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1 The Weak Maximum Principle

1.1 Theorem: The Weak Maximum Principle

Let Ω ⊂ Rn be a domain (open and connected subset). Recall the space-
time cylinder:

QT = (0, T )× Ω

and the parabolic boundary:

∂pQT = {0} × Ω̄ ∪ (0, T ]× ∂Ω

Let w ∈ C1,2(QT ) ∩ C(Q̄T ) be a solution to the heat equation:

wt −D∆w = f

Then:

1. if f ≤ 0, w(x, t) achieves its maximum in the region Q̄T at one or
more points of the parabolic boundary ∂pQT . Then, w is a
subsolution, and if w is strictly negative on ∂pQT , then w is
strictly negative on Q̄T .

2. if f ≥ 0, w(x, t) achieves its minimum in the region Q̄T at one or
more points of the parabolic boundary ∂pQT . Then, w is a
supersolution, and if w is strictly positive on ∂pQT , then w is
strictly positive on Q̄T .

1.2 Intuition on the Weak Maximum Principle

The gist of the weak maximum principle is that the parabolic boundary is what defines where the maxi-
mum/minimum of the solution to the heat equation will be.

In one dimension, the heat equation is simply:

wt −Dwxx = f

Lets consider an even simpler scenario:
−wxx = f

1 f ≤ 0

The heat equation becomes:
−wxx ≤ 0 =⇒ wxx ≥ 0

In other words, w will be convex (we will have w ≥ mx + b, so w is a curve which is always dominate its
tangent line):
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Hence, intuitively we see that the convex nature of the curve guarantees that at least one of the endpoints
leads to a maximum (in this case on the left boundary).

2 f ≥ 0

The heat equation becomes:
−wxx ≥ 0 =⇒ wxx ≤ 0

In other words, w will be concave (we will have w ≤ mx+ b, so w is a curve which is always dominated by
its tangent line):

T

x

t

Hence, intuitively we see that the concave nature of the curve guarantees that at least one of the endpoints
leads to a minimum (in this case on the right boundary).

3 f = 0

The heat equation becomes:
−wxx = 0 =⇒ wxx = 0

In other words, w will be a straight line w = mx+ b:
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Hence, intuitively we see that w will be monotone, so it attains both a maximum and a minimum at the
endpoints.

1.3 Proving the Weak Maximum Principle

Proof. We shall prove the Weak Maximum Principle when the spacetime dimension is 2 (so x ∈ R). We will
also only consider the case f ≤ 0, since f ≥ 0 is analogous.

Let ε > 0, and let w be a solution to the heat equation and define the function:

u = w − εt ≤ w t ∈ (0, T )

If we can derive information about the behaviour of u, we can then take the limit as ε → 0+ to obtain
information about w.

We begin by plugging in u into the heat equation:

ut −Duxx = (wt − ε)−Dwxx

= (wt −Dwxx)− ε

= f − ε

< 0

since f ≤ 0 and ε > 0.

We now seek to determine the maximum of u. For this, consider the spacetime cylinder confining u given
by QT−ε, and assume that u attains a maximum in Q̄T−ε at (t0, x0) ∈ ∂pQT−ε.

We proceed by contradiction, and assume that (t0, x0) ∈ QT−ε. We can assume that 0 < t0 ≤ T − ε,
since if t0 = 0, then the maximum is attained on {0} × Ω̄, which is part of the parabolic boundary ∂pQT−ε.
Moreover, we must have that x0 ∈ Ω, since if x0 ∈ Ω̄ then again it is part of the parabolic boundary

If (t0, x0) is a maximum, then we will have:

ux(t0, x0) = 0

and:
ut(t0, x0) ≥ 0
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with equality when t0 = T − ε (since t = t0 is at the boundary of QT−ε, u can attain a maximum at (t0, x0)
on QT−ε, but still be increasing for t > T − ε, so the gradient need not be 0, it can be positive).

Now, recall Taylor’s Remainder Theorem, which allows us to approximate a function with a (truncated)
Taylor series:

u(t0, x) = u(t0, x0) + ux(t0, x0)(x− x0) + uxx(t0, x
∗)
(x− x0)

2

2

where x∗ is a point in the neighbourhood of x0 (if this proof were for higher dimensions, then we would use
Hessians, instead of derivatives).

But if we rearrange, noting the fact that ux(t0, x0) = 0 we get:

u(t0, x)− u(t0, x0) = uxx(t0, x
∗)
(x− x0)

2

2

But since u(t0, x0) is a maximum:

u(t0, x0) ≥ u(t0, x) =⇒ uxx(t0, x
∗)
(x− x0)

2

2
≤ 0

Since (x−x0)
2

2 ≥ 0 for all x, this is only possible if uxx(t0, x
∗) ≤ 0. Thus, taking x∗ → x0 implies:

uxx(t0, x0) ≤ 0

Thus, since ut(x0, t0) ≥ 0 and uxx(t0, x0) ≤ 0 it follows that:

ut(x0, t0)−Duxx(t0, x0) ≥ 0

However, this is a direct contradiction with the fact that:

ut(x0, t0)−Duxx(t0, x0) = f − ε < 0

Thus, if (t0, x0) ∈ QT−ε, it can’t be a maximum of u; thus, any maximum of u must lie in the parabolic
boundary ∂pQT−ε.

