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1 Deriving the Heat Equation

Let u(t, x), x ∈ Rn. The heat equation for u is:

ut −D∆u = f(t, x)

where:

• D > 0: diffusion coefficient

• ∆: Laplacian operator:

∆ =
n∑

i=1

∂2
i

1.1 Energy Through a Body

• What 2 physical properties define heat transmission through a body?

– consider a body B ⊂ Rn

– the 2 key factors affecting heat flow through B are:

∗ the (mass) density: typically, as density increases, heat conductivity decreases

ρ ∼ [mass]× [V olume]−1

∗ the thermal energy per unit mass: how much thermal energy is stored within the body,
at a given time and position

e(t, x) ∼ [energy]× [mass]−1

– we also have to assume that the heat is supplied by some external source, at a given rate per unit
mass:

R(t, x) ∼ [energy]× [time]−1 × [mass]−1

• How can we compute the total thermal energy within a body?

– let E(t, V ) denote the energy contained in some volume V ⊂ B of the body

– for some infinitesimal volume δx1δx2 . . . δxn, we can assume that the thermal energy per unit
mass remains constant; then, in this sub-volume, the thermal energy is:

ρe(tx)δx1δx2 . . . δxn

– hence, for the whole volume, we must have:

E(t, V ) =

∫
V

ρe(t, x)dnx

(this is compressed notation for a set of n integrals, one for each of the variables xi)

• What is the rate of change of thermal energy within a body?

– we just differentiate E(t, V )

– assuming E is “nice” and well-behaved, we can differentiate within the integral:

d

dt
E(t, V ) =

d

dt

∫
V

ρe(t, x)dx =

∫
V

ρ∂te(t, x)d
nx
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1.2 Changes in Energy Through a Body

• What 2 factors determine how heat flows through the body?

– we have that: ∫
V

ρ∂te(t, x)d
nx

defines heat flow through B
– we now focus on the 2 factors which we (assume) affects this value:

∗ the rate at which the external source supplies energy

∗ the distribution and flow of heat within the body

• How do we compute the the rate of energy transfer?

– in some infinitesimal volume, the total energy transfer rate per volume is:

ρR(t, x)

– hence, the total rate of energy transfer by the external source is obtained by integrating over V :∫
V

ρR(t, x)dnx ∼ [energy]× [time]−1

• How do we model the flow of heat through the body?

– let q be a heat flux vector, defining how heat flows through the body:

q ∼ [energy]× [time]−1 × [area]−1

– consider the surface ∂V of the volume; if N̂ is a unit outward vector to dσ ⊂ ∂V , then the flow
of heat in the direction of N̂ is:

q · N̂

– thus, the total heat going in to the body through the surface of V is:

−
∫
∂V

q · N̂dσ ∼ [energy]× [time]−1

– if we apply the Divergence Theorem:

−
∫
∂V

q · N̂dσ = −
∫
V

∇ · qdnx

• What relationship must heat flowing through a body satisfy?

– we assume that:

The rate of change of total energy in the sub-volume V is equal to the
rate of heat energy flowing into V + the rate of heat energy supplied by
the external source.

– we then have the following relationship:∫
V

ρ∂te(t, x)d
nx = −

∫
V

∇ · qdnx+

∫
V

ρR(t, x)dnx

– this should hold for any sub-volume V so:

ρ∂te(t, x) = −∇ · q + ρR(t, x)
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1.3 Fourier’s Law

• What is Fourier’s law?

– to convert the above into a PDE, we need to assume a relationship between q (the heat flux) and
u(t, x) (the temperature)

– this is Fourier’s Law:
q(t, x) = −κ∇u(t, x)

– κ is the thermal conductivity

• What is the physical interpretation of Fourier’s Law?

– ∇u(t, x) is the gradient vector, which points in the direction of greatest temperature increase

– thus, Fourier’s Law states that the heat flux is in the direction of greatest temperature increase,
which is perpendicular to level sets of u(t, x) (that is, surfaces of constant temperature, u(t, x9 =
c)

– heat also flows from hot to cold (hence the minus sign)

• Is Fourier’s Law a fundamental law of nature?

– no, it is just a simple, reasonable assumption of how heat flow works

1.4 The Heat Equation

• How can we relate thermal energy distribution through the body e(t, x) with the temper-
ature of the body u(t, x)?

– we assume a simple model:
e = cvu

– cv > 0 is the specific heat at constant volume

– again, this is just a reasonable assumption, not a law of nature

We have all the ingredients:

• ρ∂te(t, x) = −∇ · q + ρR(t, x)

• q(t, x) = −κ∇u(t, x)

• e(t, x) = cvu(t, x)

Thus:

ρ∂te(t, x) = −∇ · q + ρR(t, x)

=⇒ ρcvut(t, x) = −∇ · (−κ∇u(t, x)) + ρR(t, x)

=⇒ ut(t, x) =
κ

ρcv
∆u(t, x) +

R(t, x)

cv

so:

D =
κ

ρcv
f(t, x) =

R(t, x)

cv

Page 5



2 Well-Posedness and Types of Boundary Conditions

• What is a well-posed problem?

