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1 Partial Differential Equations

1.1 Definition: Differential Equations

Consider a function:
u = u(x1, . . . , xn)

A partial differential equation in the unknown u is an equation in-
volving u and its partial derivatives:

F (u, ux1 , . . . , uxn , ux1x1 , . . . , uxi1 . . . uxiN , x
1, . . . , xn) = 0

where:
i1, . . . , iN ∈ [1, n]

1.2 PDEs Notation

• How do we express a partial derivative

– the following are equivalent:
∂u

∂xi
= uxi = ∂iu

– for multiple derivatives:
∂2u

∂xi∂xj
=

∂

∂xi
∂

∂xj
u = uxiuxj = ∂i∂ju

• What is the order of a PDE?

– the largest partial derivative appearing in the PDE

1.3 Types of PDEs

1.3.1 Homogeneous vs Inhomogeneous

• What is a homogeneous PDE?

– a PDE of the form:
F (u, ux1 , . . . , uxn , ux1x1 , . . . , uxi1 . . . uxiN ) = 0

– for example, a second-order, homogeneous PDE is:

∂2xiu− 5∂xju = 0

• What is an inhomogeneous PDE?

– a PDE of the form:

F (u, ux1 , . . . , uxn , ux1x1 , . . . , uxi1 . . . uxiN ) = f(x1, . . . , xn)

– for example, a second-order, inhomogeneous PDE is

∂2xiu− 5∂xju = 2x1 − 5x2
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1.3.2 Constant vs Variable Coefficient

• What is a constant coefficient PDE?

– a PDE where the coefficients multiplying the derivatives are constant

– for example, a second-order, inhomogeneous, constant coefficient PDE is:

−∂2t u+ 2∂2xu+ u = t

• What is a variable coefficient PDE?

– a PDE where the coefficients multiplying the derivatives are functions

– for example, a third-order, inhomogeneous, variable coefficient PDE is:

∂tu+ 2(1 + x2)∂3xu+ u = t

1.3.3 Linear vs Non-Linear

• What is a linear PDE?

– a PDE where the derivatives are combined linearly

– in other words, we can use a linear differential operator:

L[au+ bv] = aL[u] + bL[v]

to express the PDE:
L[u] = f(x1, . . . , xn)

– for example, the operator:
L = −∂2t + (t2 − x2)∂2x + 1

defines a second-order, linear PDE

• What is a non-linear PDE?

– a PDE where the derivatives are not related linearly

– for example, the operator:
L[u] = ∂2xu+ u2∂2yu(1− cos(u))∂tu

defines a second-order, non-linear PDE

1.3.4 Physical Examples of PDEs

• Wave Equation
−∂2t u+ ∂2xu = 0

• Heat Equation
−∂tu+ ∂2xu = 0

• Laplace’s Equation
∂2xu+ ∂2yu+ ∂2zu = 0

• Poisson’s Equation
∂2xu+ ∂2yu+ ∂2zu = f(x, y, z)

• Schrödinger’s Equation
ι∂tu+ ∂2xu = 0
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• Transport Equation
ut + ux = 0

• Burger’s Equation
ut + uux = 0

• Maxwell’s Equation in a Vacuum

∂tE −∇×B = 0

∂tB +∇× E = 0

∇ · E = 0

∇ ·B = 0

where E and B are vector-fields (electric and magnetic fields respectively)

1.3.5 The Goals of Solving PDEs

1. Does the PDE have any solutions?

2. What kind of “data” do we need to specify in order to solve the PDE?

3. Are the solutions corresponding to the given data unique?

4. What are the basic qualitative properties of the solution?

5. Does the solution deveop singularities? O fwhat nature?

6. What happens if we slightly vary the data? Does the solution then
also vary only slightly?

7. What kinds of quantitative estimates can be derived for the solutions?

8. How can we define the “norm” of a solution, in a way that is useful
for the problem at hand?

1.4 The Principle of Superposition

Let u1, . . . , uM be solutions to the linear PDE:

L[u] = 0

If c1, . . . , cM ∈ R, then:
M∑
i=1

ciui

is also a solution.
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Proof. By linearity:

L

[
M∑
i=1

ciui

]
=

M∑
i=1

ciL[ui] = 0

Notice, this means that the solutions are closed under addition and
scalar multiplication. Moreover, it is clear that u = 0 is always a so-
lution to a homogeneous, linear PDE. It follows that the set of solutions to
L[u] = 0 is a vector space.