So now lets consider maxima of w. From definition, u ≤ w. Moreover, by definition ∂pQT−ε ⊂ ∂pQT , so
by definition any maximum in ∂pQT−ε must lie in ∂pQT too. Hence, we have the following inequality:

max
Q̄T−ε

u = max
∂pQT−ε

u ≤ max
∂pQT

u ≤ max
∂pQT

w

Now, we also have that:
w ≤ u+ εT

since u = w − εt with t ∈ (0, T ). Hence, the maximum of w will be bounded above by the maximum of
u+ εT :

max
Q̄T−ε

w ≤ max
Q̄T−ε

(u+ εT ) = max
Q̄T−ε

u+ εT ≤ max
∂pQT

w + εT

But now, since ∂pQT is a parabolic boundary, it is clear that:

max
∂pQT

w ≤ max
Q̄T

w

However, using the uniform continuity of w, we can take the limit as ε → 0+ such that:

max
Q̄T−ε

w ≤ max
∂pQT

w + εT

=⇒ lim
ε→0+

(
max
Q̄T−ε

w

)
≤ lim

ε→0+

(
max
∂pQT

w + εT

)
=⇒ max

Q̄T

w ≤ max
∂pQT

w
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In conclusion, we must thus have equality:

max
Q̄T

w = max
∂pQT

w

which is what we required.

1.4 Corollary: Comparison Principle and Stability

This corollary allows us to compare 2 different solutions to the heat equation, given that they have (possibly)
different inhomogeneous terms.

Suppose v, w are solutions to the heat equations:

vt −Dvxx = f

wt −Dwxx = g

Then:

1. Comparison: if v ≥ w on ∂pQT and f ≥ g, then v ≥ w on all of
QT .

2. Stability:

max
Q̄T

|v − w| ≤ max
∂pQT

|v − w|+ Tmax
Q̄T

|f − g|

Proof. Define:
u = w − v

u also solves the heat equation, and by linearity:

ut −Duxx = g − f ≤ 0

since f ≥ g.

1 Comparison

Now, the Weak Maximum Principle applies, which implies that u attains a maximum on ∂pQT . But
since v ≥ w on ∂pQT , we have that u ≤ 0 on the parabolic boundary, so it follows that u ≤ 0 on all of QT ,
so v ≥ w always, as required.

2 Stability

Define:
M = max

Q̄T

|f − g|
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u = w − v − tM

Then:
ut −Duxx = (g − f)−M ≤ 0

Hence, the Weak Maximum Principle applies to u, and:

max
Q̄T

u = max
∂PQT

u

Moreover:
max
Q̄T

(w − v) = max
Q̄T

(w − v − tM) + max
Q̄T

tM ≤ max
∂PQT

u+ Tmax
Q̄T

|f − g|

Here it is claimed that:

max
∂PQT

u ≤ max
∂PQT

|w − v|

Thus, it follows that:
max
Q̄T

(w − v) ≤ max
∂PQT

|w − v|++Tmax
Q̄T

|f − g|

If we define u = v − w, we similarly get:

max
Q̄T

(v − w) ≤ max
∂PQT

|w − v|++Tmax
Q̄T

|f − g|

So we have that:
max
Q̄T

|w − v| ≤ max
∂PQT

|w − v|++Tmax
Q̄T

|f − g|

as required.

2 The Fundamental Solution to the Heat Equation

2.1 The Fundamental Solution to the Homogeneous Heat Equation

2.1.1 Definition: The Fundamental Solution to the Inhomogeneous Heat Equation

Consider the inhomogeneous heat equation:

ut −D∆u = f

The fundamental solution to this is:

ΓD(t, x) =
1

(4πDt)n/2
e−

|x|2
4Dt , t > 0, x ∈ Rn

where:

|x|2 =
n∑

i=1

(xi)2
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2.1.2 Lemma: The Fundamental Solution Solves the Homogeneous Heat Equation

The fundamental solution ΓD(t, x) solves the homogeneous heat
equation for all x ∈ Rn, t > 0.

2.1.3 Lemma: Properties of the Fundamental Solution

The fundamental solution ΓD(t, x) satisfies the following:

1.
x ̸= 0 =⇒ lim

t→0+
ΓD(t, x) = 0

2.
x = 0 =⇒ lim

t→0+
ΓD(t, x) = ∞

3.

∀t > 0,

∫
Rn

ΓD(t, x)d
nx = 1

2.1.4 Definition: The Delta Distribution

The delta distribution (Dirac delta function) δ centered at 0 acts
on functions ϕ(x) via:

⟨δ, ϕ⟩ = ϕ(0)

More generally:
⟨δ, ϕ(x− y)⟩ = ϕ(x)

which follows by defining:

φ(y) = ϕ(x− y)

so:
⟨δ, ϕ(x− y)⟩ = ⟨δ, φ⟩ = φ(0) = ϕ(x)
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2.1.5 Lemma: The Fundamental Solution is a Delta Distribution at the Limit

Suppose that:

• ϕ(x) is continuous on Rn

•
∃a, b ≥ 0 : |ϕ(x)| ≤ aeb|x|

2

Then:

lim
t→0+

∫
Rn

ΓD(t, x)ϕ(x) d
nx = ϕ(0)

That is, at t = 0, ΓD(t, x) behaves like the delta distribution centered
at 0:

lim
t→0+

ΓD(t, x) = δ(x)

Proof. Since the integral of the fundamental solution is 1 for t > 0, we get the following identity:

ϕ(0) = (ϕ(x) + ϕ(0)− ϕ(x))

∫
Rn

ΓD(t, x)dnx =

∫
Rn

ΓD(t, x)ϕ(x)dnx+

∫
Rn

ΓD(t, x)(ϕ(0)− ϕ(x))dnx

Now, let ε > 0, and define a ball B of radius R centered at 0, such that:

∀x ∈ B, |ϕ(0)− ϕ(x)| ≤ ε

(since ϕ is continuous, ϕ(x) can be made to be arbitrarily close to ϕ(0) by choosing an x arbitrarily close 0)

Now, if BC denotes the complement of B, such that:

Rn = B ∪BC

then we can derive a bound for the second term in the equality above:∣∣∣∣∫
Rn

ΓD(t, x)(ϕ(0)− ϕ(x))dnx

∣∣∣∣ = ∣∣∣∣∫
B

ΓD(t, x)(ϕ(0)− ϕ(x))dnx+

∫
BC

ΓD(t, x)(ϕ(0)− ϕ(x))dnx

∣∣∣∣
≤

∫
B

ΓD(t, x)|ϕ(0)− ϕ(x)|dnx+

∫
BC

ΓD(t, x)|ϕ(0)− ϕ(x)|dnx

≤
∫
B

ΓD(t, x)|ϕ(0)− ϕ(x)|dnx+

∫
BC

ΓD(t, x)(|ϕ(0)|+ |ϕ(x)|dnx

≤ ε

∫
B

ΓD(t, x)dnx+ |ϕ(0)|
∫
BC

ΓD(t, x)dnx+

∫
BC

ΓD(t, x)|ϕ(x)|dnx

Using the estimate
∫
B
ΓD(t, x)dnx ≤ 1, it thus follows that:∣∣∣∣∫

Rn

ΓD(t, x)(ϕ(0)− ϕ(x))dnx

∣∣∣∣ ≤ ε+ |ϕ(0)|
∫
BC

ΓD(t, x)dnx+

∫
BC

ΓD(t, x)|ϕ(x)|dnx
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Hence, we have the bound:

ϕ(0) =

∫
Rn

ΓD(t, x)ϕ(x)dnx+

∫
Rn

ΓD(t, x)(ϕ(0)− ϕ(x))dnx

=⇒
∣∣∣∣ϕ(0)− ∫

Rn

ΓD(t, x)ϕ(x)dnx

∣∣∣∣ ≤ ε+ |ϕ(0)|
∫
BC

ΓD(t, x)dnx+

∫
BC

ΓD(t, x)|ϕ(x)|dnx

Now, if we can show that as t → 0+:

|ϕ(0)|
∫
BC

ΓD(t, x)dnx+

∫
BC

ΓD(t, x)|ϕ(x)|dnx → 0

then we will have proven the claim that:

lim
t→0+

∫
Rn

ΓD(t, x)ϕ(x) dnx = ϕ(0)

We show that this is true for the expression:∫
BC

ΓD(t, x)|ϕ(x)|dnx

since the working will be identical for the expression |ϕ(0)|
∫
BC ΓD(t, x)dnx (we can think of ϕ(0) as a

constant function ϕ bounded with b = 0).

Now, we can employ the bound on ϕ:

|ϕ(x)|ΓD(t, x) ≤ aeb|x|
2 1

(4πDt)n/2
e−

|x|2
4Dt

=
a

(4πDt)n/2
e−|x|2( 1

4Dt−b)

So now let:

|z|2 = |x|2
(

1

4Dt
− b

)
Then:

d

dxi
|z|2 =

d

dxi

(
|x|2

(
1

4Dt
− b

))

=⇒ d

dxi

 n∑
j=1

(zj)2

 =
d

dxi

(
1

4Dt
− b

) n∑
j=1

(xj)2


=⇒ 2

dzi

dxi
= 2

(
1

4Dt
− b

)
xi

=⇒ dzi

dxi
=

(
1

4Dt
− b

)
xi

Hence:

dnz =

(
1

4Dt
− b

)n/2

dnx

(This follows by the fact that we are going to have nested integrals over the varibables xi, and for each we

are multiplying the result of the integral by constant
√

1
4Dt − b n times.)
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So:

dnx =

(
1

1
4Dt − b

)n/2

dnz

Notice, this change of variables will be allowed so long as:

1

4Dt
− b > 0 ⇐⇒ t <

1

4Db

which is fine, since t → 0+, so t can always be made to be smaller than this quantity.

Going back to the integral, we no longer integrate over:

|x| ≥ R

(since R is the radius of B, and we integrate over x ∈ BC) but rather:

|z| ≥ R

√
1

4Dt
− b

Thus: ∫
BC

ΓD(t, x)|ϕ(x)|dnx ≤
∫
BC

a

(4πDt)n/2
e−|x|2( 1

4Dt−b)dnx

=
a

(4πDt)n/2

∫
|z|≥R

√
1

4Dt−b

e−|z|2
(

1
1

4Dt − b

)n/2

dnz

=
a(

4πDt
(

1
4Dt − b

))n/2 ∫
|z|≥R

√
1

4Dt−b

e−|z|2dnz

=
a

(π − 4bπDt)n/2

∫
|z|≥R

√
1

4Dt−b

e−|z|2dnz

But now, notice that:

lim
t→0

R

√
1

4Dt
− b = ∞

That is, the limits of integration become infinitesimally small; thus, even if a
(π−4bπDt)n/2 → ∞, the integral

goes to 0 “quicker”, so we deduce that:

lim
t→0+

∫
BC

ΓD(t, x)|ϕ(x)|dnx = 0

Hence, it follows that since:∣∣∣∣ϕ(0)− ∫
Rn

ΓD(t, x)ϕ(x)dnx

∣∣∣∣ ≤ ε+ |ϕ(0)|
∫
BC

ΓD(t, x)dnx+

∫
BC

ΓD(t, x)|ϕ(x)|dnx

then

lim sup
t→0+

∣∣∣∣ϕ(0)− ∫
Rn

ΓD(t, x)ϕ(x)dnx

∣∣∣∣ = ε

so since ε is an arbitrary positive constant:

lim
t→0+

∣∣∣∣ϕ(0)− ∫
Rn

ΓD(t, x)ϕ(x)dnx

∣∣∣∣ = 0

as required.
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2.2 The Convolution

2.2.1 Definition: The Convolution

Let f, g be functions on Rn. Define the convolution as the following
function:

(f ∗ g)(x) =
∫
Rn

f(y)g(x− y)dny

One can interpret the convolution as an averaging, whereby f is replaced
by its average value, weighted by g at each point.