– in ODEs, given an IVP, we were always guaranteed a unique solution (if it existed)

– for PDEs, this isn’t always the case

– a PDE is well-posed if we provide some “data”, such that we obtain a unique solution to the
PDE, and the solution depends “continuously” on the data

For the following we consider the case n = 1: a 1 dimensional rod, with endpoints x ∈ [0, L], t ∈ [0, T ],
with heat equation:

ut −Duxx = 0

2.1 Cauchy Boundary Conditions

• What is a Cauchy boundary condition?

– a condition defining the value of u(t, x) at t = 0 for all positions

– for example:
u(0, x) = g(x), ∀x ∈ [0, L]

2.2 Dirichlet Boundary Conditions

• What is a Dirichlet boundary condition?

– a condition defining the value of u(t, x) at the endpoints for all times

– for example:
u(t, 0) = h0(t) u(t, L) = hL(t), ∀t ∈ [0, T ]

2.3 Neumann Boundary Conditions

• What is a Neumann boundary condition?

– a condition defining the inward rate of heat flow at the boundaries (as described by Fourier’s
Law)

– for example:
−ux(t, 0) = h0(t) ux(t, L) = hL(t), ∀t ∈ [0, T ]

2.4 Robin Boundary Conditions

• What is a Robin boundary condition?

– a condition defined by a linear combination of Dirichlet and Neumann conditions

– for example:

−ux(t, 0) + αu(t, 0) = h0(t) ux(t, L) + αu(t, L) = hL(t), ∀t ∈ [0, T ]

2.5 Mixed Boundary Conditions

• What is a mixed boundary condition?

– above we have homogeneous boundary conditions, since they applied to a homogeneous PDE,
and the conditions at the endpoints were of the same type

– a mixed boundary condition uses different conditions at each endpoint (for example, Dirichlet
when x = 0, and Neumann when x = L)
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2.6 Examples of Well-Posed Problems

The following wre well-posed problems, provided we make suitable assumptions for g, h0, hL.


ut −Duxx = 0, t ∈ (0, T ), x ∈ (0, L)

u(0, x) = g(x), x ∈ [0, L] (Cauchy data)

u(t, 0) = h0(t) u(t, L) = hL(t), ∀t ∈ [0, T ] (Dirichlet data)


ut −Duxx = 0, t ∈ (0, T ), x ∈ (0, L)

u(0, x) = g(x), x ∈ [0, L] (Cauchy data)

−ux(t, 0) = h0(t) ux(t, L) = hL(t), ∀t ∈ [0, T ] (Neumann data)


ut −Duxx = 0, t ∈ (0, T ), x ∈ (0, L)

u(0, x) = g(x), x ∈ [0, L] (Cauchy data)

−ux(t, 0) + αu(t, 0) = h0(t) ux(t, L) + αu(t, L) = hL(t) (Robin data)

3 Recap: Fourier Series

3.1 The Inner Product for Functions

Let u(x), v(x) be non-zero function, and consider x ∈ [a, b]. The inner
product of u, v is:

⟨u, v⟩ =
∫ b

a

u(x)v(x) dx

We say 2 u, v are orthogonal if:

⟨u(x), v(x)⟩ = 0
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3.1.1 Orthogonality of sine and cosine

Consider an interval [−L,L]. We have the following properties:

• 〈
cos
(nπx

L

)
, cos

(mπx

L

)〉
=


2L, n = m = 0

L, n = m ̸= 0

0, n ̸= m

• 〈
sin
(nπx

L

)
, sin

(mπx

L

)〉
=

{
L, n = m

0, n ̸= m

• 〈
sin
(nπx

L

)
, cos

(mπx

L

)〉
= 0

In particular, the 2L-periodic functions sin
(
nπx
L

)
, cos

(
mπx
L

)
are mutu-

ally orthogonal.

3.2 Euler-Fourier Coefficients

• What is a Fourier Series?

– consider a 2L periodic function f(x)

– its Fourier Series is:

f(x) =
a0
2

+

∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
– an, bn are known as Fourier coefficients

• How do you compute the Fourier Coefficients?

– we use the inner product, and exploit orthogonality:〈
f(x), cos

(nπx
L

)〉
= anL =⇒ an =

1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx, n ≥ 0

〈
f(x), sin

(nπx
L

)〉
= bnL =⇒ bn =

1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx, n ≥ 1
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3.3 Parseval’s Identity

Let:

f(x) =
a0
2

+
∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
Then:

∥f∥2 = ⟨f, f⟩ = L

(
|a0|2

2
+

∞∑
n=1

|an|2 + |bn|2
)

This can be regarded as an infinite dimensional Pythageorean theo-
rem, and leads to many beautiful identities.