1.5 Proposition: Relationship Between Inhomogeneous and Homogeneous So-
lutions to Linear PDEs

Let SH be the set of all solutions to the linear, homogeneous PDE:

L[u] = 0

Further, assume that up is a particular solution to the linear, inhomo-
geneous PDE:

L[u] = f(x1, . . . , xn)

Then, the set of all solutions to the inhomogeneous PDE is given by:

SI = {up + uh | uh ∈ SH}

Proof. We have that:
L[up] = f

Consider another solution w, such that:
L[w] = f

Then, by linearity:
L[w]− L[up] = f − f = 0 =⇒ L[w − up] = 0

But then, w − up is a homogeneous solution, so:

w − up = uh ∈ SH

Then, we can express:
w = up + uh

In other words, if w is a solution to the inhomogeneous problem, then w ∈ SI

Now, consider an element w ∈ SI . By definition, we can write:

w = up + uh, uh ∈ SH

But then:
L[w] = L[up + uh] = L[up] + L[uh] = f + 0 = f

That is, if w ∈ SI , then w is a solution to the inhomogeneous problem.
Thus, we have shown that all solutions to L[u] = f must be within SI , as required.
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1.6 Solving PDEs via Geometric Intuition

1.6.1 The Constant Coefficient Transport Equation

We consider the equation:
a∂xu(x, y) + b∂yu(x, y) = 0, a, b ∈ R

The first thing to notice is that we can rewrite this as:

∇u ·

a
b

 = 0

Recall, this is the definition of a directional derivative: it follows that the derivative of u in the direction

(a, b) is 0. In other words, along lines defined by the vector

a
b

, u takes on the same value. Hence, it

follows that u is entirely determined by the the line on which the x, y lie.

A line in the direction

a
b

 has gradient b
a , and can be described by the relation:

bx− ay = c

Notice, varying c changes the y-intercept of the line, so changing c allows us to shift the line, thus covering
all of R2. Hence, the position of a line depends solely on c, and the value of u depends on the position of
the line.

Figure 1: Varying c shifts the line bx− ay = c about the R2 plane.

In other words, we can think of u as a function of c:

u(x, y) = f(c) = f(bx− ay)

where f is some function, to be decided given some “data” about how u behaves on some subset of its domain
(a point won’t be sufficient, since the value of u is determined by the value along lines).

For instance, if we know that:
u(x, 0) = x2
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it follows that:
x2 = f(bx) =⇒ x 7→ ((b−1x))2

That is:
f(ψ) = b−2ψ2

So our solution to the transport equation becomes:

u(x, y) = f(bx− ay) = b−2(bx− ay)2 = (x− b−1ay)2

1.6.2 The Variable Coefficient Transport Equation

In a similar vein to before, we consider the PDE:

y∂xu+ x∂yu = 0

Let x =

y
x

 Then, we have that:

∇u · x = 0

In other words, the directional derivative of u at a point (x, y) in the direction of x is 0, so u is constant on
the curve C traced out by (x, y).

We can parametrise C via:
x 7→ (x, y(x))

(we can think of y as a function of x, depending on the position on C)
At a given point P (x, y), the slope will be x

y , so:

dy

dx
=
x

y

This is a separable ODE, so we can solve for y = y(x):

dy

dx
=
x

y
=⇒

∫
ydy =

∫
xdx

=⇒ y2

2
=
x2

2
+ c, c ∈ R

Hence, u is constant on the hyperbolae y2 − x2 = C, so we can think of u as a function of C:

u(x, y) = f(C) = f(y2 − x2)

More generally, if we have a PDE:
a(x, y)∂xu+ b(x, y)∂yu = 0

we can solve it, given that we can integrate:

dy

dx
=
b(x, y)

a(x, y)

1.7 Analysis Recap: Norms

• What is a norm?

