Introduction to Partial Differential Equations - Week 4 - The Weak Maximum Principle & the Fundamental Solution to the Heat Equation

Antonio León Villares

October 2022

Contents

1	The	Weak	Maximum Principle	2
	1.1	Theore	em: The Weak Maximum Principle	2
	1.2	Intuiti	on on the Weak Maximum Principle	2
	1.3		g the Weak Maximum Principle	
			ary: Comparison Principle and Stability	
2	The Fundamental Solution to the Heat Equation			7
	2.1	The F	undamental Solution to the Homogeneous Heat Equation	7
		2.1.1	Definition: The Fundamental Solution to the Inhomogeneous Heat Equation	7
		2.1.2	Lemma: The Fundamental Solution Solves the Homogeneous Heat Equation	8
		2.1.3	Lemma: Properties of the Fundamental Solution	
		2.1.4	Definition: The Delta Distribution	8
		2.1.5	Lemma: The Fundamental Solution is a Delta Distribution at the Limit	9
	2.2	The Convolution		12
		2.2.1	Definition: The Convolution	12
		2.2.2	Lemma: Properties of the Convolution	12
	2.3	Solvin	g the Global Cauchy Problem via the Fundamental Solution	13
		2.3.1	Proposition: Differentiation Under the Integral	13
		2.3.2	Theorem: The Fundamental Solution & Solving the Homogeneous Heat Equation with	
			Global Cauchy Conditions	14
		2.3.3	Theorem: Duhamel's Principle	
	2.4			18
		2.4.1	Lemma: Solutions to the Heat Equation are Invariant Under Translations and Parabolic	
			Dilations	18
		2.4.2	Lemma: Total Thermal Energy is Constant for Solutions to the Heat Equation	19
		2.4.3	Derivation of the Fundamental Solution	
3	3 Workshop			24

1 The Weak Maximum Principle

1.1 Theorem: The Weak Maximum Principle

Let $\Omega \subset \mathbb{R}^n$ be a **domain** (open and connected subset). Recall the **space**time cylinder:

$$Q_T = (0,T) \times \Omega$$

and the **parabolic boundary**:

$$\partial_n Q_T = \{0\} \times \bar{\Omega} \cup (0, T] \times \partial \Omega$$

Let $w \in C^{1,2}(Q_T) \cap C(\bar{Q}_T)$ be a **solution** to the **heat equation**:

$$w_t - D\Delta w = f$$

Then:

- 1. if $f \leq 0$, w(x,t) achieves its **maximum** in the region \bar{Q}_T at one or more points of the **parabolic boundary** $\partial_p Q_T$. Then, w is a **subsolution**, and if w is strictly **negative** on $\partial_p Q_T$, then w is strictly **negative** on \bar{Q}_T .
- 2. if $f \geq 0$, w(x,t) achieves its **minimum** in the region \bar{Q}_T at one or more points of the **parabolic boundary** $\partial_p Q_T$. Then, w is a **supersolution**, and if w is strictly **positive** on $\partial_p Q_T$, then w is strictly **positive** on \bar{Q}_T .

1.2 Intuition on the Weak Maximum Principle

The gist of the weak maximum principle is that the parabolic boundary is what defines where the maximum/minimum of the solution to the heat equation will be.

In one dimension, the heat equation is simply:

$$w_t - Dw_{xx} = f$$

Lets consider an even simpler scenario:

$$-w_{xx}=f$$

The heat equation becomes:

$$-w_{xx} \le 0 \implies w_{xx} \ge 0$$

In other words, w will be **convex** (we will have $w \ge mx + b$, so w is a curve which is always dominate its tangent line):

Hence, intuitively we see that the convex nature of the curve guarantees that at least one of the endpoints leads to a maximum (in this case on the left boundary).

$$2) f \ge 0$$

The heat equation becomes:

$$-w_{xx} \ge 0 \implies w_{xx} \le 0$$

In other words, w will be **concave** (we will have $w \le mx + b$, so w is a curve which is always dominated by its tangent line):

Hence, intuitively we see that the concave nature of the curve guarantees that at least one of the endpoints leads to a minimum (in this case on the right boundary).

$$(3) f = 0$$

The heat equation becomes:

$$-w_{xx} = 0 \implies w_{xx} = 0$$

In other words, w will be a straight line w = mx + b:

Hence, intuitively we see that w will be monotone, so it attains **both** a maximum and a minimum at the endpoints.

1.3 Proving the Weak Maximum Principle

Proof. We shall prove the Weak Maximum Principle when the spacetime dimension is 2 (so $x \in \mathbb{R}$). We will also only consider the case $f \leq 0$, since $f \geq 0$ is analogous.

Let $\varepsilon > 0$, and let w be a solution to the heat equation and define the function:

$$u = w - \varepsilon t \le w$$
 $t \in (0, T)$

If we can derive information about the behaviour of u, we can then take the limit as $\varepsilon \to 0^+$ to obtain information about w.

We begin by plugging in u into the heat equation:

$$u_t - Du_{xx} = (w_t - \varepsilon) - Dw_{xx}$$
$$= (w_t - Dw_{xx}) - \varepsilon$$
$$= f - \varepsilon$$
$$< 0$$

since $f \leq 0$ and $\varepsilon > 0$.

We now seek to determine the maximum of u. For this, consider the spacetime cylinder confining u given by $Q_{T-\varepsilon}$, and assume that u attains a maximum in $\bar{Q}_{T-\varepsilon}$ at $(t_0, x_0) \in \partial_p Q_{T-\varepsilon}$.

We proceed by contradiction, and assume that $(t_0, x_0) \in Q_{T-\varepsilon}$. We can assume that $0 < t_0 \le T - \varepsilon$, since if $t_0 = 0$, then the maximum is attained on $\{0\} \times \bar{\Omega}$, which is part of the parabolic boundary $\partial_p Q_{T-\varepsilon}$. Moreover, we must have that $x_0 \in \Omega$, since if $x_0 \in \bar{\Omega}$ then again it is part of the parabolic boundary

If (t_0, x_0) is a maximum, then we will have:

$$u_x(t_0, x_0) = 0$$

and:

$$u_t(t_0, x_0) \ge 0$$

with equality when $t_0 = T - \varepsilon$ (since $t = t_0$ is at the boundary of $Q_{T-\varepsilon}$, u can attain a maximum at (t_0, x_0) on $Q_{T-\varepsilon}$, but still be increasing for $t > T - \varepsilon$, so the gradient need not be 0, it can be positive).

Now, recall Taylor's Remainder Theorem, which allows us to approximate a function with a (truncated) Taylor series:

$$u(t_0, x) = u(t_0, x_0) + u_x(t_0, x_0)(x - x_0) + u_{xx}(t_0, x^*) \frac{(x - x_0)^2}{2}$$

where x^* is a point in the neighbourhood of x_0 (if this proof were for higher dimensions, then we would use Hessians, instead of derivatives).

But if we rearrange, noting the fact that $u_x(t_0, x_0) = 0$ we get:

$$u(t_0, x) - u(t_0, x_0) = u_{xx}(t_0, x^*) \frac{(x - x_0)^2}{2}$$

But since $u(t_0, x_0)$ is a maximum:

$$u(t_0, x_0) \ge u(t_0, x) \implies u_{xx}(t_0, x^*) \frac{(x - x_0)^2}{2} \le 0$$

Since $\frac{(x-x_0)^2}{2} \ge 0$ for all x, this is only possible if $u_{xx}(t_0, x^*) \le 0$. Thus, taking $x^* \to x_0$ implies:

$$u_{xx}(t_0, x_0) \le 0$$

Thus, since $u_t(x_0, t_0) \ge 0$ and $u_{xx}(t_0, x_0) \le 0$ it follows that:

$$u_t(x_0, t_0) - Du_{xx}(t_0, x_0) \ge 0$$

However, this is a direct contradiction with the fact that:

$$u_t(x_0, t_0) - Du_{xx}(t_0, x_0) = f - \varepsilon < 0$$

Thus, if $(t_0, x_0) \in Q_{T-\varepsilon}$, it can't be a maximum of u; thus, any maximum of u must lie in the parabolic boundary $\partial_p Q_{T-\varepsilon}$.