3.4 Convergence of Fourier Series

Here we use the interval [0, 1], with L = 1
2 . Any periodic function on this interval will be periodic on any

other interval.
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Let f ∈ L2([0, 1]); that is:

∥f∥2L2([0,1]) =

∫ 1

0

|f(x)|2dx < ∞

then f(x) can be Fourier Expanded as:

f(x) =
a0
2

+
∞∑
n=1

(an cos (2nπx) + bn sin (2nπx))

where:

an = 2

∫ 1

0

f(x) cos (2nπx) dx, n ≥ 0

bn = 2

∫ 1

0

f(x) sin (2nπx) dx, n ≥ 0

This infinite sum converges in L2:

lim
N→∞

∥∥∥∥∥f −

(
a0
2

+
N∑

n=1

(an cos (2nπx) + bn sin (2nπx))

)∥∥∥∥∥
L2([0,1])

= 0

In fact, on any subinterval [a, b] ⊂ (0, 1), the Fourier Series converges
uniformly:

lim
N→∞

∥∥∥∥∥f − a0
2

+
∞∑
n=1

(an cos (2nπx) + bn sin (2nπx))

∥∥∥∥∥
C0([a,b])

where recall:
∥f∥C0([a,b]) = sup

x∈[a,b]
|f(x)|

4 Solving the Heat Equation

4.1 Separation of Variables

• What is the method of separation of variables?

– a method for solving some types of PDEs

– particularly useful for linear PDEs

• How can the method be applied?

– we assume a solution:
u(x, t) = v(t)w(x)

– plugging this into the PDE, hope that v, w are solutions to solvable ODEs
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4.2 Worked Example: Solution to the homogeneous Heat Equation

We consider the following homogeneous PDE, with Dirichlet conditions:


ut − uxx = 0, t ∈ [0, R], x ∈ [0, 1]

u(0, x) = x, x ∈ [0, 1]

u(t, 0) = 0 u(t, 1) = 0

4.2.1 Separation of Variables

We apply separation of variables, by assuming:

u(t, x) = X(x)T (t)

Then:
ut(t, x) = X(x)T ′(t)

uxx(t, x) = X ′′(x)T (t)

So the PDE becomes:

X(x)T ′(t)−X ′′(x)T (t) = 0 =⇒ T ′

T
=

X ′′

X

But notice, the LHS is just a function of t, whilst the RHS is just a function of x. In other words, if this
relation is true ∀t, x, this can only be possible if ∃λ ∈ R such that:

T ′

T
= λ =

X ′′

X

Thus, we have 2 ODEs:
T ′ = λT

X ′′ = λX

These are known as eigenvalue problems, whereby the λ is an eigenvalue, whilst the functions T,X are
eigenfunctions.

4.2.2 Solving for T

This is a standard separable ODE:

dT

dt
= λT =⇒

∫
1

T
dT =

∫
λdt

So:
ln|T | = λt+ C =⇒ T = Aeλt, A = eC

4.2.3 Solving for X

The characteristic polynomial is:
p(r) = r2 − λ

p(r) = 0 has solutions dependent on the value of λ, so we check each case individually.

1 λ = 0
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Then, the ODE reduces to:

X ′′ = 0 =⇒ X = Bx+ C, B,C ∈ R

Since T ̸= 0, the boundary conditions:
u(t, 0) = u(t, 1) = 0

imply that:
X(0) = X(1) = 0

But notice, this would mean that:
X(0) = C = 0

X(1) = B + C = 0 =⇒ B = 0

so X(x) = 0 - a trivial solution.

2 λ > 0

Then:
p(r) = 0 =⇒ r = ±

√
λ

Letting µ2 = λ, it follows that solutions are of the form:

X(x) = Beµt + Ce−µt

By the boundary conditions:
X(0) = B + C = 0 =⇒ B = −C

X(1) = Beµ + Ce−mu =⇒ C(e−µ − eµ) = 0 =⇒ C = 0

Again, B = C = 0, so X(x) = 0 is the trivial solution.

3 λ < 0

Then, letting −µ2 = λ:
p(r) = 0 =⇒ r = ±iµ

So solutions are of the form:
X(x) = B cos(µx) + C sin(µx)

By the boundary conditions:
X(0) = B = 0

X(1) = C sinµ = 0 =⇒ µ = mπ, m ∈ Z+

Hence, we have infinitely many solutions of the form:

Xm(x) = C sin(µx) = C sin(mπx)

and we require:
λ = −µ2 = −m2π2
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4.2.4 A General Solution via Fourier Series

The infinitely many solutions to the heat equation take the form:

um(t, x) = Dme−m2π2t sin(mπx), Dm ∈ R,m ∈ Z+

Here, the Dm must be such that we can satisfy the initial condition:

u(0, x) = x

To do this, we consider the most general solution, which will be a linear combination of these solutions:

u(t, x) =

∞∑
m=1

amum(t, x) =

∞∑
m=1

Ame−m2π2t sin(mπx), Am = amDm

Then:

u(0, x) = x =⇒
∞∑

m=1

Am sin(mπx) = x

But this is a Fourier Series, so the coefficients Am are just the Fourier coefficients:

Am = 2

∫ 1

0

x sin(mπx)dx

We thus compute, by applying integration by parts with:

u = x du = dx

dv = sin(mπx) v = − 1

mπ
cos(mπx)

so:

Am = 2

∫ 1

0

x sin(mπx)dx

= 2

([
− x

mπ
cos(mπx)

]1
0
+

1

mπ

∫ 1

0

cos(mπx)dx

)
= 2

(
− 1

mπ
cos(mπ) +

1

mπ

[∫ 1

0

sin(mπx)