– intuitively, allow us to “measure” the “size” of a function
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1.7.1 Ck Norms

• What is the Ck norm?

– consider a function f with domain Ω ⊂ R
– for k ∈ Z, k ≥ 0 define the Ck norm of f on Ω by:

∥f∥Ck(Ω) :=

k∑
a=0

sup
x∈Ω

|f (a)(x)|

– here, f (a)(x) denotes the ath order derivative of f

– for instance:
∥ sin(x)∥C7(R) = 8

since the derivative of sin(x) is cos(x), and the derivative of cos(x) is − sin(x), so over the reals,
|f (a)(x)| attains a supremum of 1.

• How does the Ck norm generalise for multidimensional domains?

– consider Ω ⊂ Rn

– the Ck norm is obtained by summing over all partial derivatives of order ≤ k

– if Ω ⊂ R2, we compute:

∥f∥C2(Ω) := sup
(x,y)∈Ω

|f(x, y)|+ sup
(x,y)∈Ω

|∂xf(x, y)|+ sup
(x,y)∈Ω

|∂yf(x, y)|

+ sup
(x,y)∈Ω

|∂2xf(x, y)|+ sup
(x,y)∈Ω

|∂x∂yf(x, y)|+ sup
(x,y)∈Ω

|∂2yf(x, y)|

• Can we prioritise the weight of certain variables when computing the Ck norm?

– if f = f(t, x), then Ci,j denotes that we want to consider the first i partial derivatives with respect
to t, and the j first partial derivatives with respect to x:

∥f∥C5,2(R) :=

5∑
a=0

sup
(t,x)∈R2

|∂at f(t, x)|+
2∑

a=0

sup
(t,x)∈R2

|∂axf(t, x)|

1.7.2 Lp Norms

• What is the Lp norm?

– let 1 ≤ p <∞, p ∈ R
– consider a function f with domain Ω ∈ Rn

– the Lp norm of f is:

∥f∥Lp(Ω) :=

(∫
Ω

|f(x)|pdnx
) 1

p
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1.7.3 Norm Properties

Both the Ck and Lp norms satisfy the following properties:

• Non-Negativity: ∥f∥ ≥ 0, with ∥f∥ = 0 if and only if f(x) = 0
almost everywhere (that is, it is non-zero on a set of measure 0)

• Scaling: ∥λf∥ = |λ|∥f∥

• Triangle Inequality: ∥f + g∥ ≤ ∥f∥+ ∥g∥

2 The Divergence Theorem

2.0.1 Vector Fields and Divergence

• What is a vector field?

– a function mapping vectors to vectors:

F : Ω → Rn, Ω ⊂ Rn

F (x1, . . . , xn) =


F 1(x1, . . . , xn)

...

Fn(x1, . . . , xn)


– here F i are scalar fields:

F i : Ω → R

• What is the divergence of a vector field?

– the divergence is:

∇ · F :=

n∑
i=1

∂iF
i

– can think of it as a “dot product”: 
∂

∂x1

...

∂
∂xn

 ·


F 1

...

Fn


2.0.2 Theorem: The Divergence Theorem

The divergence theorem is a version of integration by parts for higher dimensions.
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Let Ω ⊂ R3 be a domain (open, connected subset of Rn). Denote the
boundary/surface of Ω as ∂Ω.
Then: ∫

Ω

∇ · F (x, y, z)dx dy dz =

∫
∂Ω

F (σ) · N̂(σ)dσ

Here:

• N̂(σ) is the unit outward normal vector to the surface ∂Ω

• if ∂Ω ⊂ R3 can be described as:

∂Ω = {(x, y, z) | z = ϕ(x, y)}

then:

dσ =
√
1 + ∥∇ϕ(x, y)∥2dx dy =

√
1 +

(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

dx dy
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3 Workshop

The following are useful formulae, either derived in this workshop (in
some questions which we don’t include, since we did them in Honours
Analysis), or just in general.

