distribution centered
at 0:

lim I'p(t,x) = d(x)

t—0t

Proof. Since the integral of the fundamental solution is 1 for £ > 0, we get the following identity:

i Tp(t, z)p(z)d"x + /

R

Tp(t, 2)d"s /

R

6(0) = (6(2) +0(0) - 6(2)) [ Tp(t,)(9(0) - ()"

n

Now, let € > 0, and define a ball B of radius R centered at 0, such that:
Ve e B, [6(0)—o(x)|<e
(since ¢ is continuous, ¢(x) can be made to be arbitrarily close to ¢(0) by choosing an x arbitrarily close 0)
Now, if B¢ denotes the complement of B, such that:
R" = BU B“

then we can derive a bound for the second term in the equality above:

[ o)) - o)

[ tota)(0(0) ~ s@)da + [ To(t.)(60) - dle)d's
B BC

< [ Tolta)o0) — de)aa+ [ Tpt.)ie(0) - ola)d"a
< [ Pott.0)lo0) =@ + [ Tota)(60)]+ o)

<< [ oo+ 160 [ Toodat [ ol

Using the estimate [ T'p(t, 2)d"x <1, it thus follows that:

<et |¢(0)\/Bc FD(t,a:)d"x+/Bc Tp(t, 2)|6(x)|d"a

[ Tolta)(@(0) - o))"
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Hence, we have the bound:
60) = [ Toltap)ds+ [ Tta)(e(0) - (o)
— ‘¢(0) _ / Tt n)g(a)d"s

<c+ o0 [ Tota)ds+ [ Totol@ds
BC BC
Now, if we can show that as t — 0%:

|p(0) ; Ip(t,z)d"z + /

Tp(t,x)|o(x)|d "z — 0
BC

|
B

then we will have proven the claim that:

Jim. - Ip(t, z)p(x) d"z = ¢(0)

We show that this is true for the expression:

/ Tp(t,2)|6(x)|d"
BC

since the working will be identical for the expression [¢(0)| [ze Ip(t, z)d"z (we can think of ¢(0) as a
constant function ¢ bounded with b = 0).

Now, we can employ the bound on ¢:

2 1 _ lx]?
|¢(m)|FD(ta$)§a’eb‘xl (47‘1’Dt)n/2e wr
— 7 I;Lt) ~ —la*(abz—b)
e n
So now let: .
2 2 4
o =1of* (57 - )
Then:
d | 4 d 9 1
d:E’| | dz? <:z:| <4D% _b>>
n n
d 1
2| _ 2
dxt Z( )= dxt <4Dt b) (@)
J=1 j=1
dz* i
= 2 (M_b>x
dz* L AR
de ~ \ 4Dt *
Hence:

1 n/2

(This follows by the fact that we are going to have nested integrals over the varibables z*, and for each we
are multiplying the result of the integral by constant 4/ ﬁ — b n times.)
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So:

n ( 1 >n/2 n
i — 0

Notice, this change of variables will be allowed so long as:

which is fine, since t — 07, so ¢ can always be made to be smaller than this quantity.

Going back to the integral, we no longer integrate over:
| > R
(since R is the radius of B, and we integrate over x € BY) but rather:

1
>Ry — —b
== B\ 15

Thus:

1

n L —|z|2 a7 b)) gn
/Bc Tp(t, 2)|é(x)|d"z < /Bc e (h=0) gy

a _|Z|2 1 /2 n
= n/2 ¢ 1 dz
(47’(’Dt) |Z|ZR /ﬁ—b iDi b
- . n/2 / €7|Z|2dnz
(47Dt (5; — b))~ V1212 R/ 2h b

_ é/ o122 gn
(7T—4b7TDt)n/2 |2|>R/ 157 —b

aDt
i R,/i—b—
o N apy VT

That is, the limits of integration become infinitesimally small; thus, even if m — 00, the integral

But now, notice that:

goes to 0 “quicker”, so we deduce that:

lim Ip(t, z)|p(z)|d "z =0
BC

t—0+

Hence, it follows that since:

‘¢(0) - /n T'p(t,z)p(x)d"x

<et o) [ Tota)rs+ [ Totol@ds

then
lim sup ’¢(O) —/ Ip(t,z)p(z)d x| =
t—0+ R™
so since ¢ is an arbitrary positive constant:
lim |¢(0) — / Ip(t,x)¢(z)d x| =0
t—0+ n

as required.
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2.2 The Convolution
2.2.1 Definition: The Convolution

function:

(f xg)(x) =

One can interpret the convolution as an averaging, whereby f is replaced
by its average value, weighted by g at each point.