So now lets consider maxima of w. From definition, $u \leq w$. Moreover, by definition $\partial_p Q_{T-\varepsilon} \subset \partial_p Q_T$, so by definition any maximum in $\partial_p Q_{T-\varepsilon}$ must lie in $\partial_p Q_T$ too. Hence, we have the following inequality:

$$\max_{\bar{Q}_{T-\varepsilon}} u = \max_{\partial_p Q_{T-\varepsilon}} u \le \max_{\partial_p Q_T} u \le \max_{\partial_p Q_T} w$$

Now, we also have that:

$$w \le u + \varepsilon T$$

since $u = w - \varepsilon t$ with $t \in (0,T)$. Hence, the maximum of w will be bounded above by the maximum of $u + \varepsilon T$:

$$\max_{\bar{Q}_{T-\varepsilon}} w \leq \max_{\bar{Q}_{T-\varepsilon}} (u + \varepsilon T) = \max_{\bar{Q}_{T-\varepsilon}} u + \varepsilon T \leq \max_{\partial_p Q_T} w + \varepsilon T$$

But now, since $\partial_p Q_T$ is a parabolic boundary, it is clear that:

$$\max_{\partial_p Q_T} w \le \max_{\bar{Q_T}} w$$

However, using the uniform continuity of w, we can take the limit as $\varepsilon \to 0+$ such that:

$$\max_{\bar{Q}_{T-\varepsilon}} w \leq \max_{\partial_{p}Q_{T}} w + \varepsilon T$$

$$\implies \lim_{\varepsilon \to 0^{+}} \left(\max_{\bar{Q}_{T-\varepsilon}} w \right) \leq \lim_{\varepsilon \to 0^{+}} \left(\max_{\partial_{p}Q_{T}} w + \varepsilon T \right)$$

$$\implies \max_{\bar{Q}_{T}} w \leq \max_{\partial_{p}Q_{T}} w$$

In conclusion, we must thus have equality:

$$\max_{\bar{Q}_T} w = \max_{\partial_p Q_T} w$$

which is what we required.

1.4 Corollary: Comparison Principle and Stability

This corollary allows us to compare 2 different solutions to the heat equation, given that they have (possibly) different inhomogeneous terms.

Suppose v, w are solutions to the heat equations:

$$v_t - Dv_{xx} = f$$

$$w_t - Dw_{xx} = g$$

Then:

- 1. **Comparison**: if $v \ge w$ on $\partial_p Q_T$ and $f \ge g$, then $v \ge w$ on **all** of Q_T .
- 2. Stability:

$$\max_{\bar{Q}_T} |v - w| \le \max_{\partial_p Q_T} |v - w| + T \max_{\bar{Q}_T} |f - g|$$

Proof. Define:

$$u = w - v$$

u also solves the heat equation, and by linearity:

$$u_t - Du_{xx} = g - f \le 0$$

since $f \geq g$.

1 Comparison

Now, the Weak Maximum Principle applies, which implies that u attains a maximum on $\partial_p Q_T$. But since $v \geq w$ on $\partial_p Q_T$, we have that $u \leq 0$ on the parabolic boundary, so it follows that $u \leq 0$ on all of Q_T , so $v \geq w$ always, as required.

2 Stability

Define:

$$M = \max_{\bar{Q}_T} |f - g|$$

$$u = w - v - tM$$

Then:

$$u_t - Du_{xx} = (g - f) - M \le 0$$

Hence, the Weak Maximum Principle applies to u, and:

$$\max_{\bar{Q}_T} u = \max_{\partial_P Q_T} u$$

Moreover:

$$\max_{\bar{Q}_T} \ (w-v) = \max_{\bar{Q}_T} \ (w-v-tM) + \max_{\bar{Q}_T} \ tM \leq \max_{\partial_P Q_T} \ u + T \underset{\bar{Q}_T}{\max} |f-g|$$

Here it is claimed that:

$$\max_{\partial_P Q_T} u \le \max_{\partial_P Q_T} |w - v|$$

Thus, it follows that:

$$\max_{\bar{Q}_T} \ (w-v) \leq \max_{\partial_P Q_T} \ |w-v| + + T \underset{\bar{Q}_T}{\max} |f-g|$$

If we define u = v - w, we similarly get:

$$\max_{Q_T} \ (v-w) \leq \max_{\partial_P Q_T} \ |w-v| + T \mathrm{max} |f-g|$$

So we have that:

$$\max_{Q_T} |w-v| \leq \max_{\partial_P Q_T} |w-v| + + T \underset{Q_T}{\max} |f-g|$$

as required.

2 The Fundamental Solution to the Heat Equation

2.1 The Fundamental Solution to the Homogeneous Heat Equation

2.1.1 Definition: The Fundamental Solution to the Inhomogeneous Heat Equation

Consider the inhomogeneous heat equation:

$$u_t - D\Delta u = f$$

The **fundamental solution** to this is:

$$\Gamma_D(t,x) = \frac{1}{(4\pi Dt)^{n/2}} e^{-\frac{|x|^2}{4Dt}}, \quad t > 0, x \in \mathbb{R}^n$$

where:

$$|x|^2 = \sum_{i=1}^n (x^i)^2$$

2.1.2 Lemma: The Fundamental Solution Solves the Homogeneous Heat Equation

The fundamental solution $\Gamma_D(t,x)$ solves the homogeneous heat equation for all $x \in \mathbb{R}^n$, t > 0.

2.1.3 Lemma: Properties of the Fundamental Solution

The **fundamental solution** $\Gamma_D(t,x)$ satisfies the following:

1.

$$x \neq 0 \implies \lim_{t \to 0^+} \Gamma_D(t, x) = 0$$

2.

$$x = 0 \implies \lim_{t \to 0^+} \Gamma_D(t, x) = \infty$$

3.

$$\forall t > 0, \qquad \int_{\mathbb{R}^n} \Gamma_D(t, x) d^n x = 1$$

2.1.4 Definition: The Delta Distribution

The delta distribution (Dirac delta function) δ centered at 0 acts on functions $\phi(x)$ via:

$$\langle \delta, \phi \rangle = \phi(0)$$

More generally:

$$\langle \delta, \phi(x-y) \rangle = \phi(x)$$

which follows by defining:

$$\varphi(y) = \phi(x - y)$$

so:

$$\langle \delta, \phi(x-y) \rangle = \langle \delta, \varphi \rangle = \varphi(0) = \phi(x)$$

2.1.5 Lemma: The Fundamental Solution is a Delta Distribution at the Limit

Suppose that:

• $\phi(x)$ is **continuous** on \mathbb{R}^n

•

$$\exists a, b > 0 : |\phi(x)| < ae^{b|x|^2}$$

Then:

$$\lim_{t \to 0+} \int_{\mathbb{R}^n} \Gamma_D(t, x) \phi(x) \ d^n x = \phi(0)$$

That is, at t = 0, $\Gamma_D(t, x)$ behaves like the delta distribution centered at θ :

$$\lim_{t \to 0^+} \Gamma_D(t, x) = \delta(x)$$

Proof. Since the integral of the fundamental solution is 1 for t > 0, we get the following identity:

$$\phi(0) = (\phi(x) + \phi(0) - \phi(x)) \int_{\mathbb{R}^n} \Gamma_D(t, x) d^n x = \int_{\mathbb{R}^n} \Gamma_D(t, x) \phi(x) d^n x + \int_{\mathbb{R}^n} \Gamma_D(t, x) (\phi(0) - \phi(x)) d^n x$$

Now, let $\varepsilon > 0$, and define a ball B of radius R centered at 0, such that:

$$\forall x \in B, \quad |\phi(0) - \phi(x)| \le \varepsilon$$

(since ϕ is continuous, $\phi(x)$ can be made to be arbitrarily close to $\phi(0)$ by choosing an x arbitrarily close 0)