]1
0

)

=
2 sin(mπ)− cos(mπ)

mπ

=
2

mπ
(−1)m+1

where we have used the fact that:
sin(nπ) = 0, ∀n ∈ Z

cos(nπ) = (−1)n, ∀n ∈ Z
Thus, our general solution to the heat equation becomes:

u(t, x) =

∞∑
m=1

(−1)m+1e−m2π2t 2

mπ
sin(mπx)

Each term um = (−1)m+1e−m2π2t 2
mπ

sin(mπx) is known as a mode of
the solution. Notice that here both the modes and u(t, x) rapidly (exponen-
tially) decay to 0 as t → ∞. However, this is due to the Dirichlet condi-
tions; different, non-zero conditions could make the solution tend to some
non-zero value.
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5 Understanding the Solution to the Heat Equation

We claim:

u(t, x) =

∞∑
m=1

(−1)m+1e−m2π2t 2

mπ
sin(mπx)

is a solution to the PDE. However, we need to verify the behaviour of this solution. In particular:

1. Does the sum even converge?

2. Does the sum solve the heat equation?

3. Does u(t, x) satisfy the boundary conditions?

4. Do we have limt→0+ u(t, x) = u(0, x) = x? We have that u(x, 1) = 0 ̸= 1, so this fails pointwise; the
question is whether u behaves “properly” for all the other x.

5. Is this solution unique, given the initial/boundary conditions?

5.1 Convergence of the Infinite Sum

Intuitively, the presence of e−m2π2t makes it clear that for any t > 0, the series expression for u will converge
uniformly for x ∈ [0, 1].

We verify this formally.
Recall the Weierstrass M-Test:

Let E be a non-empty subset of R. Let

fk : E → R

and suppose that ∃Mk ≥ 0 such that:

∞∑
k=0

Mk < ∞

If |fk(x)| ≤ Mk for all k ∈ N, and x ∈ E, then:

f =
∞∑
k=0

fk

converges absolutely and uniformly on E.

Let:

um = (−1)m+1e−m2π2t 2

mπ
sin(mπx)
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Then, notice that:

|um| = |(−1)m+1e−m2π2t 2

mπ
sin(mπx)|

≤ 2e−m2π2t

mπ

< e−m2π2t since
2

mπ
<

1

m
≤ 1

≤ e−mπ2t

≤ (e−π2t)m

But notice, ∀t > 0, we have e−π2t < 1, so
∑∞

m=1(e
−π2t)m is a geometric series, which converges. Thus, by

the Weierstrass M-Test, it follows that:

u(t, x) =

∞∑
m=1

(−1)m+1e−m2π2t 2

mπ
sin(mπx)

converges absolutely and uniformly, for t > 0 as required.

However, this doesn’t account for the case t = 0, in which we have:

u(0, x) =

∞∑
m=1

(−1)m+1 2

mπ
sin(mπx)

In fact, for this all that we can strive to show is that the series converges in the L2 sense as t → 0 (since
there is a disconitnuity when t = 0):

lim
t→0

∥u(t, x)− x∥L2([0,1]) = 0

5.2 An Infinite Sum as a Solution

Each mode in the sum solves the heat equation, by construction. We now verify that the sum does.
Since the series is uniformly convergent (and other easy to check details), we can differentiate u(t, x)

term-by-term (for both t and x). Hence:

ut =

∞∑
m=1

∂t

[
(−1)m+1e−m2π2t 2

mπ
sin(mπx)

]
= 2

∞∑
m=1

(−1)mmπe−m2π2t sin(mπx)

uxx =

∞∑
m=1

∂2
x

[
(−1)m+1e−m2π2t 2

mπ
sin(mπx)

]
= 2

∞∑
m=1

(−1)mmπe−m2π2t sin(mπx)

so indeed:
ut − uxx = 0

5.3 Solution Satisfies Boundary Conditions

Since each of the um satisfy it, and they are 0 at the endpoints, it follows that u satisfies them aswell:

u(t, 0) =

∞∑
m=1

(−1)m+1e−m2π2t 2

mπ
sin(0) = 0

u(t, 1) =

∞∑
m=1

(−1)m+1e−m2π2t 2

mπ
sin(mπ) = 0
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5.4 Limit of Solution at the Start

5.5 Uniqueness of Solution

We have solved the following Dirichlet problem:
ut − uxx = 0, t ∈ (0, T ], x ∈ [0, 1]

u(0, x) = x, x ∈ [0, 1]

u(t, 0) = 0 u(t, 1) = 0

with a solution:

u(t, x) =
∞∑

m=1

(−1)m+1e−m2π2t 2

mπ
sin(mπx)

We claim that u(t, x) is a unique solution: if someone claims that v(t, x)
is another solution, then we can show that:

u(t, x) = v(t, x)

5.5.1 Definition: Spacetime Cylinder

Let Ω ⊂ Rn be a bounded spatial domain (an open, connected subset
of Rn.). Let T > 0 be a time.
Then, the corresponding spacetime cylinder QT ⊂ R1+n (first dimen-
sion corresponds to time, remaining dimensions are space) is:

QT := (0, T )× Ω
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Figure 1: A spacetime cylinder in R1+2 = R3. The domain Ω is a subset of R2. In the case of our heat
equation, Ω ⊂ R, corresponding to the interval [0, 1].