2.2.2 Lemma: Properties of the Convolution

1. The convolution is commutative:

(f ∗ g)(x) = (g ∗ f)(x)

2. The convolution is associative:

f ∗ (g ∗ h) = (f ∗ g) ∗ h

3. The delta distribution is the identity element:

(f ∗ δ)(x) = f(x)

Proof. 1 Commutative

Define a new variable z = x− y. Then:
dnz = −dny

(f ∗ g)(x) =
∫
Rn

f(y)g(x− y)dny

= −
∫ z(∞)

z(−∞)

f(x− z)g(z)dnz

=

∫ z(−∞)

z(∞)

f(x− z)g(z)dnz

=

∫
Rn

g(z)f(x− z)dnz

= (g ∗ f)(x)
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2 Associative

This follows by using Fubini’s Theorem, which allows us to exchange the order of integration. Check this
StackExchange post for an explicit demonstration.

3 Identity

(f ∗ δ)(x) =
∫
Rn

f(y)δ(x− y)dny

Now, δ is characterised by “spiking” to infinity around its axis of symmetry, and being 0 elsewhere. In other
words, for some ε > 0, we will have:∫

Rn

f(y)δ(x− y)dny = f(x)

∫ x+ε

x−ε

δ(x− y)dny = f(x)

where we use the fact that δ integrates to 1, and that f will be “constant” for y ∈ [x− ε, x+ ε].

2.3 Solving the Global Cauchy Problem via the Fundamental Solution

2.3.1 Proposition: Differentiation Under the Integral

Let I(a, b) be a function on R× R, and let b0 ∈ R. Then if:

1. ∀b in a neighbourhood of b0∫
R
|I(a, b)|da < ∞

2. there exists a neighbourhood N of b0 such that for almost every a
∂bI(a, b) exists for b ∈ N (that is, the derivative at b is undefined at
countably many points)

3. there exists a function U(a) (defined for almost every a) such that if
b ∈ N :

|∂bI(a, b)| ≤ U(a)

∫
R
U(a)da < ∞

Then the function:

J(b) =

∫
R
I(a, b)da

is differentiable near b0, and:

∂bJ(b) =

∫
R
∂bI(a, b)da

The same applies if I(a, b) ∈ Rm × Rn.
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2.3.2 Theorem: The Fundamental Solution & Solving the Homogeneous Heat Equation with
Global Cauchy Conditions

Let g(x) be a continuous function in Rn, such that:

∃a, b > 0, |g(x)| < aeb|x|
2

Then, there exists a solution u(t, x) to the homogeneous heat equa-
tion:

ut −D∆u = 0, t ∈ [0, T ), x ∈ Rn

u(0, x) = g(x), x ∈ Rn

where:

T =
1

4Db

In particular:

u(t, x) = [g(ξ) ∗ ΓD(t, ξ)](x)

=

∫
Rn

g(y)ΓD(t, x− y)dny

=
1

(4πDt)n/2

∫
Rn

g(y)e−
|x−y|2
4Dt dny

where u(t, x) is infinitely differentiable on the set (0, T )× Rn.
Moreover, for each compact subinterval [0, T ′] ⊂ [0, T )]:

∃A,B > 0 : ∀(t, x) ∈ [0, T ′]× Rn |u(t, x)| ≤ AeB|x|2

and u(t, x) is the unique solution in the class of functions verifying this
bound.
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The above demonstrates 2 interesting properties of u(t, x):

1. u is smooth, even if g is just continuous

2. the solution:

u(t, x) =
1

(4πDt)n/2

∫
Rn

g(y)e−
|x−y|2
4Dt dny

propagates at infinite speed: at t = 0 we can think of the solution
as being “concentrated” at g(x); as soon as t > 0, u takes on non-zero
values everywhere on Rn (thus, we have information on what happens
at every point in the plane).

Proof. This proof has 3 steps:

1. Verifying the bound on u(t, x)

2. Verifying that u(t, x) solves the homogeneous heat equation

3. Verifying that u(t, x) satisfies the initial condition u(0, x) = g(x)

We shall only do this for when n = 1 dimension, when x ∈ R.

1 Bounded Solution

Notice:
(|x| − |y|)2 = x2 − |2xy|+ y2

Since (|x| − |y|)2 ≥ 0 this implies:
x2 + y2 ≥ |2xy|

Furthermore, setting x = x
√
ε−1, y = y

√
ε for ε > 0 we get:

|2xy| = ε−1x2 + εy2

Moreover:
|x− y|2 = (x− y)2 = x2 − 2xy + y2 ≥ 0

Since this is always positive, we must have that:

(x− y)2 ≤ x2 + |2xy|+ y2

(if xy ≤ 0, then we have equality, and if xy < 0, then we are subtracting a positive amount, so the inequality
holds). Hence, we can bound:

|x− y|2 ≤ x2 + ε−1x2 + εy2 + y2 = (1 + ε−1)x2 + (1 + ε)y2

Now, using the bound on g:

|g(x)| < aeb|x|
2
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we get that:

|g(x− y)| < aeb|x−y|2

≤ aeb((1+ε−1)x2+(1+ε)y2)

= aeb(1+ε−1)x2

eb(1+ε)y2

Then we can estimate u via:

|u(t, x)| = |[g(ξ) ∗ ΓD(t, ξ)](x)|
= |[ΓD(t, ξ) ∗ g(ξ)](x)|

=

∣∣∣∣∫
R
ΓD(t, y)g(x− y)dy

∣∣∣∣
≤

∫
R
ΓD(t, y)|g(x− y)|dy

≤
∫
R
ΓD(t, y)aeb(1+ε−1)x2

eb(1+ε)y2

dy

=
1

(4πDt)1/2
aeb(1+ε−1)x2

∫
R
e−

y2

4Dt eb(1+ε)y2

dy

=
1

(4πDt)1/2
aeb(1+ε−1)x2

∫
R
e−y2[ 1

4Dt−b(1+ε)]dy

Now, define a new variable z via:

z2 = y2
[

1

4Dt
− b(1 + ε)