Now, if B^C denotes the complement of B, such that:

$$\mathbb{R}^n = B \cup B^C$$

then we can derive a bound for the second term in the equality above:

$$\left| \int_{\mathbb{R}^{n}} \Gamma_{D}(t,x) (\phi(0) - \phi(x)) d^{n}x \right| = \left| \int_{B} \Gamma_{D}(t,x) (\phi(0) - \phi(x)) d^{n}x + \int_{B^{C}} \Gamma_{D}(t,x) (\phi(0) - \phi(x)) d^{n}x \right|$$

$$\leq \int_{B} \Gamma_{D}(t,x) |\phi(0) - \phi(x)| d^{n}x + \int_{B^{C}} \Gamma_{D}(t,x) |\phi(0) - \phi(x)| d^{n}x$$

$$\leq \int_{B} \Gamma_{D}(t,x) |\phi(0) - \phi(x)| d^{n}x + \int_{B^{C}} \Gamma_{D}(t,x) (|\phi(0)| + |\phi(x)| d^{n}x$$

$$\leq \varepsilon \int_{B} \Gamma_{D}(t,x) d^{n}x + |\phi(0)| \int_{B^{C}} \Gamma_{D}(t,x) d^{n}x + \int_{B^{C}} \Gamma_{D}(t,x) |\phi(x)| d^{n}x$$

Using the estimate $\int_B \Gamma_D(t,x) d^n x \leq 1$, it thus follows that:

$$\left| \int_{\mathbb{R}^n} \Gamma_D(t,x) (\phi(0) - \phi(x)) d^n x \right| \le \varepsilon + |\phi(0)| \int_{B^C} \Gamma_D(t,x) d^n x + \int_{B^C} \Gamma_D(t,x) |\phi(x)| d^n x$$

Hence, we have the bound:

$$\phi(0) = \int_{\mathbb{R}^n} \Gamma_D(t, x) \phi(x) d^n x + \int_{\mathbb{R}^n} \Gamma_D(t, x) (\phi(0) - \phi(x)) d^n x$$

$$\implies \left| \phi(0) - \int_{\mathbb{R}^n} \Gamma_D(t, x) \phi(x) d^n x \right| \le \varepsilon + |\phi(0)| \int_{B^C} \Gamma_D(t, x) d^n x + \int_{B^C} \Gamma_D(t, x) |\phi(x)| d^n x$$

Now, if we can show that as $t \to 0^+$:

$$|\phi(0)| \int_{B^C} \Gamma_D(t,x) d^n x + \int_{B^C} \Gamma_D(t,x) |\phi(x)| d^n x \to 0$$

then we will have proven the claim that:

$$\lim_{t \to 0+} \int_{\mathbb{R}^n} \Gamma_D(t, x) \phi(x) \ d^n x = \phi(0)$$

We show that this is true for the expression:

$$\int_{B^C} \Gamma_D(t,x) |\phi(x)| d^n x$$

since the working will be identical for the expression $|\phi(0)| \int_{B^C} \Gamma_D(t,x) d^n x$ (we can think of $\phi(0)$ as a constant function ϕ bounded with b=0).

Now, we can employ the bound on ϕ :

$$|\phi(x)|\Gamma_D(t,x) \le ae^{b|x|^2} \frac{1}{(4\pi Dt)^{n/2}} e^{-\frac{|x|^2}{4Dt}}$$
$$= \frac{a}{(4\pi Dt)^{n/2}} e^{-|x|^2 \left(\frac{1}{4Dt} - b\right)}$$

So now let:

$$|z|^2 = |x|^2 \left(\frac{1}{4Dt} - b\right)$$

Then:

$$\frac{d}{dx^{i}}|z|^{2} = \frac{d}{dx^{i}}\left(|x|^{2}\left(\frac{1}{4Dt} - b\right)\right)$$

$$\implies \frac{d}{dx^{i}}\left(\sum_{j=1}^{n}(z^{j})^{2}\right) = \frac{d}{dx^{i}}\left(\left(\frac{1}{4Dt} - b\right)\sum_{j=1}^{n}(x^{j})^{2}\right)$$

$$\implies 2\frac{dz^{i}}{dx^{i}} = 2\left(\frac{1}{4Dt} - b\right)x^{i}$$

$$\implies \frac{dz^{i}}{dx^{i}} = \left(\frac{1}{4Dt} - b\right)x^{i}$$

Hence:

$$d^n z = \left(\frac{1}{4Dt} - b\right)^{n/2} d^n x$$

(This follows by the fact that we are going to have nested integrals over the varibables x^i , and for each we are multiplying the result of the integral by constant $\sqrt{\frac{1}{4Dt}-b} \ n$ times.)

So:

$$d^n x = \left(\frac{1}{\frac{1}{4Dt} - b}\right)^{n/2} d^n z$$

Notice, this change of variables will be allowed so long as:

$$\frac{1}{4Dt} - b > 0 \iff t < \frac{1}{4Db}$$

which is fine, since $t \to 0^+$, so t can always be made to be smaller than this quantity.

Going back to the integral, we no longer integrate over:

$$|x| \ge R$$

(since R is the radius of B, and we integrate over $x \in B^C$) but rather:

$$|z| \ge R\sqrt{\frac{1}{4Dt} - b}$$

Thus:

$$\begin{split} \int_{B^C} \Gamma_D(t,x) |\phi(x)| d^n x &\leq \int_{B^C} \frac{a}{(4\pi Dt)^{n/2}} e^{-|x|^2 \left(\frac{1}{4Dt} - b\right)} d^n x \\ &= \frac{a}{(4\pi Dt)^{n/2}} \int_{|z| \geq R\sqrt{\frac{1}{4Dt} - b}} e^{-|z|^2} \left(\frac{1}{\frac{1}{4Dt} - b}\right)^{n/2} d^n z \\ &= \frac{a}{\left(4\pi Dt \left(\frac{1}{4Dt} - b\right)\right)^{n/2}} \int_{|z| \geq R\sqrt{\frac{1}{4Dt} - b}} e^{-|z|^2} d^n z \\ &= \frac{a}{(\pi - 4b\pi Dt)^{n/2}} \int_{|z| \geq R\sqrt{\frac{1}{4Dt} - b}} e^{-|z|^2} d^n z \end{split}$$

But now, notice that:

$$\lim_{t \to 0} R \sqrt{\frac{1}{4Dt} - b} = \infty$$

That is, the limits of integration become infinitesimally small; thus, even if $\frac{a}{(\pi - 4b\pi Dt)^{n/2}} \to \infty$, the integral goes to 0 "quicker", so we deduce that:

$$\lim_{t \to 0^+} \int_{B^C} \Gamma_D(t, x) |\phi(x)| d^n x = 0$$

Hence, it follows that since:

$$\left|\phi(0) - \int_{\mathbb{R}^n} \Gamma_D(t,x)\phi(x)d^nx\right| \leq \varepsilon + |\phi(0)| \int_{B^C} \Gamma_D(t,x)d^nx + \int_{B^C} \Gamma_D(t,x)|\phi(x)|d^nx$$

then

$$\limsup_{t \to 0^+} \left| \phi(0) - \int_{\mathbb{R}^n} \Gamma_D(t, x) \phi(x) d^n x \right| = \varepsilon$$

so since ε is an arbitrary positive constant:

$$\lim_{t \to 0^+} \left| \phi(0) - \int_{\mathbb{R}^n} \Gamma_D(t, x) \phi(x) d^n x \right| = 0$$

as required.

2.2 The Convolution

2.2.1 Definition: The Convolution

Let f, g be functions on \mathbb{R}^n . Define the **convolution** as the following function:

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y)d^n y$$

One can interpret the convolution as an **averaging**, whereby f is replaced by its average value, weighted by g at each point.