Let f, g be functions on R™. Define the convolution as the following

L fy)g(z —y)d"y

2.2.2 Lemma: Properties of the Convolution

1. The convolution is commutative:
(fx9)(x) =

2. The convolution is associative:

(g f)()

*(gxh)=(f*g)*h

3. The delta distribution is the identity element:

(f *0)(x) = f(x)

Proof. @ Commutative

Define a new variable z = z — y. Then:

(f*g)(x

d"z=—-d"y

= i

= /Z flz—2)g(z)d"=
z(—00)

z(—o0)
=/() f@ - 2)g(x)d"

— [ -2
— (g+ f)a)
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@ Associative

This follows by using Fubini’s Theorem, which allows us to exchange the order of integration. Check this
StackExchange post for an explicit demonstration.

@ Identity

(F=0)@) = [ Fwite—y)iy

Now, ¢ is characterised by “spiking” to infinity around its axis of symmetry, and being 0 elsewhere. In other
words, for some € > 0, we will have:

x+e
Fw)i(e — y)d'y = f(z) / 5z —y)dy = f()

R™ —€

where we use the fact that ¢ integrates to 1, and that f will be “constant” for y € [z — e,z + ¢].

2.3 Solving the Global Cauchy Problem via the Fundamental Solution
2.3.1 Proposition: Differentiation Under the Integral

Let I(a,b) be a function on R X R, and let by € R. Then if:
1. Vb in a neighbourhood of by

/ |I(a,b)|da < 0o
R

2. there exists a neighbourhood N of by such that for almost every a
Opl(a,b) exists forb € N (that is, the derivative at b is undefined at
countably many points)

3. there exists a function U(a) (defined for almost every a) such that if
beN:

|01 (a,b)| < U(a) /RU(a)da < 00

Then the function:
J(b) = / I(a,b)da
R
15 differentiable near by, and:

OpJ (D) :/Rabl(a, b)da

The same applies if I(a,b) € R™ x R".
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https://math.stackexchange.com/questions/2170534/proof-of-associativity-of-convolution

2.3.2 Theorem: The Fundamental Solution & Solving the Homogeneous Heat Equation with
Global Cauchy Conditions

Let g(x) be a continuous function in R™, such that:

Jda,b > 0, lg(z)| < ae®*”
Then, there exists a solution u(t,x) to the homogeneous heat equa-
tion:
uy — DAu = 0, tel0,T),z eR"
u(0,z) = g(x), z € R"”
where:
"
~ 4Db

In particular:
u(t, x) = [9(€) * I'n(¢, §)](z)
— [ stz - )y

1 _Iav—yl2 -
:W A g(y)e” e d"y

where u(t, x) is infinitely differentiable on the set (0,7) x R™.
Moreover, for each compact subinterval [0,7"] C [0,T)]:

3A,B>0:V(t,z) € [0,T'] x R* |u(t,z)| < APl

and u(t, x) is the unique solution in the class of functions verifying this
bound.
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The above demonstrates 2 interesting properties of u(t, z):
1. u is smooth, even if g is just continuous

2. the solution:

|z —y|?

1 = m
u(t, x) = W/R” g(y)e” e d"y

propagates at infinite speed: att = 0 we can think of the solution
as being “concentrated” at g(x); as soon ast > 0, u takes on non-zero
values everywhere on R™ (thus, we have information on what happens
at every point in the plane).