]
= t−1y2

[
1

4D
− bt(1 + ε)

]
Then:

2z
dz

dy
= 2t−1y

[
1

4D
− bt(1 + ε)

]
=⇒ dz

dy
=

t−1y
[

1
4D − bt(1 + ε)

]
t−1/2y

[
1
4D − bt(1 + ε)

] 1
2

= t−1/2

[
1

4D
− bt(1 + ε)

] 1
2

so our estimate becomes:

|u(t, x)| ≤ 1

(4πDt)1/2
aeb(1+ε−1)x2

∫
R
e−y2[ 1

4Dt−b(1+ε)]dy

≤ 1

(4πDt)1/2
aeb(1+ε−1)x2

∫
R
e−z2

t1/2
[

1

4D
− bt(1 + ε)

]− 1
2

dz

=
a

(4πD)1/2

[
1

4D
− bt(1 + ε)

]− 1
2

eb(1+ε−1)x2√
π

= AeBx2

as required.

Proving that u is the unique function to satisfy the bound is more challenging.

2 u is a Homogeneous Solution
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Let L be the operator for the heat equation:

L = ∂t −D∂2
x

Recall, u solves the heat equation if:

L[u(t, x)] = 0, t > 0, x ∈ R

Since ΓD(t, x) is a the fundamental solution, then:

L[ΓD(t, x)] = 0

By the proposition on differentiating under the integral, with I = ΓD(t, x) (we can use the fact that ΓD(t, x)
contains a rapidly decaying exponential to prove the boundedness requirements) it follows that:

L[u(t, x)] =
∫
R
g(y)L[ΓD(t, x)]dy = 0

since L[ΓD(t, x)] = 0. Thus, u solves the heat equation.

Moreover, u ∈ C∞ (
(0, T = 1

4Db )× R
)
is obtained by repeatedly differentiating with respect to t and x

under the integral, since ΓD(t, x) is infinitely differentiable in both variables.

3 u Satisfies the Initial Conditions

We now have to show that:
lim
t→0+

u(t, x) = g(x)

This follows from the property of ΓD(t, x) of behaving like δ as t → 0+, and that δ behaves like the identity
under convolution. Explicitly:

lim
t→0+

u(t, x) = lim
t→0+

[g(ξ) ∗ ΓD(t, ξ)](x) = [g ∗ δ](x) = g(x)

so u(t, x) satisfies the initial condition.
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2.3.3 Theorem: Duhamel’s Principle

Let g(x) and T = 1
4Db

be defined as in the theorem above. Moreover, as-
sume that:

f(t, x) ∂if(t, x) ∂i∂jf(t, x), 1 ≤ i, j ≤ n

are continuous, bounded function on [0, T )× Rn.
Then, there exists a unique solution u(t, x) to the inhomogeneous
heat equation:

ut −D∆u = f(t, x), t ∈ [0, T ), x ∈ Rn

u(0, x) = g(x), x ∈ Rn

Furthermore, u(t, x) is given by:

u(t, x) = [ΓD(t, ξ) ∗ g)](x) +
∫ t

0

[ΓD(t− s, ν) ∗ f(s, ν))](x)ds

and:
u ∈ C0([0, T )× R) ∩ C1,2((0, T )× Rn)

2.4 Deriving the Fundamental Solution

2.4.1 Lemma: Solutions to the Heat Equation are Invariant Under Translations and Parabolic
Dilations

Let u(t, x) be a solution to the homogeneous heat equation:

ut −D∆u = 0, (t, x) ∈ [0,∞)× Rn

Let:
A, t0 ∈ R x0 ∈ Rn

Then:
u∗(t, x) = Au(t− t0, x− x0)

is also a solution to the homogeneous heat equation.
Similarly, if λ > 0, the amplified, parabolically scaled function:

u∗(t, x) = Au(λ2t, λx)

is also a solution.

1 Amplified + Translated
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Let u(x, t) be a solution tot he homogeneous heat equation, and consider:

u∗(t, x) = Au(t− t0, x− x0)

Then applying the chain rule:

u∗
t −∆u∗

xx = A(ut(t− t0, x− x0)−∆uxx(t− t0, x− x0)) = 0

2 Amplified + Parabolically Scaled

Let u(x, t) be a solution tot he homogeneous heat equation, and consider:

u∗(t, x) = Au(λ2t, λx)

Then applying the chain rule:

u∗
t −∆u∗

xx = A(λ2ut(λ
2t, λx)− λ2∆uxx(λ

2t, λx)) = 0

2.4.2 Lemma: Total Thermal Energy is Constant for Solutions to the Heat Equation

Let:
u(t, x) ∈ C1,2([0,∞)× Rn)

be a solution to the heat equation:

ut = ∆u

Assume that for fixed t:

lim
|x|→∞

|x|n−1||∇xu(t, x)| = 0

uniformly in x.
Furthermore, that there exists a function:

f(x) ≥ 0

such that:

|ut| ≤ f(x)

∫
Rn

f(x)dnx < ∞

Then, if we define the total thermal energy as:

T (t) =

∫
Rn

u(t, x)dnx

then the total thermal energy of u is constant in time:

T (t) = T (0)
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Proof. Let u be a solution to the homogeneous heat equation:

ut = ∆u

Moreover, let BR(0) be a ball of radius R centered at the origin.