2.2.2 Lemma: Properties of the Convolution

1. The convolution is **commutative**:

$$(f * g)(x) = (g * f)(x)$$

2. The convolution is **associative**:

$$f * (g * h) = (f * g) * h$$

3. The delta distribution is the identity element:

$$(f * \delta)(x) = f(x)$$

Proof. 1 Commutative

Define a new variable z = x - y. Then:

$$d^n z = -d^n y$$

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y)d^n y$$

$$= -\int_{z(-\infty)}^{z(\infty)} f(x - z)g(z)d^n z$$

$$= \int_{z(\infty)}^{z(-\infty)} f(x - z)g(z)d^n z$$

$$= \int_{\mathbb{R}^n} g(z)f(x - z)d^n z$$

$$= (g * f)(x)$$

(2) Associative

This follows by using Fubini's Theorem, which allows us to exchange the order of integration. Check this StackExchange post for an explicit demonstration.

(3) Identity

$$(f * \delta)(x) = \int_{\mathbb{R}^n} f(y)\delta(x - y)d^n y$$

Now, δ is characterised by "spiking" to infinity around its axis of symmetry, and being 0 elsewhere. In other words, for some $\varepsilon > 0$, we will have:

$$\int_{\mathbb{R}^n} f(y)\delta(x-y)d^ny = f(x)\int_{x-\varepsilon}^{x+\varepsilon} \delta(x-y)d^ny = f(x)$$

where we use the fact that δ integrates to 1, and that f will be "constant" for $y \in [x - \varepsilon, x + \varepsilon]$.

2.3 Solving the Global Cauchy Problem via the Fundamental Solution

2.3.1 Proposition: Differentiation Under the Integral

Let I(a,b) be a function on $\mathbb{R} \times \mathbb{R}$, and let $b_0 \in \mathbb{R}$. Then if:

1. $\forall b \text{ in a neighbourhood of } b_0$

$$\int_{\mathbb{R}} |I(a,b)| da < \infty$$

- 2. there exists a neighbourhood \mathcal{N} of b_0 such that for **almost every** a $\partial_b I(a,b)$ exists for $b \in \mathcal{N}$ (that is, the derivative at b is undefined at countably many points)
- 3. there exists a function U(a) (defined for almost every a) such that if $b \in \mathcal{N}$:

$$|\partial_b I(a,b)| \le U(a)$$
 $\int_{\mathbb{R}} U(a)da < \infty$

Then the function:

$$J(b) = \int_{\mathbb{R}} I(a, b) da$$

is differentiable near b_0 , and:

$$\partial_b J(b) = \int_{\mathbb{R}} \partial_b I(a,b) da$$

The same applies if $I(a,b) \in \mathbb{R}^m \times \mathbb{R}^n$.

2.3.2 Theorem: The Fundamental Solution & Solving the Homogeneous Heat Equation with Global Cauchy Conditions

Let g(x) be a continuous function in \mathbb{R}^n , such that:

$$\exists a, b > 0, \qquad |g(x)| < ae^{b|x|^2}$$

Then, there exists a solution u(t, x) to the **homogeneous heat equation**:

$$u_t - D\Delta u = 0,$$
 $t \in [0, T), x \in \mathbb{R}^n$
 $u(0, x) = g(x),$ $x \in \mathbb{R}^n$

where:

$$T = \frac{1}{4Db}$$

In particular:

$$u(t,x) = [g(\xi) * \Gamma_D(t,\xi)](x)$$

$$= \int_{\mathbb{R}^n} g(y) \Gamma_D(t,x-y) d^n y$$

$$= \frac{1}{(4\pi Dt)^{n/2}} \int_{\mathbb{R}^n} g(y) e^{-\frac{|x-y|^2}{4Dt}} d^n y$$

where u(t, x) is **infinitely differentiable** on the set $(0, T) \times \mathbb{R}^n$. Moreover, for each **compact subinterval** $[0, T'] \subset [0, T)$:

$$\exists A, B > 0 : \forall (t, x) \in [0, T'] \times \mathbb{R}^n \quad |u(t, x)| \le Ae^{B|x|^2}$$

and u(t,x) is the **unique** solution in the class of functions verifying this bound.

The above demonstrates 2 interesting properties of u(t,x):

- 1. u is **smooth**, even if g is just **continuous**
- 2. the solution:

$$u(t,x) = \frac{1}{(4\pi Dt)^{n/2}} \int_{\mathbb{R}^n} g(y) e^{-\frac{|x-y|^2}{4Dt}} d^n y$$

propagates at infinite speed: at t = 0 we can think of the solution as being "concentrated" at g(x); as soon as t > 0, u takes on non-zero values everywhere on \mathbb{R}^n (thus, we have information on what happens at every point in the plane).

Proof. This proof has 3 steps:

- 1. Verifying the bound on u(t,x)
- 2. Verifying that u(t,x) solves the homogeneous heat equation
- 3. Verifying that u(t,x) satisfies the initial condition u(0,x)=g(x)

We shall only do this for when n = 1 dimension, when $x \in \mathbb{R}$.

(1) Bounded Solution

Notice:

$$(|x| - |y|)^2 = x^2 - |2xy| + y^2$$

Since $(|x| - |y|)^2 \ge 0$ this implies:

$$x^2 + y^2 \ge |2xy|$$

Furthermore, setting $x=x\sqrt{\varepsilon^{-1}},y=y\sqrt{\varepsilon}$ for $\varepsilon>0$ we get:

$$|2xy| = \varepsilon^{-1}x^2 + \varepsilon y^2$$

Moreover:

$$|x - y|^2 = (x - y)^2 = x^2 - 2xy + y^2 \ge 0$$

Since this is always positive, we must have that:

$$(x - y)^2 \le x^2 + |2xy| + y^2$$

(if $xy \le 0$, then we have equality, and if xy < 0, then we are subtracting a positive amount, so the inequality holds). Hence, we can bound:

$$|x - y|^2 \le x^2 + \varepsilon^{-1}x^2 + \varepsilon y^2 + y^2 = (1 + \varepsilon^{-1})x^2 + (1 + \varepsilon)y^2$$

Now, using the bound on g:

$$|g(x)| < ae^{b|x|^2}$$

we get that:

$$\begin{split} |g(x-y)| &< ae^{b|x-y|^2} \\ &\leq ae^{b((1+\varepsilon^{-1})x^2 + (1+\varepsilon)y^2)} \\ &= ae^{b(1+\varepsilon^{-1})x^2}e^{b(1+\varepsilon)y^2} \end{split}$$

Then we can estimate u via:

$$\begin{split} |u(t,x)| &= |[g(\xi) * \Gamma_D(t,\xi)](x)| \\ &= |[\Gamma_D(t,\xi) * g(\xi)](x)| \\ &= \left| \int_{\mathbb{R}} \Gamma_D(t,y) g(x-y) dy \right| \\ &\leq \int_{\mathbb{R}} \Gamma_D(t,y) |g(x-y)| dy \\ &\leq \int_{\mathbb{R}} \Gamma_D(t,y) a e^{b(1+\varepsilon^{-1})x^2} e^{b(1+\varepsilon)y^2} dy \\ &= \frac{1}{(4\pi Dt)^{1/2}} a e^{b(1+\varepsilon^{-1})x^2} \int_{\mathbb{R}} e^{-\frac{y^2}{4Dt}} e^{b(1+\varepsilon)y^2} dy \\ &= \frac{1}{(4\pi Dt)^{1/2}} a e^{b(1+\varepsilon^{-1})x^2} \int_{\mathbb{R}} e^{-y^2 \left[\frac{1}{4Dt} - b(1+\varepsilon)\right]} dy \end{split}$$

Now, define a new variable z via:

$$z^{2} = y^{2} \left[\frac{1}{4Dt} - b(1+\varepsilon) \right] = t^{-1}y^{2} \left[\frac{1}{4D} - bt(1+\varepsilon) \right]$$