5.5.2 Definition: Parabolic Boundary

The parabolic boundary ∂PQT of a spacetime cylinder QT is its
bounding surface on some temporal range (0, T ]:

∂PQT := {0} × Ω̄ ∪ (0, T ]× ∂Ω

Here Ω̄ denotes the closure of Ω (so the set Ω ∪ ∂Ω). This is the union of
our spacetime cylinder’s bottom and sides.

(0, T ]× ∂Ω

{0} × Ω̄

∂PQT = (0, T ]× ∂Ω ∪ {0} × Ω̄

T

x

t

QT
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5.5.3 Theorem: Uniqueness of Heat Equation Solution on a Finite Interval

Solutions:
u ∈ C1,2(Q̄T )

to the inhomogeneous heat equation:

∂tu−D∂2
xu = f(t, x)

are unique under Dirichlet, Neumann, Robin or mixed conditions.
(Theorem 1.1)

• here u is a function which is continuously differentiable over Q̄T up to
order 1 in t, and up to order 2 in x

• technically, this theorem doesn’t apply to the heat equation we have
used up to now, due to the disconitnuity at (0, 1) (this means that
strictly speaking u(t, x) ̸∈ C1,2(Q̄T )); addressing this issue is beyond
the scope of the course.

Proof. We show uniqueness for Dirichlet data, and when D = 1 (so Ω ⊂ R). The remaining cases are
similar.

Assume there exist 2 solutions u(t, x) ̸= v(t, x) satisfying the Dirichlet problem. Define:

w = u− v

Then, since u, v satisfy the initial-boundary conditions, and linearity of PDEs make w a solution, it must be
the case that it satisfies the following initial conditions:

wt − wxx = 0, t ∈ [0, T ], x ∈ [0, L]

w(0, x) = 0, x ∈ [0, L]

w(t, 0) = 0 w(t, L) = 0, t ∈ [0, T ]

Now, u is unique if and only if w = 0 for (t, x) ∈ [0, T ]× [0, L].

We shall now use a trick called the energy method. Define:

E(t) :=

∫ L

0

w2(t, x)dx
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Since w2 ≥ 0, it follows that ∀t ∈ [0, T ], E(t) ≥ 0.

Now, we can multiply the heat equation through by w to obtain:

wtw − wxxw = 0 =⇒ wtw = wxxw

But notice:
∂

∂t
(w2) = 2wtw

So our modified heat equation becomes:
1

2

∂

∂t
(w2) = wxxw

We can integrate both sides with respect to x, on the interval [0, L], noting that since w is well-behaved, we
can take the partial derivative out of the integral:

1

2

∂

∂t
(w2) = wxxw

=⇒ 1

2

∫ L

0

∂

∂t
(w2)dx =

∫ L

0

wxxwdx

=⇒ 1

2

d

dt

∫ L

0

w2dx =

∫ L

0

wxxwdx

=⇒ 1

2

dE

dt
=

∫ L

0

wxxwdx

Now, we can apply integration by parts on the RHS, via:

u = w du = wx

dv = wxx v = wx

so: ∫ L

0

wxxwdx = [wwx]
L
0 −

∫ L

0

(wx)
2dx

But notice, by the initial conditions w is 0 at x = 0, L, so:

[wwx]
L
0 = 0

Hence:
dE

dt
= −2

∫ L

0

(wx)
2dx

But (wx)
2 ≥ 0 for any x, so we must have that:

dE

dt
≤ 0

so E must be a decreasing function.

However:

E(0) =

∫ L

0

w2(t, 0)dx = 0

Hence, since E(t) ≥ 0, and E′(t) ≤ 0 and E(0) = 0 we must have that:

∀t ∈ [0, T ], E(t) = 0

But w2 is continuous and non-negative, so this is only possible if w2 = 0 =⇒ w = 0, as required.

Notice, in deriving this, we didn’t require any knowledge about the form of the solution!
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6 Workshop

1. Use the method of separation of variables to solve the following initial-Neumann problem:
ut − uxx = 0, (t, x) ∈ (0,∞)× (0, L)

u(0, x) = x, x ∈ [0, L]

ux(t, 0) = ux(t, L) = 0, t ∈ (0,∞)

Assume a solution of the form:
u(t, x) = T (t)X(x)

Then the PDE is equivalent to:

λ =
T ′

T
=

X ′′

X

where λ ∈ R is some constant.

We can solve for T :
T ′ = λT =⇒ T = Aeλt

where A ∈ R is some constant.