Proof. This proof has 3 steps:
1. Verifying the bound on (¢, x)
2. Verifying that u(¢, z) solves the homogeneous heat equation
3. Verifying that u(t, z) satisfies the initial condition u(0,x) = g(z)

We shall only do this for when n = 1 dimension, when = € R.
@ Bounded Solution

Notice:
(lz] = [y))* = 2% — |22y| + ¢

Since (|z| — |y[)? > 0 this implies:
2® +y? > |2ay]

Furthermore, setting z = zve—1,y = y/e for € > 0 we get:
|22y| = e ta? + ey

Moreover:
-yl = (x—y)? =2 =22y +4y° >0

Since this is always positive, we must have that:
(x —y)? < 2%+ |2zy| + 52

(if zy < 0, then we have equality, and if zy < 0, then we are subtracting a positive amount, so the inequality
holds). Hence, we can bound:

e =y <a®+eta? feyt +yt = (1 +e )2 + (1 +e)y?

Now, using the bound on g:

l9(z)] < aeblel’
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we get that:

lg(x —y)| < aet*=+"
< qeb((te™Ha?+(1+e)y?)

—1 2 2
_ e pb(1+e)y

Then we can estimate u via:

lu(t, z)| = |lg(&) * Tp(t, (=)
= [[Pn(t, &) * 9(&)](2)]

/RFD(t, y)g(x — y)dy’

< /Rl“p(t,y)lg(x —y)|dy

S/FD(t,y)aeb“*efl)"jeb““)yzdy
R

1 )4 y2
= W(zeb(l+e 1)‘):2/Re_meb(l+e)y2dy

1 b(14e~H)a? / —yz[ﬁ—b(l-i-e)}
= — z t d
(arD8)i2 L © y

Now, define a new variable z via:

Then:
d 1 d 7y [ — bt(1 +
2z - 2t_1y [ —bt(1+ g):| _— z_ Yy [4D ( 5)] = +—1/2 [

so our estimate becomes:

1 -
~ oy |5 - e)| e
:AeBr

as required.

Proving that u is the unique function to satisfy the bound is more challenging.

[

dz

@ u is a Homogeneous Solution
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Let £ be the operator for the heat equation:
L =0, — Dd?
Recall, u solves the heat equation if:
Llu(t,z)] =0, t>0,zeR
Since I'p(t, x) is a the fundamental solution, then:
LITp(t,z)] =0

By the proposition on differentiating under the integral, with I = T'p (¢, z) (we can use the fact that I'p (¢, z)
contains a rapidly decaying exponential to prove the boundedness requirements) it follows that:

Llutt o)) = [ 9ot )dy =0
R
since L[T'p (¢, z)] = 0. Thus, u solves the heat equation.

Moreover, u € C* ((0,T = ;5;) x R) is obtained by repeatedly differentiating with respect to ¢ and «
under the integral, since I'p(t, x) is infinitely differentiable in both variables.

@ u Satisfies the Initial Conditions

We now have to show that:
lim u(t,z) = g(x)

t—0+t

This follows from the property of T'p (¢, z) of behaving like § as ¢ — 0%, and that § behaves like the identity
under convolution. Explicitly:

lim u(t, ) = lim [g(¢) * Tp(t,§)](x) = [g* 6](x) = g(z)

t—0t t—0+t

so u(t, x) satisfies the initial condition.

Page 17



2.3.3 Theorem: Duhamel’s Principle

Let g(x) and T = ﬁ be defined as in the theorem above. Moreover, as-
sume that:

are continuous, bounded function on [0,T) x R™.
Then, there exists a unique solution u(t,x) to the inhomogeneous
heat equation:

u — DAu = f(t,x), tel0,7),z e R”
u(0,z) = g(x), z € R"
Furthermore, u(t, x) is given by:

u(t,z) = [['p(t,€) x 9)l(z) + /Ot[FD(f —s,v) x f(s,v))|(z)ds

and:

u € C°[0,T) x R) nC™?((0,T) x R™)

2.4 Deriving the Fundamental Solution

2.4.1 Lemma: Solutions to the Heat Equation are Invariant Under Translations and Parabolic
Dilations

Let u(t, x) be a solution to the homogeneous heat equation:
ur — DAu =0, (t,x) € [0,00) x R"

Let:
At eR xg € R"

Then:
u*(t,x) = Au(t — to, x — xo)

15 also a solution to the homogeneous heat equation.
Similarly, if A > 0, the amplified, parabolically scaled function:

u*(t,r) = Au(N\’t, \z)

1s also a solution.