• Divergence Theorem∫
Ω

∇ · F (x)dx =

∫
∂Ω

∇F (σ) · N̂(σ)dσ

• Laplacian:
∇ · ∇F = ∆F

• Cauchy-Schwarz Inequality:

| ⟨v, w⟩ | ≤ ∥v∥∥w∥

• Cauchy-Schwarz Inequality for Integrals∣∣∣∣∫
Ω

f(x)g(x)dx

∣∣∣∣ ≤
√∫

Ω

|f(x)|2dx

√∫
Ω

|g(x)|2dx

1. Find a solution to ∆u = 0 in the whole of Rn, such that:

(a) u is a linear function

Any linear function is harmonic:
u(x) = x1

(b) u is a quadratic polynomial

2 simple examples:
u(x) = x21 − x22

u(x) = x1x2

(c) u is a cubic polynomial

Notice that:
∆x32 = 6x2

∆x21x2 = 2x2

Hence:
u(x) = 3x21x2 − x32

works.
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2. Let Ω be a domain with a smoooth boundary ∂Ω. Let u, v ∈ C2(Ω̄), where Ω̄ denotes the
closure of Ω. Show that the Green Identity holds:∫

Ω

u(x)∆v(x)− v(x)∆u(x)dx =

∫
∂Ω

u(σ)(∇v(σ) · N̂(σ))− v(σ)(∇u(σ) · N̂(σ))dσ

where N̂(σ) is the outward unit-normal to ∂Ω at σ

Define the following vector field:
F = u∇v − v∇u

Then:
∇ · F = u∆v − v∆u

Hence, by applying the Divergence Theorem the result follows.

3. Prove that if ε ∈ (0, 0.5), then:

f(x) = sin(x)
ln(x2 + 1)

|x|1−ε

satisfies f ∈ L2(R): ∫
R
|f(x)|2dx <∞

Note that f2 will be even, so: ∫
R
|f |2dx = 2

∫ ∞

0

|f |2dx

Now, define δ,M as arbitrary constants, such that:

(0,∞) = (0, δ) ∪ [δ,M ] ∪ (M,∞)

Recall from Honours Analysis that a function is in L2([a, b]) if it is Lebesgue Integrable on [a, b]. Con-
tinuous functions are Lebesgue Integrable, and since f is continuous, so is f2. Hence, f2 ∈ L2([δ,M ]).
This means that to show that f2 ∈ L2(R) it is sufficient to show that:∫ δ

0

|f |2dx <∞
∫ ∞

M

|f |2dx <∞

1 Integral on (0, δ)

Since δ can be arbitrarily small, we can enforce that δ < π
2 . Then, we know that:

0 ≤ x ≤ δ <
π

2
=⇒ sin(x) ≤ x

Thus: ∫ δ

0

|f |2dx =

∫ δ

0

| sin(x)|2 ln(x
2 + 1)

|x|2−2ε
dx

≤ ln(δ2 + 1)

∫ δ

0

|x|2

|x|2/x2ε
dx

= ln(δ2 + 1)

∫ δ

0

x2εdx

= ln(δ2 + 1)
δ2ε+1

2ε+ 1

<∞
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where we have used the fact that ln(x) is an increasing function.

2 Integral on (M,∞)

Since M can be made arbitrarily large, we can enforce that ∃M such that:

x ≥M =⇒ ∃β ∈ R+ : ln(x2 + 1) ≤ xβ

(we know that this is feasible, since ln(x2 + 1) ≤ x2 + 1 when |x| ≥ 0)

One can also use L’Hôpital’s Rule to verify taht this is sensible:

lim
x→∞

ln(x2 + 1)

xβ
=

2

β
lim
x→∞

x2

x2+1

xβ
= 0

Using this M , we have that:∫ ∞

M

|f |2dx =

∫ ∞

M

| sin(x)|2 ln(x
2 + 1)

|x|2−2ε
dx

≤
∫ ∞

M

ln(x2 + 1)

|x|2−2ε
dx

≤
∫ ∞

M

|x|2β

|x|2−2ε
dx

≤
∫ ∞

M

|x|2β

|x|2−2ε
dx

=

∫ ∞

M

|x|2β−2+2εdx

=
1

2β + 2ε− 1

[
lim

D→∞

(
D2β+2ε−1

)
−M2β+2ε−1

]
Hence, the integral converges provided that:

2β + 2ε− 1 < 0 =⇒ β <
1− 2ε

2

Hence, picking β = 1−2ε
4 , it follows that f ∈ L2, as required.