Then:

$$2z\frac{dz}{dy} = 2t^{-1}y\left[\frac{1}{4D} - bt(1+\varepsilon)\right] \implies \frac{dz}{dy} = \frac{t^{-1}y\left[\frac{1}{4D} - bt(1+\varepsilon)\right]}{t^{-1/2}y\left[\frac{1}{4D} - bt(1+\varepsilon)\right]^{\frac{1}{2}}} = t^{-1/2}\left[\frac{1}{4D} - bt(1+\varepsilon)\right]^{\frac{1}{2}}$$

so our estimate becomes:

$$\begin{split} |u(t,x)| &\leq \frac{1}{(4\pi Dt)^{1/2}} a e^{b(1+\varepsilon^{-1})x^2} \int_{\mathbb{R}} e^{-y^2 \left[\frac{1}{4Dt} - b(1+\varepsilon)\right]} dy \\ &\leq \frac{1}{(4\pi Dt)^{1/2}} a e^{b(1+\varepsilon^{-1})x^2} \int_{\mathbb{R}} e^{-z^2} t^{1/2} \left[\frac{1}{4D} - bt(1+\varepsilon)\right]^{-\frac{1}{2}} dz \\ &= \frac{a}{(4\pi D)^{1/2}} \left[\frac{1}{4D} - bt(1+\varepsilon)\right]^{-\frac{1}{2}} e^{b(1+\varepsilon^{-1})x^2} \sqrt{\pi} \\ &= A e^{Bx^2} \end{split}$$

as required.

Proving that u is the unique function to satisfy the bound is more challenging.

2 u is a Homogeneous Solution

Let \mathcal{L} be the operator for the heat equation:

$$\mathcal{L} = \partial_t - D\partial_r^2$$

Recall, u solves the heat equation if:

$$\mathcal{L}[u(t,x)] = 0, \qquad t > 0, x \in \mathbb{R}$$

Since $\Gamma_D(t,x)$ is a the fundamental solution, then:

$$\mathcal{L}[\Gamma_D(t,x)] = 0$$

By the proposition on differentiating under the integral, with $I = \Gamma_D(t, x)$ (we can use the fact that $\Gamma_D(t, x)$ contains a rapidly decaying exponential to prove the boundedness requirements) it follows that:

$$\mathcal{L}[u(t,x)] = \int_{\mathbb{R}} g(y) \mathcal{L}[\Gamma_D(t,x)] dy = 0$$

since $\mathcal{L}[\Gamma_D(t,x)] = 0$. Thus, u solves the heat equation.

Moreover, $u \in C^{\infty}\left((0, T = \frac{1}{4Db}) \times \mathbb{R}\right)$ is obtained by repeatedly differentiating with respect to t and x under the integral, since $\Gamma_D(t, x)$ is infinitely differentiable in both variables.

(3) u Satisfies the Initial Conditions

We now have to show that:

$$\lim_{t \to 0^+} u(t, x) = g(x)$$

This follows from the property of $\Gamma_D(t,x)$ of behaving like δ as $t\to 0^+$, and that δ behaves like the identity under convolution. Explicitly:

$$\lim_{t \to 0^+} u(t, x) = \lim_{t \to 0^+} [g(\xi) * \Gamma_D(t, \xi)](x) = [g * \delta](x) = g(x)$$

so u(t,x) satisfies the initial condition.

2.3.3 Theorem: Duhamel's Principle

Let g(x) and $T = \frac{1}{4Db}$ be defined as in the theorem above. Moreover, assume that:

$$f(t,x)$$
 $\partial_i f(t,x)$ $\partial_i \partial_j f(t,x)$, $1 \le i, j \le n$

are continuous, bounded function on $[0,T) \times \mathbb{R}^n$.

Then, there exists a unique solution u(t, x) to the inhomogeneous heat equation:

$$u_t - D\Delta u = f(t, x),$$
 $t \in [0, T), x \in \mathbb{R}^n$
 $u(0, x) = g(x),$ $x \in \mathbb{R}^n$

Furthermore, u(t, x) is given by:

$$u(t,x) = [\Gamma_D(t,\xi) * g)](x) + \int_0^t [\Gamma_D(t-s,\nu) * f(s,\nu))](x)ds$$

and:

$$u \in C^0([0,T) \times \mathbb{R}) \cap C^{1,2}((0,T) \times \mathbb{R}^n)$$

2.4 Deriving the Fundamental Solution

2.4.1 Lemma: Solutions to the Heat Equation are Invariant Under Translations and Parabolic Dilations

Let u(t,x) be a solution to the **homogeneous heat equation**:

$$u_t - D\Delta u = 0,$$
 $(t, x) \in [0, \infty) \times \mathbb{R}^n$

Let:

$$A, t_0 \in \mathbb{R}$$
 $x_0 \in \mathbb{R}^n$

Then:

$$u^*(t,x) = Au(t-t_0, x-x_0)$$

is also a solution to the **homogeneous heat equation**. Similarly, if $\lambda > 0$, the **amplified**, **parabolically scaled** function:

$$u^*(t,x) = Au(\lambda^2 t, \lambda x)$$

is also a solution.

⁽¹⁾ Amplified + Translated

Let u(x,t) be a solution tot he homogeneous heat equation, and consider:

$$u^*(t,x) = Au(t-t_0, x-x_0)$$

Then applying the chain rule:

$$u_t^* - \Delta u_{xx}^* = A(u_t(t - t_0, x - x_0) - \Delta u_{xx}(t - t_0, x - x_0)) = 0$$

(2) Amplified + Parabolically Scaled

Let u(x,t) be a solution tot he homogeneous heat equation, and consider:

$$u^*(t, x) = Au(\lambda^2 t, \lambda x)$$

Then applying the chain rule:

$$u_t^* - \Delta u_{xx}^* = A(\lambda^2 u_t(\lambda^2 t, \lambda x) - \lambda^2 \Delta u_{xx}(\lambda^2 t, \lambda x)) = 0$$

2.4.2 Lemma: Total Thermal Energy is Constant for Solutions to the Heat Equation

Let:

$$u(t,x) \in C^{1,2}([0,\infty) \times \mathbb{R}^n)$$

be a solution to the heat equation:

$$u_t = \Delta u$$

Assume that for fixed t:

$$\lim_{|x| \to \infty} |x|^{n-1} ||\nabla_x u(t, x)| = 0$$

uniformly in x.

Furthermore, that there exists a function:

$$f(x) \ge 0$$

such that:

$$|u_t| \le f(x)$$
 $\int_{\mathbb{R}^n} f(x)d^n x < \infty$

Then, if we define the **total thermal energy** as:

$$\mathcal{T}(t) = \int_{\mathbb{R}^n} u(t, x) d^n x$$

then the **total thermal energy** of u is **constant** in time:

$$\mathcal{T}(t) = \mathcal{T}(0)$$

Proof. Let u be a solution to the homogeneous heat equation:

$$u_t = \Delta u$$

Moreover, let $B_R(0)$ be a ball of radius R centered at the origin.

By the hypotheses of the Lemma, we can differentiate the total thermal energy \mathcal{T} under the integral (setting I = u). T:

$$\frac{d}{dt}\mathcal{T}(t) = \int_{\mathbb{R}^n} \frac{\partial}{\partial t} u(t, x) d^n x$$

$$= \int_{\mathbb{R}^n} \frac{\partial}{\partial t} u(t, x) d^n x$$

$$= \int_{\mathbb{R}^n} \Delta u d^n x$$

$$= \lim_{R \to \infty} \int_{B_R(0)} \Delta u d^n x$$

Now, recall that:

$$\nabla \cdot (\nabla f) = \Delta f$$

and the Divergence Theorem:

Let $\Omega \subset \mathbb{R}^3$ be a **domain** (open, connected subset of \mathbb{R}^n). Denote the **boundary**/surface of Ω as $\partial\Omega$.