@ Amplified + Translated
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Let u(z,t) be a solution tot he homogeneous heat equation, and consider:
u*(t, ) = Au(t — to,x — o)
Then applying the chain rule:
uy — Aul, = A(ug(t — to, @ — o) — Augy(t — to,z — x0)) =0
@ Amplified + Parabolically Scaled
Let u(x,t) be a solution tot he homogeneous heat equation, and consider:
u*(t, ) = Au(\’t, \x)
Then applying the chain rule:

uf — Aut, = AN u (V% A\x) — N2 Aug, (V2 Ax)) =0

2.4.2 Lemma: Total Thermal Energy is Constant for Solutions to the Heat Equation

Let:
u(t,z) € CH*(]0,00) x R™)

be a solution to the heat equation:
w = Au
Assume that for fized t:
e 2" [ Vau(t, 2)] = 0

uniformly in x.
Furthermore, that there exists a function:

flx) =0

such that:
lu| < f(z) f(z)d"z < o0
Rn

Then, if we define the total thermal energy as:
T(t) = / u(t,z)d"x

then the total thermal energy of u is constant in time:

T(t) = 7(0)
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Proof. Let u be a solution to the homogeneous heat equation:
Uy = Au
Moreover, let Br(0) be a ball of radius R centered at the origin.

By the hypotheses of the Lemma, we can differentiate the total thermal energy 7 under the integral
(setting I = u). T:

9
o 0L

= / %u(t, x)d"x
Rn

= / Aud™x

lim Aud™x
R— o0 BR (0)

d 3
aT(t) = t,x)d"x

Now, recall that:

and the Divergence Theorem:

Let Q C R3 be a domain (open, connected subset of R™). Denote the
boundary/surface of Q2 as 0.
Then:

~

/V - F(x,y, z)dx dy dz :/ F(o)- N(o)do
Q o9
Here:
e N(0) is the unit outward normal vector to the surface 9

e if 00 C R? can be described as:

00 ={(z,y,2) | z = o(z,y)}
then:

2 2
do = /1+ ||Vé(z,y)|2dr dy = \/1 + (%) + <g—j> dz dy

Thus:
d

—T7(t) = lim Aud™x
dt ( ) R—o0 BR(())

= lim Vu(t,o) - N(o)do
R—o00 833(0)
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We now apply a change of variables:
o0=Rw = do=R"'dw

where w denotes angular coordinates on the surface of the unit sphere (see this). Thus:

iT(t) = lim R 'Vu(t, Rw) - N(Rw)dw
dt R—o0 6BR(0)

Lastly, by assumption:
lim R™ ||V, u(t, Rw)| =0
R—00

uniformly, so we can bring the limit inside of the integral, thus:
d
—T(t)=0
o @)

as required.

2.4.3 Derivation of the Fundamental Solution

We now derive the Fundamental Solution in 2 spacetime dimensions (so x € R).

Say we have:
u(t,r) = Au(D?*\t, \x)

We want that the total thermal energy of v and u* are equal. We compute:
/ u*(t,z)d"x = / u(D?*N*t, \x)d"x
= A\T" / w(D?N%t, 2)d" 2
Since we don’t care about time in the integral, if we choose:
A=)\"

we will have that:
u*(t, x) = \'u*(D?* N\, \x)

has the same thermal energy as u.