4. Let u be a harmonic function in a domain Ω ⊂ Rn. Let:

w(x) = ∥∇u(x)∥2 v(x) = u2(x)

Compute ∆w,∆v.

We have that:

∆u =

n∑
i=1

(∂2x2
i
u) = 0
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Moreover:

w =

n∑
i=1

(∂xi
u)2

Hence:

∂xj
w = 2

n∑
i=1

(∂xi
u)(∂2xixj

u)

∂2xj
w = 2

n∑
i=1

(∂2xixj
u)2 + (∂xiu)(∂

3
xix2

j
u)

= 2

n∑
i=1

(∂2xixj
u)2 + ∂xi

(u∂2x2
j
u)

So it follows that:

∆w = 2

n∑
j=1

n∑
i=1

(∂2xixj
u)2 + ∂xi

(u∂2x2
j
u)

(it’s possible to simplify this, since when i = j, we will pick up some Laplacians of u which will cancel
out. For instance, in 2 dimensions:

∆w = 2(u2xx + 2u2xy + u2yy)

with the term:
2ux∂x(∆u) + 2uy(∂y(∆u)

having vanished)

Similarly:

∂xi
v = 2u(∂xi

u)

=⇒ ∂2x2
i
v = 2((∂xiu)

2 + (∂xiu)(∂
2
x2
i
u))

=⇒ ∆v = 2

n∑
i=1

(∂xi
u)2 + (∂xi

u)(∂2x2
i
u)

=⇒ ∆v = 2

n∑
i=1

(∂xi
u)2 + u(∂2x2

i
u)

=⇒ ∆v = 2∥∇u∥2 = 2w

5. You have seen many explicit solutions to various linear ODE’s in Honours Differential
Equations. However, not all ODE’s have such solutions. As an example, let us consider
the following equation:

y′′ + a sin(y) = 0, a > 0

This equation describes the oscillation of a simple pendulum, where the constant a = g
L

and g is the gravitational constant, and L the length of the string.
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(a) Under the initial conditions y(x0) = α, y′(x0) = β show that the solution y satisfies the
first order ODE:

y′(x) = ±
√

2a cos(y) + β2 − 2a cos(α)

Differentiating the first order ODE with respect to x:

y′(x) = ±
√
2a cos(y) + β2 − 2a cos(α)

=⇒ y′′(x) =
d

dx

(
±(2a cos(y) + β2 − 2a cos(α))

1
2

)
=⇒ y′′(x) =

1

2y′(x)
× d

dx
(2a cos(y) + β2 − 2a cos(α))

=⇒ y′′(x) =
1

2y′(x)
× (−2a sin(y)y′(x))

=⇒ y′′(x) = −a sin(y)
=⇒ y′′ + a sin(y) = 0

Thus, if y satisfies the pendulum equation, it must satisfy the first order ODE.

(b) Hence, show that we have the implicit relation:

x− x0 =

∫ y

α

dt√
2a cos(t) + β2 − 2a cos(α)

This integral cannot be computed explicitly; in fact, it is called an elliptic integral, and
it is one of the special functions in analysis.

Let s = x, y = t. We have:
1√

2a cos(t) + β2 − 2a cos(α)

dt

ds
= 1

(we take the positive square root since we describe a simple pendulum) We integrate both sides
with respect to s, where s ∈ [x0, x]:∫ x=x

s=x0

1ds =

∫ s=x

s=x0

1√
2a cos(t) + β2 − 2a cos(α)

dt

ds
ds

=⇒ [s]xx0
=

∫ t=y(x)

t=y(x0)

dt√
2a cos(t) + β2 − 2a cos(α)

=⇒ x− x0 =

∫ y

α

dt√
2a cos(t) + β2 − 2a cos(α)

as required.