Then:

$$\int_{\Omega} \nabla \cdot F(x, y, z) dx \ dy \ dz = \int_{\partial \Omega} \underline{F}(\sigma) \cdot \underline{\hat{N}}(\sigma) d\sigma$$

Here:

- $\underline{\hat{N}}(\sigma)$ is the **unit outward normal vector** to the surface $\partial\Omega$
- if $\partial \Omega \subset \mathbb{R}^3$ can be described as:

$$\partial\Omega = \{(x,y,z) \mid z = \phi(x,y)\}$$

then:

$$d\sigma = \sqrt{1 + \|\nabla\phi(x, y)\|^2} dx dy = \sqrt{1 + \left(\frac{\partial\phi}{\partial x}\right)^2 + \left(\frac{\partial\phi}{\partial y}\right)^2} dx dy$$

Thus:

$$\frac{d}{dt}\mathcal{T}(t) = \lim_{R \to \infty} \int_{B_R(0)} \Delta u d^n x$$
$$= \lim_{R \to \infty} \int_{\partial B_R(0)} \nabla u(t, \sigma) \cdot \underline{\hat{N}}(\sigma) d\sigma$$

We now apply a change of variables:

$$\sigma = R\omega \implies d\sigma = R^{n-1}d\omega$$

where ω denotes angular coordinates on the surface of the unit sphere (see this). Thus:

$$\frac{d}{dt}\mathcal{T}(t) = \lim_{R \to \infty} \int_{\partial B_R(0)} R^{n-1} \nabla u(t, R\omega) \cdot \underline{\hat{N}}(R\omega) d\omega$$

Lastly, by assumption:

$$\lim_{R \to \infty} R^{n-1} ||\nabla_x u(t, R\omega)| = 0$$

uniformly, so we can bring the limit inside of the integral, thus:

$$\frac{d}{dt}\mathcal{T}(t) = 0$$

as required.

2.4.3 Derivation of the Fundamental Solution

We now derive the Fundamental Solution in 2 spacetime dimensions (so $x \in \mathbb{R}$).

Say we have:

$$u(t,x) = Au(D^2\lambda^2t,\lambda x)$$

We want that the total thermal energy of u and u^* are equal. We compute:

$$\int_{\mathbb{R}^n} u^*(t,x)d^n x = \int_{\mathbb{R}^n} u(D^2 \lambda^2 t, \lambda x) d^n x$$
$$= A \lambda^{-n} \int_{\mathbb{R}^n} u(D^2 \lambda^2 t, z) d^n z$$

Since we don't care about time in the integral, if we choose:

$$A = \lambda^n$$

we will have that:

$$u^*(t,x) = \lambda^n u^*(D^2 \lambda^2 t, \lambda x)$$

has the same thermal energy as u.

We begin by introducing the **dimensionless** variable:

$$\zeta = \frac{x}{\sqrt{Dt}}$$

which is **invariant** under parabolic scaling:

$$t \mapsto \lambda^2 t \qquad x \mapsto \lambda x$$

We look for a fundamental solution of the form:

$$\Gamma_D(t,x) = \frac{1}{\sqrt{Dt}}V(\zeta)$$

We aim to find V, by exploiting the properties that a fundamental solution should have.

(1) Integral of 1

The fundamental solution satisfies:

$$\int_{\mathbb{R}^n} \Gamma_D(t, x) d^n x = 1$$

so:

$$1 = \int_{\mathbb{R}} \frac{1}{\sqrt{Dt}} V\left(\frac{x}{\sqrt{Dt}}\right) dx$$
$$= \int_{\mathbb{R}} V(\zeta) d\zeta$$

(2) Satisfies Heat Equation

If $\Gamma_D(t,x)$ is to satisfy the heat equation, then:

$$\Gamma_t - D\Gamma_{xx} = 0$$

If we compute these derivatives:

$$\begin{split} \Gamma_t &= \frac{\partial}{\partial t} \left(\frac{1}{\sqrt{Dt}} \right) V(\zeta) + \frac{1}{\sqrt{Dt}} \frac{dV}{d\zeta} \frac{\partial \zeta}{\partial t} \\ &= -\frac{D}{2(Dt)^{3/2}} V(\zeta) - \frac{1}{\sqrt{Dt}} V'(\zeta) \frac{Dx}{2(Dt)^{3/2}} \\ &= -\frac{1}{\sqrt{D}t^{3/2}} \left(\frac{1}{2} V(\zeta) + \frac{1}{2} \zeta V'(\zeta) \right) \end{split}$$

$$\Gamma_x = \frac{1}{\sqrt{Dt}} \frac{dV}{d\zeta} \frac{\partial \zeta}{\partial x}$$
$$= \frac{1}{Dt} V'(\zeta)$$

$$\Gamma_{xx} = \frac{1}{Dt} \frac{d^2V}{d\zeta^2} \frac{\partial \zeta}{\partial x}$$
$$= \frac{1}{(Dt)^{3/2}} V''(\zeta)$$

So:

$$\begin{split} &\Gamma_t - D\Gamma_{xx} = 0\\ \iff & -\frac{1}{\sqrt{D}t^{3/2}} \left(\frac{1}{2}V(\zeta) + \frac{1}{2}\zeta V'(\zeta)\right) - \frac{D}{(Dt)^{3/2}}V''(\zeta) = 0\\ \iff & -\frac{1}{\sqrt{D}t^{3/2}} \left(V''(\zeta) + \frac{1}{2}\zeta V'(\zeta) + \frac{1}{2}V(\zeta)\right) = 0\\ \iff & V''(\zeta) + \frac{1}{2}\zeta V'(\zeta) + \frac{1}{2}V(\zeta) = 0 \end{split}$$

All this also tells us that if $V(\zeta)$ is a solution to the heat equation, so is $V(-\zeta)$ (it leads to the same equation). Thus, we might as well search for an even V. But if V is even, then.

$$V'(0) = 0$$

(V is symmetric about the y-axis, so it must have a critical point at the origin)

With this information, we can now deduce a suitable V. Notice, we can write the ODE above as:

$$\frac{d}{d\zeta}\left(V'(\zeta) + \frac{1}{2}\zeta V(\zeta)\right) = 0$$

which implies that $\exists k \in \mathbb{R}$ such that:

$$V'(\zeta) + \frac{1}{2}\zeta V(\zeta) = k$$

But if $\zeta = 0$, since V'(0) = 0, it follows that:

$$k = 0$$

so V satisfies the first-order ODE:

$$V'(\zeta) + \frac{1}{2}\zeta V(\zeta) = 0$$

Now notice that:

$$\frac{d}{d\zeta} \ln V(\zeta) = \frac{1}{V(\zeta)} V'(\zeta)$$

If we rearrange the ODE:

$$V'(\zeta) + \frac{1}{2}\zeta V(\zeta) = 0 \implies \frac{V'(\zeta)}{V(\zeta)} = -\frac{1}{2}\zeta$$

so we can rewrite it as:

$$\frac{d}{d\zeta}\ln V(\zeta) = -\frac{1}{2}\zeta$$

Integrating both sides with respect to ζ yields:

$$lnV(\zeta) = -\frac{1}{4}\zeta^2 + C \implies V(\zeta) = Ae^{-\frac{1}{4}\zeta^2}$$

To find A, we use the fact that V integrates to 1, which we found in (1):

$$\int_{\mathbb{R}} V(\zeta) d\zeta = 1$$

$$\implies \int_{\mathbb{R}} A e^{-\frac{1}{4}\zeta^2} d\zeta = 1$$

$$\implies A \int_{\mathbb{R}} e^{-\frac{1}{4}\zeta^2} d\zeta = 1$$

Now, let:

$$u = \frac{1}{2}\zeta \implies \frac{du}{d\zeta} = \frac{1}{2}$$

so:

$$2A \int_{\mathbb{R}} e^{-u^2} du = 1 \implies 2A\sqrt{\pi} = 1 \implies A = \frac{1}{\sqrt{4\pi}}$$

Thus, we have that with D=1:

$$V(\zeta) = \frac{1}{\sqrt{4\pi}} e^{-\frac{1}{4}\zeta^2} = \frac{1}{\sqrt{4\pi}} e^{-\frac{x^2}{4t}}$$

so as required:

$$\Gamma_D(t,x) = \frac{1}{\sqrt{t}}V(\zeta) = \frac{1}{\sqrt{4\pi t}}e^{-\frac{x^2}{4t}}$$