We begin by introducing the dimensionless variable:

which is invariant under parabolic scaling:
t A%t T = Ax

We look for a fundamental solution of the form:

Ip(t,z) = V(<)

1
v Dt

We aim to find V', by exploiting the properties that a fundamental solution should have.
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@ Integral of 1

The fundamental solution satisfies:

Ip(t,x)d"z =1
R’L
so:

[ e
- [viou

@ Satisfies Heat Equation
If T'p(t, ) is to satisfy the heat equation, then:
I'n—DI'y, =0

If we compute these derivatives:

_ o[ 1 1 dvoc
“‘m(ﬁﬁvm+ﬂn«&
D 1 Dz

= _2(Dt)3/2V(C) - EVI(C)Q(Dt)3/2
s (370 + 5070)

VD#3/2 \ 2 2
_ L avog
Y /Dt d¢ Ox
1 !
= V()
1PV
1 1
= WV (€)
So:
Ft - DFm == 0
1 1 1 D
- D2 <2V(C) + 2CV/(C)) - WVN(C) =0

1
VD#3/2
= VO 5V + V(O =0

(V0 + 56+ 510 ) =0
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All this also tells us that if V' ({) is a solution to the heat equation, so is V' (—() (it leads to the same equation).
Thus, we might as well search for an even V. But if V is even, then.

V/(0) =0

(V is symmetric about the y-axis, so it must have a critical point at the origin)

With this information, we can now deduce a suitable V. Notice, we can write the ODE above as:

7 (vo+5v©0) =0
which implies that 3k € R such that:

V() + 5CV(Q) = b
But if ¢ = 0, since V'(0) = 0, it follows that:

so V satisfies the first-order ODE:

Now notice that:

d 1,
If we rearrange the ODE:
1 Vv’
VI + VO =0 = i) =3¢

so we can rewrite it as:

d 1
ac InV(¢) = *54

Integrating both sides with respect to ¢ yields:
1
mV(Q)= -7 +C = V(Q)=Ae

To find A, we use the fact that V integrates to 1, which we found in @:

[ v =
= /RAe‘iczd(: 1

— A/eiiczdg‘zl
R

Now, let:
u = EC — d7u — _
2 ¢ 2
S0:

2 1
24 | e du=1 = 24 =1 — A= _——"_
/R Ve Var

Thus, we have that with D = 1:

]. 1,2 ]. 12
V = e~ 16 = e 4t
© Vam Vam
so as required:
Dp(ta) = —=V(Q) = —a=e
5 xTr) = —— = € t
b Vit vVt



3 Workshop

1. Let:
S =(0,00) x (0,1)
and let: ~
u e CH?(S)
be the solution of the initial-boundary value problem:
Up — Ugg = 0, (t,z) e S
u(0,2) = (1 — ), x € [0,1]
u(t,0) =wu(t, 1) =0, t € (0,00)

Show that:
VE> 0,2 €[0,1] : u(t,z) =u(t,1l—x)

We first show that v(t,z) = u(t,1 — ) solves the same problem as u. Indeed it satisfies the PDE:

UV — Vg = Ut (t, 1 — ) — ugy (8,1 — )
= ut(t7 y) - uza:(tv y)
—0
Similarly, if « € [0, 1]:
v0,2)=(1—2)(z—(1—2)) =2(1 —x) =u(0,x)

and if ¢ € (0, 00):
v(t,0) = u(t,1) =0 v(t,1) =u(t,0) =0

Now, consider the parabolic boundary (we let 2 = (0, 1)):
9,Qr = {0} x QUI0,T] x 9Q

By the Comparison Principle, if we can show that u = v on 9,Q7, and given that 0 = 0, we will have
that u = v on all of [0, T] x [0, 1]. If we then take the limit as T — oo, we will get that u(t, z) = u(t,1—x)
for any ¢ > 0. But above we saw that w,v coincide when z = 0,2 = 1 and when ¢ € (0,7, so u = v on
OpQr as required.