We now solve for X:
X ′′ = λX

This has characteristic polynomial:
P (r) = r2 − λ

We split into 3 cases. Also notice that if:

ux(t, 0) = ux(t, L) = 0 =⇒ T (t)X ′(0) = T (t)X ′(L) = 0

and this must hold for any t, so we must have that:

X ′(0) = X ′(L) = 0

1 λ = µ2

If λ > 0, then the roots of P (r) are:
r = ±µ

so that:
X(x) = Beµx + Ce−µx, B,C ∈ R

X ′(x) = Bµeµx − Cµe−µx

Hence, applying the initial conditions:

X ′(0) = 0 =⇒ µ(B − C) = 0 =⇒ B = c

X ′(L) = 0 =⇒ µB(eµL − e−µL) = 0

Since eµL − e−µL ̸= 0, we must have that B = 0, so X(x) = 0 is the trivial solution.
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2 λ = 0

If λ = 0, then the roots of P (r) are r = 0, and X is just linear:

X(x) = Bx+ C

X ′(x) = B

Hence, applying the initial conditions:

X ′(0) = 0 =⇒ B = 0

Thus, X will just be a constant, so it’s an uninteresting solution.

3 λ = −µ2

If λ < 0, then the roots of P (r) are:
r = ±iµ

so that:
X(x) = B sin(µx) + C cos(µx)

X ′(x) = Bµ cos(µx)− Cµ sin(µx)

Hence, applying the initial conditions:

X ′(0) = 0 =⇒ Bµ = 0 =⇒ B = 0

X ′(L) = 0 =⇒ −Cµ sin(µL) = 0 =⇒ µL = nπ

Hence, if we define:

µn =
nπ

L

We have found (infinitely-many) anon-trivial solution:

Xn(x) = C cos(µnx)

Putting all this together, the most general solution will be:

u(t, x) =

∞∑
n=0

Ane
−µ2

nt cos(µnx)

If we apply the initial condition u(0, x) = x:

u(0, x) = x =

∞∑
n=0

An cos
(nπx

L

)
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In other words, An must be the Euler-Fourier Coefficients for x corresponding to cos. Hence, we know
that:

An =
2

L

∫ L

0

x cos
(nπx

L

)
dx

=
2

L

(
− L

nπ

[
x sin

(nπx
L

)]L
0
− L

nπ

∫ L

0

sin
(nπx

L

)
dx

)

=
2

L

(
L2

n2π2

[
cos
(nπx

L

)]L
0
dx

)
=

2L

n2π2
((−1)n − 1)

where we have used that:
cos(nπ) = (−1)n

Hence:

u(t, x) =
2L

π2

∞∑
n=0

(−1)n − 1

n2
e−

n2π2

L2 t cos
(nπx

L

)
2. Use the method of separation of variables to solve the following mixed problem (just express

the solution as a series, with coefficients independent x, t unspecified):
ut −Duxx = 0, (t, x) ∈ (0,∞)× (0, π)

u(0, x) = g(x), x ∈ [0, π]

ux(t, 0) = 0, t ∈ (0,∞)

ux(t, π) + u(t, π) = 0, t ∈ (0,∞)

Working as above, we get that:
T ′ = λDT =⇒ T = AeλDt

For X, we split into 3 cases, and once again note that the initial conditions require that:

X ′(0) = 0 X ′(L) +X(L) = 0

1 λ = µ2

If λ > 0, then:
X(x) = Beµx + Ce−µx, B,C ∈ R

X ′(x) = Bµeµx − Cµe−µx

Hence, applying the initial conditions:

X ′(0) = 0 =⇒ µ(B − C) = 0 =⇒ B = c
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X ′(π)+X(π) = 0 =⇒ Bµeµπ−Cµe−µπ+Beµπ+Ce−µπ = 0 =⇒ B(eµπ(µ+1)+e−µπ(−µ+1)) = 0

Since eµπ(µ+ 1) + e−µπ(−µ+ 1) ̸= 0, we must have that B = 0, so X(x) = 0 is the trivial solution.

2 λ = 0

If λ = 0, then X is just linear:
X(x) = Bx+ C

X ′(x) = B

Hence, applying the initial conditions:

X ′(0) = 0 =⇒ B = 0

X ′(π) +X(π) =⇒ C = 0

Thus, X will be a trivial solution.

3 λ = −µ2

If λ < 0, then:
X(x) = B sin(µx) + C cos(µx)

X ′(x) = Bµ cos(µx)− Cµ sin(µx)

Hence, applying the initial conditions:

X ′(0) = 0 =⇒ Bµ = 0 =⇒ B = 0

X ′(π) +X(π) = 0 =⇒ −Cµ sin(µπ) + C cos(µπ) =⇒ C(1− µ tan(µπ)) = 0

The equation:
µ tan(µπ) = 0

has non-trivial solutions; let µn satisfy µn tan(µnπ) = 0. Then:

X(x) = C cos(µnx)

Thus, our most general solution is:

u(t, x) =

∞∑
n=0

Ane
−µ2

nDt cos(µnx)

3. Consider the solution:

u(t, x) =

∞∑
m=1

(−1)m+1e−m2π2t 2

mπ
sin(mπx)

to the initial boundary value heat equation problem:
ut − uxx = 0, (t, x) ∈ (0,∞)× (0, 1)

u(0, x) = x, x ∈ [0, 1]

u(t, 0) = u(t, 1) = 0, t ∈ (0,∞)
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Show that:
lim
t→0+

∥u(t, x)− x∥L2([0,1]) = 0

where the L2 norm is taken over the x variable only. Feel free to make use of the “Some
basic facts from Fourier analysis” theorem discussed in class.