3 Workshop

1. **Let:**

$$S = (0, \infty) \times (0, 1)$$

and let:

$$u \in C^{1,2}(\bar{S})$$

be the solution of the initial-boundary value problem:

$$\begin{cases} u_t - u_{xx} = 0, & (t, x) \in S \\ u(0, x) = x(1 - x), & x \in [0, 1] \\ u(t, 0) = u(t, 1) = 0, & t \in (0, \infty) \end{cases}$$

Show that:

$$\forall t \ge 0, x \in [0, 1] : u(t, x) = u(t, 1 - x)$$

We first show that v(t, x) = u(t, 1 - x) solves the same problem as u. Indeed it satisfies the PDE:

$$v_t - v_{xx} = u_t(t, 1 - x) - u_{xx}(t, 1 - x)$$

= $u_t(t, y) - u_{xx}(t, y)$
= 0

Similarly, if $x \in [0, 1]$:

$$v(0,x) = (1-x)(x-(1-x)) = x(1-x) = u(0,x)$$

and if $t \in (0, \infty)$:

$$v(t,0) = u(t,1) = 0$$
 $v(t,1) = u(t,0) = 0$

Now, consider the parabolic boundary (we let $\Omega = (0, 1)$):

$$\partial_{\nu}Q_T = \{0\} \times \bar{\Omega} \cup [0,T] \times \partial\Omega$$

By the Comparison Principle, if we can show that u=v on $\partial_p Q_T$, and given that 0=0, we will have that u=v on all of $[0,T]\times[0,1]$. If we then take the limit as $T\to\infty$, we will get that u(t,x)=u(t,1-x) for any $t\geq 0$. But above we saw that u,v coincide when x=0,x=1 and when $t\in(0,T]$, so u=v on $\partial_p Q_T$ as required.

2. **Let:**

$$S = (0, \infty) \times (0, 1)$$

and let:

$$u \in C^{1,2}(S) \cap C(\bar{S})$$

be the solution of the initial-boundary value problem:

$$\begin{cases} u_t - u_{xx} = 0, & (t, x) \in S \\ u(0, x) = x(1 - x), & x \in [0, 1] \\ u(t, 0) = u(t, 1) = k, & t \in (0, \infty), k \in \mathbb{R} \end{cases}$$

First, prove that $u(t,x) \ge 0$ for $(t,x) \in \bar{S}$. then, find all $\alpha > 0, \beta > 0$ such that on S:

$$u(t,x) \le w(t,x) = \alpha x(1-x)e^{-\beta t}$$

Finally, show that:

$$\lim_{t \to \infty} u(t, x) = 0$$

and that the convergence is uniform for $x \in [0, 1]$.

By the Weak Maximum Principle, u attains its maximum and minimum on the parabolic boundary. Notice, since u is continuous on all of \bar{S} :

$$\lim_{t \to 0} u(t,0) = u(0,0) = 0 \qquad \lim_{t \to 0} u(t,1) = u(0,1) = 0$$

Since u(t,0), u(t,1) are constant, it thus follows that:

$$u(t,0) = u(t,1) = 0$$

Moreover:

$$u(0,x) = x(1-x) \ge 0$$

Hence, it follows that on the parabolic boundary:

$$u(t,x) \ge 0$$

so by the weak maximum principle $u(t, x) \ge = \text{ for } (t, x) \in \bar{S}$.

Now, consider:

$$w(t,x) = \alpha x(1-x)e^{-\beta t}$$

It will be useful to see the conditions under which w solves the heat equation, as we can then apply the maximum principle. We thus compute:

$$w_t - w_{xx} = -\beta(\alpha x (1 - x)e^{-\beta t}) - \frac{\partial}{\partial x}(\alpha e^{-\beta t}((1 - x) - x))$$
$$= \alpha e^{-\beta t} \left[-\beta(x(1 - x)) - \frac{\partial}{\partial x}(1 - 2x) \right]$$
$$= \alpha e^{-\beta t} \left[2 - \beta(x(1 - x)) \right]$$

If we can show that $w_t - w_{xx} \ge 0$, then we can apply the Comparison Principle/Maximum Principle. For this we require that:

$$2 - \beta \max\{x(1-x)\} \ge 0 \implies 2 - \frac{\beta}{4} \ge 0$$

so:

$$0 < \beta \le 8$$

Moreover, to ensure that $w \geq u$, on the boundary with t = 0:

$$x(1-x) \le \alpha x(1-x) \implies \alpha \ge 1$$

Then, by the comparison principle, we must have that $u \leq w$ on all S.

Moreover, $u \to 0$ uniformly, since:

$$\sup u \le \sup w \le \alpha e^{-\beta t} \to 0$$

3. Show that the fundamental solution:

$$\Gamma_D(t,x) = \frac{1}{(4\pi Dt)^{n/2}} e^{-\frac{\|\underline{x}\|^2}{4Dt}}, \qquad t > 0, \underline{x} \in \mathbb{R}^n$$

is a solution to the homogeneous heat equation:

$$u_t - D\Delta u = f$$

when $\underline{x} \in \mathbb{R}^n, t > 0$

This is a simple albeit boring computation:

$$\begin{split} \Gamma_t &= \frac{\partial}{\partial t} \left((4\pi Dt)^{-n/2} \right) e^{-\frac{\|\underline{x}\|^2}{4Dt}} + \frac{1}{(4\pi Dt)^{n/2}} \frac{\partial}{\partial t} \left(e^{-\frac{\|\underline{x}\|^2}{4Dt}} \right) \\ &= -\frac{n}{2} \left((4\pi Dt)^{-n/2-1} \right) (4\pi D) e^{-\frac{\|\underline{x}\|^2}{4Dt}} + \frac{1}{(4\pi Dt)^{n/2}} \left(e^{-\frac{\|\underline{x}\|^2}{4Dt}} \right) \left(\frac{\|\underline{x}\|^2}{4Dt^2} \right) \\ &= \frac{1}{(4\pi Dt)^{n/2}} e^{-\frac{\|\underline{x}\|^2}{4Dt}} \left[-\frac{n}{2t} + \frac{\|\underline{x}\|^2}{4Dt^2} \right] \\ &= \Gamma_D(t,\underline{x}) \left[-\frac{n}{2t} + \frac{\|\underline{x}\|^2}{4Dt^2} \right] \end{split}$$

For the derivative with respect to x^i :

$$\begin{split} \Gamma_{x^i} &= \frac{1}{(4\pi Dt)^{n/2}} \frac{\partial}{\partial x^i} \left(e^{-\frac{\|\underline{x}\|^2}{4Dt}} \right) \\ &= \Gamma_D(t,\underline{x}) \left[-\frac{2x^i}{4Dt} \right] \\ \Longrightarrow & \Gamma_{x^i x^i} = \frac{\partial}{\partial x^i} \left(\Gamma_D(t,\underline{x}) \right) \left[-\frac{2x^i}{4Dt} \right] + \Gamma_D(t,\underline{x}) \frac{\partial}{\partial x^i} \left(-\frac{2x^i}{4Dt} \right) \\ &= \Gamma_D(t,\underline{x}) \left[\frac{2x^i}{4Dt} \right]^2 - \frac{2}{4Dt} \Gamma_D(t,\underline{x}) \\ &= \Gamma_D(t,\underline{x}) \left[\frac{(x^i)^2}{4D^2t^2} - \frac{1}{2Dt} \right] \\ \Longrightarrow & D\Delta\Gamma = \Gamma_D(t,\underline{x}) \left[\frac{\|\underline{x}\|}{4Dt^2} - \frac{n}{2t} \right] \end{split}$$

so as required $\Gamma_t = D\Delta\Gamma$

4. Find an explicit formula for the solution of the global Cauchy problem:

$$\begin{cases} u_t = Du_{xx} + bu_x + cu, & x \in \mathbb{R}, t > 0 \\ u(0, x) = g(x), & x \in \mathbb{R} \end{cases}$$

where D, b, c are constant coefficients. Show that if c < 0 and g is bounded:

$$\lim_{t \to \infty} u(t, x) = 0$$

You might want to pick h, k such that:

$$v(x,t) = u(x,t)e^{hx+kt}$$

solves the heat equation:

$$v_t = Dv_{xx}$$

By the hint, define:

$$v(x,t) = u(x,t)e^{hx+kt}$$

We computes its partial derivatives:

$$v_{t} = kue^{hx+kt} + u_{t}e^{hx+kt} = e^{hx+kt}(ku + u_{t})$$

$$v_{x} = hue^{hx+kt} + u_{x}e^{hx+kt} = e^{hx+kt}(hu + u_{x})$$

$$v_{xx} = he^{hx+kt}(hu + u_{x}) + e^{hx+kt}(hu_{x} + u_{xx}) = e^{hx+kt}(h^{2}u + 2hu_{x} + u_{xx})$$