2. Let:
S =(0,00) x (0,1)

and let: -
u € 01’2(5) NC(S)

be the solution of the initial-boundary value problem:

Ut — Ugg = 0, (t,z) e S
u(0,z) = z(1 — x), x €10,1]
u(ta 0) - u(tv 1) =k, te (0,00),k eR

First, prove that u(t,z) > 0 for (¢,z) € S. then, find all a > 0,3 > 0 such that on S:
u(t,z) < w(t,z) = ax(l — x)e Pt

Finally, show that:
lim w(t,z) =0

t—o00

and that the convergence is uniform for z € [0, 1].
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By the Weak Maximum Principle, u attains its maximum and minimum on the parabolic boundary.
Notice, since u is continuous on all of S:

lim u(¢,0) = u(0,0) =0 tlgr(l)u(t, 1) =u(0,1) =0

t—0

Since u(t,0),u(t, 1) are constant, it thus follows that:
u(t,0) =u(t,1) =0

Moreover:
u(0,2) =z(1—z) >0

Hence, it follows that on the parabolic boundary:
u(t,z) >0

so by the weak maximum principle u(t,z) >= for (t,z) € S.

Now, consider:
w(t,z) = ax(l — x)e Pt

It will be useful to see the conditions under which w solves the heat equation, as we can then apply the
maximum principle. We thus compute:

Wy — Way = —Plax(l — 2)e Pt — a%(ae_ﬁt((l —x)—x))

= ae Pt |- B(x(1 — 1)) 88 (1—2x)

T

=ae 7 [2 - B(z(1 - 2))]

If we can show that w; — wg, > 0, then we can apply the Comparison Principle/Maximum Principle.
For this we require that:
B

2—fmax{z(l—2)} >0 = 2—120

SO:
0<pB<8

Moreover, to ensure that w > u, on the boundary with ¢t = 0:
z(l—z)<azx(l—-z) = a>1

Then, by the comparison principle, we must have that « < w on all S.

Moreover, u — 0 uniformly, since:

supu < supw < ae Pt 50

3. Show that the fundamental solution:

1 _llel? n
FD(t,fL'):We 4Dt , t>0,§€R

S
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is a solution to the homogeneous heat equation:

—DAu=f
when z € R", ¢t > 0

This is a simple albeit boring computation:

0 2] 1 0 llz )
_ —n/2 4Dt - - - ~ 4Dt
ot ((4“) t) > ¢ T UrDor R ot (e )

Iy =

. 2
_.n n/2_1) Lzl 1 _lzl? Izl
=-5 ((477Dt) (4mD)e™ 4Pt + (@=Di)"/? e~ ADE2

1 _||m2[ n ||x2}
= —F € 4Dt _—

4D¢?

For the derivative with respect to z*:

o = e ()
=Tolt.z { 4DJ
= Tyip = 8?1: (Tp(t,z)) { 4Dt} +FD(t’@% (_42]3;t>
=Tp(t,z) jgtr - %TD(L@
=TI'p(t z) 4(;22);2 - 21DJ
= DAT =Tp(t,z) :4“&2 - ;J

so as required I'y = DAT
4. Find an explicit formula for the solution of the global Cauchy problem:
Uy = Dug, + bug + cu, reR,t>0
{u(O,x) = g(z), zeR
where D, b, c are constant coefficients. Show that if ¢ < 0 and g is bounded:

lim u(t,z) =0

t—o0
You might want to pick h, k such that:

v(x,t) = u(z, t)er

solves the heat equation:
Vg = Dvgy

By the hint, define:
v(z,t) = u(x,t)e Tk
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We computes its partial derivatives:
v = kuehTHhRt 4y ehetht — ghatkt (ko 4 o
vy = huehTHht g ehatkt — chaotht by 4 gy
Vpy = heh””Jrkt(hu +ug) + e’””Jrkt(huac F Ugy) = ehm+kt(h2u + 2huy + Ugy)
In particular, if we want v; = Duv,,, we require that:

—  w; = Dugy + (2DRh)ug + (Dh? — k)u

But u solves the PDE:
Uy = Dugy + bug + cu

so in particular:

b
b=2Dh h=—
- 2D
b? —4Dc
= Dh% —k k=Dh2 —c—= - 7€
c o c 1D
Now, v solves the heat equation, and:
b b
v(0,2) = g(x) exp <22> = |v(0,2)| < OSEIGIE lg| exp (22)

Hence, since g is bounded, it follows that by the representation Theorem, we can write:

olt.) = g(e)exp (55 ) #Tota) = [ atw)exw (55 ) Tlo 00y

But then, since v = ue*t+t:

u(t, ) = exp <— [zbf) + W;éDC)tD /Rg(y) exp (%) Dz — y,t)dy

Now, provided that ¢ < 0, then:
bxr  (b? —4Dc)t
exp (‘ [w t—ap ]) 70
(since b2 — 4Dc will be positive).