Let:

Am = (−1)m+1 2

mπ

We have that the Fourier Series for x is:

f(x) =

∞∑
m=1

Am sin(mπx)

In particular, we have that f(x) converges to x in the L2 sense:

lim
N→∞

∥∥∥∥∥x−
N∑

m=1

Am sin(mπx)

∥∥∥∥∥
L2([0,1])

= 0

This means that:
∥u(t, x)− x∥L2([0,1]) = ∥u(t, x)− f(x)∥L2([0,1])

We thus compute:

∥u(t, x)− f(x)∥2L2([0,1]) =

∫ 1

0

|u(t, x)− f(x)|2dx

=

∫ 1

0

∣∣∣∣∣
∞∑

m=1

Ame−m2π2t sin(mπx)−
∞∑

m=1

Am sin(mπx)

∣∣∣∣∣
2

dx

=

∫ 1

0

∣∣∣∣∣
∞∑

m=1

Am(e−m2π2t − 1) sin(mπx)

∣∣∣∣∣
2

dx

Now, let:

g(x) =

∞∑
m=1

Am(e−m2π2t − 1) sin(mπx)

This will be a convergent series in L2, since, f(x) =
∑∞

m=1 Am(e−m2π2t − 1) sin(mπx) ∈ L2 and ∀t ≥
0, |Am(e−m2π2t − 1)| ≤ |Am|, so ∥g(x)∥2L2([0,1]) < ∞, and thus, g ∈ L2.

Hence, we can apply Parseval’s Identity:

∥u(t, x)− f(x)∥2L2([0,1]) = ∥g(x)∥2L2([0,1])

=
1

2

∞∑
m=1

A2
m(e−m2π2t − 1)2

=

∞∑
m=1

2

m2π2
(e−m2π2t − 1)2

We claim that this series is uniformly convergent. Since:

2

π2
≤ 2

32
≤ 1 ∀t ≥ 0, (e−m2π2t − 1)2 ≤ 1
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it follows that:
∞∑

m=1

2

m2π2
(e−m2π2t − 1)2 ≤

∞∑
m=1

1

m2

This is an absolutely convergent series, so by Weierstrass M-Test, it follows that:

∞∑
m=1

2

m2π2
(e−m2π2t − 1)2

is uniformly convergent.

Then, we can apply limits term by term to this series:

lim
t→0+

( ∞∑
m=1

2

m2π2
(e−m2π2t − 1)2

)
=

∞∑
m=1

2

m2π2

(
lim
t→0+

(e−m2π2t)− 1

)2

=

∞∑
m=1

2

m2π2
(1− 1)2 = 0

where we have used the continuity of squaring and the exponential.

Thus, it follows that:

lim
t→0+

∥u(t, x)− f(x)∥2L2([0,1]) = lim
t→0+

( ∞∑
m=1

2

m2π2
(e−m2π2t − 1)2

)
= 0

so as required:
lim
t→0+

∥u(t, x)− x∥L2([0,1]) = 0

4. Let ℓ > 0 be a positive real number. Let:

S = (0,∞)× (0, ℓ)

and let:
u(t, x) ∈ C1,2(S̄)

be the solution of the initial-boundary value problem:
ut − uxx = 0, (t, x) ∈ S

u(0, x) = ℓ−2x(l − x), x ∈ [0, ℓ]

u(t, 0) = u(t, ℓ) = 0, t ∈ (0,∞)

In this problem, you will us ethe energy method to show that the spatial L2 norm of u
decays exponentially without actually having to solve the PDE.

(a) First, show that:

∥u(0, x)∥L2([0,ℓ]) =

√
ℓ

30
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This is a straightforward computation:

∥u(0, x)∥L2([0,ℓ]) =

√∫ ℓ

0

ℓ−4x2(ℓ− x)2dx

=

√
ℓ−4

∫ ℓ

0

x2ℓ2 − 2ℓx3 + x4dx

=

√
ℓ−4

[
x3ℓ2

3
− ℓx4

4
+

x4

5

]ℓ
0

=

√
ℓ

3
− ℓ

4
+

ℓ

5

=

√
ℓ

30

(b) Next, show that:
d

dt
∥u(t, x)∥2L2([0,ℓ]) = −2∥∂xu(t, x)∥2L2([0,ℓ])

For this we use integration by parts:

∂x(u∂xu) = (∂xu)
2 + u∂2

xu

alongside the fact that u solves the heat equation:

ut − uxx = 0 =⇒ ut = uxx

Then, using the fact that the integral is over x:

d

dt
∥u(t, x)∥2L2([0,ℓ]) =

∫ ℓ

0

d

dt
u2dx

= 2

∫ ℓ

0

uutdx

= 2

∫ ℓ

0

uuxxdx

= 2

∫ ℓ

0

(∂x(u∂xu)− (∂xu)
2)dx

= [u∂xu]
ℓ
0 − 2

∫ ℓ

0

(∂xu)
2)dx

= −2∥∂xu(t, x)∥2L2([0,ℓ])

where we have used the initial condition u(t, 0) = u(t, ℓ) = 0.