In particular, if we want $v_t = Dv_{xx}$, we require that:

$$ku + u_t = D(h^2u + 2hu_x + u_{xx})$$

$$\implies u_t = Du_{xx} + (2Dh)u_x + (Dh^2 - k)u$$

But u solves the PDE:

$$u_t = Du_{xx} + bu_x + cu$$

so in particular:

$$b = 2Dh \implies h = \frac{b}{2D}$$

$$c = Dh^2 - k \implies k = Dh^2 - c = \frac{b^2 - 4Dc}{4D}$$

Now, v solves the heat equation, and:

$$v(0,x) = g(x) \exp\left(\frac{bx}{2D}\right) \implies |v(0,x)| \le \sup_{x \in \mathbb{R}} |g| \exp\left(\frac{bx}{2D}\right)$$

Hence, since g is bounded, it follows that by the representation Theorem, we can write:

$$v(t,x) = g(x) \exp\left(\frac{bx}{2D}\right) * \Gamma_D(t,x) = \int_{\mathbb{R}} g(y) \exp\left(\frac{by}{2D}\right) \Gamma(x-y,t) dy$$

But then, since $v = ue^{hx+kt}$:

$$u(t,x) = \exp\left(-\left\lceil\frac{bx}{2D} + \frac{(b^2 - 4Dc)t}{4D}\right\rceil\right) \int_{\mathbb{R}} g(y) \exp\left(\frac{by}{2D}\right) \Gamma(x - y, t) dy$$

Now, provided that c < 0, then:

$$\exp\left(-\left[\frac{bx}{2D} + \frac{(b^2 - 4Dc)t}{4D}\right]\right) \to 0$$

(since $b^2 - 4Dc$ will be positive).

Using the exponential bound for $\int_{\mathbb{R}} g(y) \exp\left(\frac{by}{2D}\right) \Gamma(x-y,t) dy$ as a solution to the heat equation, we can then see that as required $u(t,x) \to 0$.

5. In this problem you will consider PDEs on the set $(t,x) \in [0,\infty) \times \mathbb{R}^n$. You may assume that all of the functions involved are sufficiently differentiable. Let \mathcal{L} be a linear differential operator of the form:

$$\mathcal{L} = \partial_t - \Delta$$

Suppose that we want to solve the inhomogenous problem:

$$\begin{cases} \mathcal{L}u = f(t, \underline{x}), & \underline{x} \in \mathbb{R}^n, t > 0 \\ u(0, \underline{x}) = 0, & \underline{x} \in \mathbb{R}^n \end{cases}$$

Show that the inhomogenous problem is oslved by:

$$v(t,x) = \int_{s=0}^{s=t} v_s(t-x,x)dx$$

where each v_s solves the following homogeneous IVP:

$$\begin{cases} \mathcal{L}v_s = 0, & \underline{x} \in \mathbb{R}^n, t > 0 \\ v_s(0, \underline{x}) = f(t, x), & \underline{x} \in \mathbb{R}^n \end{cases}$$

v is known as *Duhamel's Principle*.

6. Let u be a $C^2(\Omega) \cap C(\bar{\Omega})$ solution to the elliptic equation:

$$a(x,y)u_{xx} + b(x,y)u_{yy} = 0$$

in a bounded domain $\Omega \subset \mathbb{R}^2$. Here, a, b are continuous, positive functions in Ω . Prove that:

$$\max_{\Omega} u = \max_{\partial \Omega} u$$

Hint: Consider the auxiliary function:

$$w(x,y) = u(x,y) + \varepsilon((x-x_0)^2 + (y-y_0)^2)$$

near a possible maximum points $(x_0, y_0) \in \Omega$, where $\varepsilon > 0$. Show that:

$$u(x,y) \le \max_{\partial \Omega} u + \varepsilon C_0, \qquad (x,y) \in \Omega$$

where $C_0 > 0$ is independent of ε .

Let

$$w(x,y) = u(x,y) + \varepsilon((x - x_0)^2 + (y - y_0)^2)$$

. Define:

$$C(x,y) = ((x-x_0)^2 + (y-y_0)^2)$$

We now compute:

$$\begin{split} a(x,y)w_{xx} + b(x,y)w_{yy} &= a(x,y)\frac{\partial^2}{\partial x^2}(u(x,y) + \varepsilon((x-x_0)^2 + (y-y_0)^2)) \\ &+ b(x,y)\frac{\partial^2}{\partial y^2}(u(x,y) + \varepsilon((x-x_0)^2 + (y-y_0)^2)) \\ &= a(x,y)u_{xx} + 2a(x,y)\varepsilon + b(x,y)u_{yy} + 2b(x,y)\varepsilon \\ &= 2\varepsilon(a(x,y) + b(x,y)) \end{split}$$

But notice ε , a(x,y), b(x,y) > 0, so:

$$a(x,y)w_{xx} + b(x,y)w_{yy} > 0$$

Now, assume $\exists \underline{x}_M = (x_M, y_M) \in \Omega$, such that \underline{x}_M is a maximum of w. Then, consider the Hessian:

$$H = \begin{pmatrix} w_{xx} & w_{xy} \\ w_{yx} & w_{yy} \end{pmatrix}$$

Since \underline{x}_M is a **maximum**, it follows by the Second Derivative Test that at \underline{x}_M :

$$|H(x_M,y_M)| = w_{xx}(x_M,y_M)w_{yy}(x_M,y_M) - (w_{xy}(x_M,y_M))^2 > 0$$

and:

$$w_{xx}(x_M, y_M) < 0$$
 $w_{yy}(x_M, y_M) < 0$

However, this would imply that:

$$a(x_m, y_m)w_{xx}(x_M, y_M) + b(x_m, y_m)w_{yy}(x_M, y_M) < 0$$

since a, b > 0. This contradicts the fact that $a(x, y)w_{xx} + b(x, y)w_{yy} > 0$, so no such (x_M, y_M) must exist.

Hence, if w attains a maximum, it must be within $\partial\Omega$. Thus:

$$w(x,y) \le \max_{\Omega} w = \max_{\Omega} (u + \varepsilon C(x,y)) \le \left(\max_{\Omega} u\right) + \varepsilon C_0 \le \left(\max_{\partial \Omega} u\right) + \varepsilon C_0$$

where we have defined:

$$C_0 = \max_{\Omega} ((x - x_0)^2 + (y - y_0)^2)$$

Here we have used the Ω is a **bounded** domain to ensure that we have a bound on the ε term.

Moreover, we have that on Ω :

$$w(x,y) = u(x,y) + \varepsilon((x-x_0)^2 + (y-y_0)^2) \implies w(x,y) \ge u(x,y)$$

with equality at (x_0, y_0) . Thus, it follows that:

$$\max_{\Omega} u \leq \max_{\Omega} w \leq \max_{\partial \Omega} u + \varepsilon C_0$$

But since ε is an arbitrary positive constant, and $C_0 > 0$ is independent of ε , in particular it must be the case that as $\varepsilon \to 0$ we obtain the desired equality:

$$\max_{\Omega} u = \max_{\partial \Omega} u$$