By the hypotheses of the Lemma, we can differentiate the total thermal energy T under the integral
(setting I = u). T:

d

dt
T (t) =

∫
Rn

∂

∂t
u(t, x)dnx

=

∫
Rn

∂

∂t
u(t, x)dnx

=

∫
Rn

∆udnx

= lim
R→∞

∫
BR(0)

∆udnx

Now, recall that:
∇ · (∇f) = ∆f

and the Divergence Theorem:

Let Ω ⊂ R3 be a domain (open, connected subset of Rn). Denote the
boundary/surface of Ω as ∂Ω.
Then: ∫

Ω

∇ · F (x, y, z)dx dy dz =

∫
∂Ω

F (σ) · N̂(σ)dσ

Here:

• N̂(σ) is the unit outward normal vector to the surface ∂Ω

• if ∂Ω ⊂ R3 can be described as:

∂Ω = {(x, y, z) | z = ϕ(x, y)}

then:

dσ =
√
1 + ∥∇ϕ(x, y)∥2dx dy =

√
1 +

(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

dx dy

Thus:

d

dt
T (t) = lim

R→∞

∫
BR(0)

∆udnx

= lim
R→∞

∫
∂BR(0)

∇u(t, σ) · N̂(σ)dσ
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We now apply a change of variables:

σ = Rω =⇒ dσ = Rn−1dω

where ω denotes angular coordinates on the surface of the unit sphere (see this). Thus:

d

dt
T (t) = lim

R→∞

∫
∂BR(0)

Rn−1∇u(t, Rω) · N̂(Rω)dω

Lastly, by assumption:
lim

R→∞
Rn−1||∇xu(t, Rω)| = 0

uniformly, so we can bring the limit inside of the integral, thus:

d

dt
T (t) = 0

as required.

2.4.3 Derivation of the Fundamental Solution

We now derive the Fundamental Solution in 2 spacetime dimensions (so x ∈ R).

Say we have:
u(t, x) = Au(D2λ2t, λx)

We want that the total thermal energy of u and u∗ are equal. We compute:∫
Rn

u∗(t, x)dnx =

∫
Rn

u(D2λ2t, λx)dnx

= Aλ−n

∫
Rn

u(D2λ2t, z)dnz

Since we don’t care about time in the integral, if we choose:

A = λn

we will have that:
u∗(t, x) = λnu∗(D2λ2t, λx)

has the same thermal energy as u.

We begin by introducing the dimensionless variable:

ζ =
x√
Dt

which is invariant under parabolic scaling:

t 7→ λ2t x 7→ λx

We look for a fundamental solution of the form:

ΓD(t, x) =
1√
Dt

V (ζ)

We aim to find V , by exploiting the properties that a fundamental solution should have.
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1 Integral of 1

The fundamental solution satisfies: ∫
Rn

ΓD(t, x)dnx = 1

so:

1 =

∫
R

1√
Dt

V

(
x√
Dt

)
dx

=

∫
R
V (ζ)dζ

2 Satisfies Heat Equation

If ΓD(t, x) is to satisfy the heat equation, then:

Γt −DΓxx = 0

If we compute these derivatives:

Γt =
∂

∂t

(
1√
Dt

)
V (ζ) +

1√
Dt

dV

dζ

∂ζ

∂t

= − D

2(Dt)3/2
V (ζ)− 1√

Dt
V ′(ζ)

Dx

2(Dt)3/2

= − 1√
Dt3/2

(
1

2
V (ζ) +

1

2
ζV ′(ζ)

)

Γx =
1√
Dt

dV

dζ

∂ζ

∂x

=
1

Dt
V ′(ζ)

Γxx =
1

Dt

d2V

dζ2
∂ζ

∂x

=
1

(Dt)3/2
V ′′(ζ)

So:

Γt −DΓxx = 0

⇐⇒ − 1√
Dt3/2

(
1

2
V (ζ) +

1

2
ζV ′(ζ)

)
− D

(Dt)3/2
V ′′(ζ) = 0

⇐⇒ − 1√
Dt3/2

(
V ′′(ζ) +

1

2
ζV ′(ζ) +

1

2
V (ζ)

)
= 0

⇐⇒ V ′′(ζ) +
1

2
ζV ′(ζ) +

1

2
V (ζ) = 0
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All this also tells us that if V (ζ) is a solution to the heat equation, so is V (−ζ) (it leads to the same equation).
Thus, we might as well search for an even V . But if V is even, then.

V ′(0) = 0

(V is symmetric about the y-axis, so it must have a critical point at the origin)

With this information, we can now deduce a suitable V . Notice, we can write the ODE above as:

d

dζ

(
V ′(ζ) +

1

2
ζV (ζ)

)
= 0

which implies that ∃k ∈ R such that:

V ′(ζ) +
1

2
ζV (ζ) = k

But if ζ = 0, since V ′(0) = 0, it follows that:
k = 0

so V satisfies the first-order ODE:

V ′(ζ) +
1

2
ζV (ζ) = 0

Now notice that:
d

dζ
lnV (ζ) =

1

V (ζ)
V ′(ζ)

If we rearrange the ODE:

V ′(ζ) +
1

2
ζV (ζ) = 0 =⇒ V ′(ζ)

V (ζ)
= −1

2
ζ

so we can rewrite it as:
d

dζ
lnV (ζ) = −1

2
ζ

Integrating both sides with respect to ζ yields:

lnV (ζ) = −1

4
ζ2 + C =⇒ V (ζ) = Ae−

1
4 ζ

2

To find A, we use the fact that V integrates to 1, which we found in 1 :∫
R
V (ζ)dζ = 1

=⇒
∫
R
Ae−

1
4 ζ

2

dζ = 1

=⇒ A

∫
R
e−

1
4 ζ

2

dζ = 1

Now, let:

u =
1

2
ζ =⇒ du

dζ
=

1

2
so:

2A

∫
R
e−u2

du = 1 =⇒ 2A
√
π = 1 =⇒ A =

1√
4π

Thus, we have that with D = 1:

V (ζ) =
1√
4π

e−
1
4 ζ

2

=
1√
4π

e−
x2

4t

so as required:

ΓD(t, x) =
1√
t
V (ζ) =

1√
4πt

e−
x2

4t
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3 Workshop

1. Let:
S = (0,∞)× (0, 1)

and let:
u ∈ C1,2(S̄)

be the solution of the initial-boundary value problem:
ut − uxx = 0, (t, x) ∈ S

u(0, x) = x(1− x), x ∈ [0, 1]

u(t, 0) = u(t, 1) = 0, t ∈ (0,∞)

Show that:
∀t ≥ 0, x ∈ [0, 1] : u(t, x) = u(t, 1− x)

We first show that v(t, x) = u(t, 1− x) solves the same problem as u. Indeed it satisfies the PDE:

vt − vxx = ut(t, 1− x)− uxx(t, 1− x)

= ut(t, y)− uxx(t, y)

= 0

Similarly, if x ∈ [0, 1]:
v(0, x) = (1− x)(x− (1− x)) = x(1− x) = u(0, x)

and if t ∈ (0,∞):
v(t, 0) = u(t, 1) = 0 v(t, 1) = u(t, 0) = 0

Now, consider the parabolic boundary (we let Ω = (0, 1)):

∂pQT = {0} × Ω̄ ∪ [0, T ]× ∂Ω

By the Comparison Principle, if we can show that u = v on ∂pQT , and given that 0 = 0, we will have
that u = v on all of [0, T ]× [0, 1]. If we then take the limit as T → ∞, we will get that u(t, x) = u(t, 1−x)
for any t ≥ 0. But above we saw that u, v coincide when x = 0, x = 1 and when t ∈ (0, T ], so u = v on
∂pQT as required.

2. Let:
S = (0,∞)× (0, 1)

and let:
u ∈ C1,2(S) ∩ C(S̄)

be the solution of the initial-boundary value problem:
ut − uxx = 0, (t, x) ∈ S

u(0, x) = x(1− x), x ∈ [0, 1]

u(t, 0) = u(t, 1) = k, t ∈ (0,∞), k ∈ R

First, prove that u(t, x) ≥ 0 for (t, x) ∈ S̄. then, find all α > 0, β > 0 such that on S:

u(t, x) ≤ w(t, x) = αx(1− x)e−βt

Finally, show that:
lim
t→∞

u(t, x) = 0

and that the convergence is uniform for x ∈ [0, 1].
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By the Weak Maximum Principle, u attains its maximum and minimum on the parabolic boundary.
Notice, since u is continuous on all of S̄:

lim
t→0

u(t, 0) = u(0, 0) = 0 lim
t→0

u(t, 1) = u(0, 1) = 0

Since u(t, 0), u(t, 1) are constant, it thus follows that:

u(t, 0) = u(t, 1) = 0

Moreover:
u(0, x) = x(1− x) ≥ 0

Hence, it follows that on the parabolic boundary:

u(t, x) ≥ 0

so by the weak maximum principle u(t, x) ≥= for (t, x) ∈ S̄.

Now, consider:
w(t, x) = αx(1− x)e−βt

It will be useful to see the conditions under which w solves the heat equation, as we can then apply the
maximum principle. We thus compute:

wt − wxx = −β(αx(1− x)e−βt)− ∂

∂x
(αe−βt((1− x)− x))

= αe−βt

[
−β(x(1− x))− ∂

∂x
(1− 2x)

]
= αe−βt [2− β(x(1− x))]

If we can show that wt − wxx ≥ 0, then we can apply the Comparison Principle/Maximum Principle.
For this we require that:

2− βmax{x(1− x)} ≥ 0 =⇒ 2− β

4
≥ 0

so:
0 < β ≤ 8

Moreover, to ensure that w ≥ u, on the boundary with t = 0:

x(1− x) ≤ αx(1− x) =⇒ α ≥ 1

Then, by the comparison principle, we must have that u ≤ w on all S.

Moreover, u → 0 uniformly, since:

supu ≤ supw ≤ αe−βt → 0

3. Show that the fundamental solution:

ΓD(t, x) =
1

(4πDt)n/2
e−

∥x∥2
4Dt , t > 0, x ∈ Rn
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is a solution to the homogeneous heat equation:

ut −D∆u = f

when x ∈ Rn, t > 0

This is a simple albeit boring computation:

Γt =
∂

∂t

(
(4πDt)−n/2

)
e−

∥x∥2
4Dt +

1

(4πDt)n/2
∂

∂t

(
e−

∥x∥2
4Dt

)
= −n

2

(
(4πDt)−n/2−1

)
(4πD)e−

∥x∥2
4Dt +

1

(4πDt)n/2

(
e−

∥x∥2
4Dt

)(
∥x∥2

4Dt2

)
=

1

(4πDt)n/2
e−

∥x∥2
4Dt

[
− n

2t
+

∥x∥2

4Dt2

]
= ΓD(t, x)

[
− n

2t
+

∥x∥2

4Dt2

]
For the derivative with respect to xi:

Γxi =
1

(4πDt)n/2
∂

∂xi

(
e−

∥x∥2
4Dt

)
= ΓD(t, x)

[
− 2xi

4Dt

]
=⇒ Γxixi =

∂

∂xi
(ΓD(t, x))

[
− 2xi

4Dt

]
+ ΓD(t, x)

∂

∂xi

(
− 2xi

4Dt

)
= ΓD(t, x)

[
2xi

4Dt

]2
− 2

4Dt
ΓD(t, x)

= ΓD(t, x)

[
(xi)2

4D2t2
− 1

2Dt

]
=⇒ D∆Γ = ΓD(t, x)