Using the exponential bound for fR g(y) exp (%) I'(z — y,t)dy as a solution to the heat equation, we
can then see that as required u(¢,z) — 0.
. In this problem you will consider PDEs on the set (¢,z) € [0,00) x R”. You may assume that

all of the functions involved are sufficiently differentiable. Let £ be a linear differential
operator of the form:

L=0—A
Suppose that we want to solve the inhomogenous problem:
Lu= f(t,z), zeR",t>0
u(0,z) =0, z e R"
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Show that the inhomogenous problem is oslved by:

s=t
v(t,z) = / vs(t — x, x)dx

=0

where each v; solves the following homogeneous IVP:

Lvg =0, zeR"t>0
vs(0,2) = f(t, ), zeR"

v is known as Duhamel’s Principle.
. Let u be a C%(Q) N C(9) solution to the elliptic equation:

a(@,y) gz + b(x,y)uyy =0
in a bounded domain ) C R?2. Here, a, b are continuous, positive functions in Q. Prove that:

max = max u
Hint: Consider the auxiliary function:
w(z,y) = u(z,y) +e((z = 20)* + (y — 10)*)

near a possible maximum points (z,yp) € €2, where ¢ > 0. Show that:

u(z,y) < max u +£Co, (z,y) €

where Cjy > 0 is independent of «.

Let
w(z,y) = u(z,y) +e((z — 20)* + (y — y0)?)
. Define:
Clz,y) = ((x —x0)* + (y — %0)?)
We now compute:

2
Ox2

g7 1w+ 2@ =20 + (= 0)°)
= a(x, Y)uze + 2a(z, y)e + bz, y)uy,y + 2b(x, y)e
= 28(0/(-'177?]) + b($7y))

a(2,Y)Wag + b(@, Y)wyy = alz,y) 5 (u(@,y) +e((@ = 20)* + (y — %0)*))

+ b(z,y)

But notice ¢, a(z,y), b(x,y) > 0, so:
a(l’, y)wmz + b(.’ﬂ, y)wyy > O

Now, assume 3z,; = (xp,ynm) € Q, such that z,, is a maximum of w. Then, consider the Hessian:

H— Weg Wey
Wy Wyy
Since z,, is a maximum, it follows by the Second Derivative Test that at x,;:

|H (01, ynr)| = Wao (1, Ynr)Wyy (Ta1, yar) — (Way (a1, y0r))* > 0
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and:
Wao (Tar,yar) <0 Wyy(Tar,ynr) <0

However, this would imply that:

a<xm7 ym)wa:a:(xMa yM) + b(xmv ym)wyy(mM, yM) < 0

since a,b > 0. This contradicts the fact that a(z,y)wze + b(z,y)wy, > 0, so no such (zar, yar) must
exist.

Hence, if w attains a maximum, it must be within 992. Thus:
w(z,y) < max w = max (u+eC(z,y)) < (mgx u) +eCp < (rré%x u> +eCy

where we have defined:
Co = max ((x—20)* + (y — y0)?)

Here we have used the () is a bounded domain to ensure that we have a bound on the ¢ term.
Moreover, we have that on Q:

UJ((E,y) = U(l’,y) + 8(($ - 1,0)2 + (y - y0)2) - U/(il’,y) 2 U(.’b, y)
with equality at (xg,yo). Thus, it follows that:

max v < max w < max u + Cy
Q Q oQ

But since ¢ is an arbitrary positive constant, and Cy > 0 is independent of €, in particular it must be
the case that as € — 0 we obtain the desired equality:

max 4 = max u
Q o
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