(c) Then, show that:

|u(t, x)| ≤
√
ℓ∥∂xu(t, x)∥L2([0,ℓ])

Consider using the Fundamental Theorem of Calculus, alongside the Cauchy-Schwarz
Inequality.

Since u(t, 0) = 0, then:

u(t, x) = u(t, x)− u(t, 0) =

∫ x

0

ux(t, y)dy
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Hence:

|u| = |
∫ x

0

ux(t, y)dy|

≤

√∫ x

0

|ux|2dy

√∫ x

0

|1|2dy

≤

√∫ ℓ

0

|ux|2dy

√∫ ℓ

0

|1|2dy

=
√
ℓ∥∂xu(t, x)∥L2([0,ℓ])

(d) Thus, conclude that:
∥u(t, x)∥2L2([0,ℓ]) ≤ ℓ2∥∂xu(t, x)∥2L2([0,ℓ])

and show that:
d

dt

(
∥u(t, x)∥2L2([0,ℓ])

)
≤ − 2

ℓ2
∥u(t, x)∥2L2([0,ℓ])

If we square both sides and integrate over x ∈ [0, ℓ]:

|u| ≤
√
ℓ∥∂xu(t, x)∥L2([0,ℓ])

=⇒ ∥u(t, x)∥2L2([0,ℓ]) ≤ ℓ∥∂xu(t, x)∥2L2([0,ℓ])

∫ ℓ

0

1dx

=⇒ ∥u(t, x)∥2L2([0,ℓ]) ≤ ℓ2∥∂xu(t, x)∥2L2([0,ℓ])

Hence, using the fact that:

d

dt
∥u(t, x)∥2L2([0,ℓ]) = −2∥∂xu(t, x)∥2L2([0,ℓ])

we have that:
d

dt

(
∥u(t, x)∥2L2([0,ℓ])

)
≤ − 2

ℓ2
∥u(t, x)∥2L2([0,ℓ])

(e) By integrating the differential inequality with respect to time, and using the initial
condition t = 0, conclude that:

∀t ≥ 0, ∥u(t, x)∥L2([0,ℓ]) ≤
√

ℓ

30
e−t/ℓ2

If we define:
E(t) = ∥u(t, x)∥2L2([0,ℓ])

then the above gives us:

E′(t) ≥ − 2

ℓ2
E(t)

so that:
E(t) ≤ Ae−t/ℓ2

If we use the fact that E(0) =
√

ℓ
30 :

E(t) ≤
√

ℓ

30
e−t/ℓ2

as required.
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5. Let µ > 0 be a positive constant and let u(x, t) be a positive solution of class C3 of the heat
equation:

ut = µuxx, x ∈ R, t > 0

Show that:
v = −2µ

ux

u
satisfies Burgers’ equation:

vt + vvx = µvxx, t > 0

We can apply the Chain Rule to determine the derivatives of v, vt, vxx in terms of u and its partial
derivatives:

vt =
∂

∂t

(
−2µ

ux

u

)
= −2µ

uxtu− utux

u2

vx =
∂

∂x

(
−2µ

ux

u

)
= −2µ

uxxu− (ux)
2

u2

Hence:

vt + vvx = −2µ
uxtu− utux

u2
+
(
−2µ

ux

u

)(
−2µ

uxxu− (ux)
2

u2

)
= −2µ

u3

(
uxtu

2 − utuxu− 2µ(uxxuxu− (ux)
3)
)

Using the fact that u satisfies the heat equation, ut = µuxx, so:

vt + vvx = −2µ

u3

(
uxtu

2 − utuxu− 2µ(uxxuxu− (ux)
3)
)

= −2µ

u3

(
uxtu

2 − µuxxuxu− 2µ(uxxuxu− (ux)
3)
)

= −2µ

u3

(
uxtu

2 − 3µuxxuxu+ 2µ(ux)
3)
)

On the other hand:

vxx =
∂

∂x

(
−2µ

uxxu− (ux)
2

u2

)
= −2µ

∂
∂x (uxxu− (ux)

2)u2 − (uxxu− (ux)
2) ∂

∂x (u
2)

u4

= −2µ
(uxxxu+ uxxux − 2uxuxx)u

2 − (uxxu− (ux)
2)(2uux)

u4

= −2µ

u3

(
(uxxxu− uxuxx)u− (uxxu− (ux)

2)(2ux)
)

= −2µ

u3

(
uxxxu

2 − uxxuxu− 2uxxuxu+ 2(ux)
3
)

= −2µ

u3

(
uxxxu

2 − 3uxxuxu+ 2(ux)
3
)
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If we differentiate the heat equation with respect to x:

ut = µuxx =⇒ utx = µuxxx

so:

vxx = −2µ

u3

(
uxxxu

2 − 3uxxuxu+ 2(ux)
3
)

= −2µ

u3

(
utx

µ
u2 − 3uxxuxu+ 2(ux)

3

)
=⇒ µvxx = −2µ

u3

(
utxu

2 − 3µuxxuxu+ 2µ(ux)
3
)

=⇒ µvxx = vt + vvx

Hence, if u satisfies the heat equation, then v = −2µux

u satisfies Burgers’ equation:

µvxx = vt + vvx

as required.
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