[
∥x∥
4Dt2

− n

2t

]
so as required Γt = D∆Γ

4. Find an explicit formula for the solution of the global Cauchy problem:{
ut = Duxx + bux + cu, x ∈ R, t > 0

u(0, x) = g(x), x ∈ R

where D, b, c are constant coefficients. Show that if c < 0 and g is bounded:

lim
t→∞

u(t, x) = 0

You might want to pick h, k such that:

v(x, t) = u(x, t)ehx+kt

solves the heat equation:
vt = Dvxx

By the hint, define:
v(x, t) = u(x, t)ehx+kt
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We computes its partial derivatives:

vt = kuehx+kt + ute
hx+kt = ehx+kt(ku+ ut)

vx = huehx+kt + uxe
hx+kt = ehx+kt(hu+ ux)

vxx = hehx+kt(hu+ ux) + ehx+kt(hux + uxx) = ehx+kt(h2u+ 2hux + uxx)

In particular, if we want vt = Dvxx, we require that:

ku+ ut = D(h2u+ 2hux + uxx)

=⇒ ut = Duxx + (2Dh)ux + (Dh2 − k)u

But u solves the PDE:
ut = Duxx + bux + cu

so in particular:

b = 2Dh =⇒ h =
b

2D

c = Dh2 − k =⇒ k = Dh2 − c =
b2 − 4Dc

4D

Now, v solves the heat equation, and:

v(0, x) = g(x) exp

(
bx

2D

)
=⇒ |v(0, x)| ≤ sup

x∈R
|g| exp

(
bx

2D

)
Hence, since g is bounded, it follows that by the representation Theorem, we can write:

v(t, x) = g(x) exp

(
bx

2D

)
∗ ΓD(t, x) =

∫
R
g(y) exp

(
by

2D

)
Γ(x− y, t)dy

But then, since v = uehx+kt:

u(t, x) = exp

(
−
[
bx

2D
+

(b2 − 4Dc)t

4D

])∫
R
g(y) exp

(
by

2D

)
Γ(x− y, t)dy

Now, provided that c < 0, then:

exp

(
−
[
bx

2D
+

(b2 − 4Dc)t

4D

])
→ 0

(since b2 − 4Dc will be positive).

Using the exponential bound for
∫
R g(y) exp

(
by
2D

)
Γ(x − y, t)dy as a solution to the heat equation, we

can then see that as required u(t, x) → 0.

5. In this problem you will consider PDEs on the set (t, x) ∈ [0,∞)×Rn. You may assume that
all of the functions involved are sufficiently differentiable. Let L be a linear differential
operator of the form:

L = ∂t −∆

Suppose that we want to solve the inhomogenous problem:{
Lu = f(t, x), x ∈ Rn, t > 0

u(0, x) = 0, x ∈ Rn
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Show that the inhomogenous problem is oslved by:

v(t, x) =

∫ s=t

s=0

vs(t− x, x)dx

where each vs solves the following homogeneous IVP:{
Lvs = 0, x ∈ Rn, t > 0

vs(0, x) = f(t, x), x ∈ Rn

v is known as Duhamel’s Principle.

6. Let u be a C2(Ω) ∩ C(Ω̄) solution to the elliptic equation:

a(x, y)uxx + b(x, y)uyy = 0

in a bounded domain Ω ⊂ R2. Here, a, b are continuous, positive functions in Ω. Prove that:

max
Ω

u = max
∂Ω

u

Hint : Consider the auxiliary function:

w(x, y) = u(x, y) + ε((x− x0)
2 + (y − y0)

2)

near a possible maximum points (x0, y0) ∈ Ω, where ε > 0. Show that:

u(x, y) ≤ max
∂Ω

u+ εC0, (x, y) ∈ Ω

where C0 > 0 is independent of ε.

Let
w(x, y) = u(x, y) + ε((x− x0)

2 + (y − y0)
2)

. Define:
C(x, y) = ((x− x0)

2 + (y − y0)
2)

We now compute:

a(x, y)wxx + b(x, y)wyy = a(x, y)
∂2

∂x2
(u(x, y) + ε((x− x0)

2 + (y − y0)
2))

+ b(x, y)
∂2

∂y2
(u(x, y) + ε((x− x0)

2 + (y − y0)
2))

= a(x, y)uxx + 2a(x, y)ε+ b(x, y)uyy + 2b(x, y)ε

= 2ε(a(x, y) + b(x, y))

But notice ε, a(x, y), b(x, y) > 0, so:

a(x, y)wxx + b(x, y)wyy > 0

Now, assume ∃xM = (xM , yM ) ∈ Ω, such that xM is a maximum of w. Then, consider the Hessian:

H =

wxx wxy

wyx wyy


Since xM is a maximum, it follows by the Second Derivative Test that at xM :

|H(xM , yM )| = wxx(xM , yM )wyy(xM , yM )− (wxy(xM , yM ))2 > 0
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and:
wxx(xM , yM ) < 0 wyy(xM , yM ) < 0

However, this would imply that:

a(xm, ym)wxx(xM , yM ) + b(xm, ym)wyy(xM , yM ) < 0

since a, b > 0. This contradicts the fact that a(x, y)wxx + b(x, y)wyy > 0, so no such (xM , yM ) must
exist.

Hence, if w attains a maximum, it must be within ∂Ω. Thus:

w(x, y) ≤ max
Ω

w = max
Ω

(u+ εC(x, y)) ≤
(
max
Ω

u
)
+ εC0 ≤

(
max
∂Ω

u

)
+ εC0

where we have defined:
C0 = max

Ω
((x− x0)

2 + (y − y0)
2)

Here we have used the Ω is a bounded domain to ensure that we have a bound on the ε term.

Moreover, we have that on Ω:

w(x, y) = u(x, y) + ε((x− x0)
2 + (y − y0)

2) =⇒ w(x, y) ≥ u(x, y)

with equality at (x0, y0). Thus, it follows that:

max
Ω

u ≤ max
Ω

w ≤ max
∂Ω

u+ εC0

But since ε is an arbitrary positive constant, and C0 > 0 is independent of ε, in particular it must be
the case that as ε → 0 we obtain the desired equality:

max
Ω

u = max
∂Ω

u
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