(c) Finally, do a clever substitution to write the implicit relation in the following equivalent
form:

√
a(x− x0) =

∫ u

sin(α/2)
k

ds√
(1− s2)(1− k2s2)

where k is a constant that you should compute in terms of a, α, β.

We shall use the following identities:

cos2(θ) + sin2(θ) = 1 =⇒ cos2(θ) = 1− sin2(θ)

cos2(2θ) = 1− 2 sin2(θ) =⇒ sin2(θ) =
1− cos(2θ)

2
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We have that:

2a cos(t) + β2 − 2a cos(α) = 4a

(
2a cos(t) + β2 − 2a cos(α)

4a

)
= 4a

(
β2

4a
+

1− cos(α)

2
− 1− cos(t)

2

)
= 4a

(
β2

4a
+ sin2(α/2)− sin2(t/2)

)

Now, let:

k2 =
β2

4a
+ sin2(α/2)

and

s(t) =
sin(t/2)

k

Then:
ds

dt
=

cos(t/2)

2k

Hence, we can apply integration by substitution:∫ y

α

dt√
2a cos(t) + β2 − 2a cos(α)

=

∫ s(y)

s(α)

2k

cos(t/2)

ds√
4a

(
k2 − sin2(t/2)

)
=

∫ s(y)

s(α)

k√
a

ds√
cos2(t/2)

(
k2 − sin2(t/2)

)
=

∫ s(y)

s(α)

k√
a

ds√
k2 cos2(t/2)

(
1− sin2(t/2)

k2

)
=

∫ s(y)

s(α)

1√
a

ds√
cos2(t/2)(1− s2)

=

∫ s(y)

s(α)

1√
a

ds√(
1− sin2(t/2)

)
(1− s2)

=

∫ s(y)

s(α)

1√
a

ds√
(1− s2)(1− k2s2)

Letting s(y) = u, it follows that:

x− x0 =

∫ y

α

dt√
2a cos(t) + β2 − 2a cos(α)

=⇒
√
a(x− x0) =

∫ u

sin(α/2)
k

ds√
(1− s2)(1− k2s2)

as required.

6. In this problem we describe the method of characteristics for the inhomogeneous first order
equations:

aux + buy = c
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where a, b, c are given coefficients.
This equation says that the vector (ux, uy,−1) is perpendicular to:

(a(x, y, u), b(x, y, u), c(x, y, u))

Since the normal to the graph of u is
(ux,uy,−1)√
1+u2

x+u2
y

it follows that the vector (a, b, c) lies on the

tangent plane to the graph at the point (x, y, u(x, y)).
Within a specific surface u(x, y) solving the PDE we can consider the field of directions
defined by the tangnetial vectors (a, b, c). This field of directions is composed of the tan-
gents of a one-parameter family of curves in that surface, called characteristics, which are
determined by the system of ordinary differential equations:

dx

a
=
dy

b
=
du

c

Using this observation, show that the solution to the nonlinear equation:

ux + uy = u2

passing through the initial curve:

x = t, y = −t, u = t

(that is, u(t,−t) = t) becomes infinite along the hyperbola:

x2 − y2 = 4

We assume that the characteristics are defined by some parameter s, such that x = x(s), y = y(s). Then:

d

ds
(u(x(s), y(s)) = ux

dx

ds
+ uy

dy

ds

This means that the solution will satisfy the system:

dx

ds
= 1

dy

ds
= 1

du

ds
= u2

or equivalently:
dy

dx
= 1

dy

du
=

1

u2

We can solve these ODEs:
dy

dx
= 1 =⇒ y = x+ C, C ∈ R

dy

du
=

1

u2

=⇒
∫
dy =

∫
1

u2
du

=⇒ y +D = − 1

u

=⇒ u = − 1

y +D
, D ∈ R
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Notice y(x) and u(x, y(x)) are entirely determined by the values of C,D. In particular, we can think of
D as a function of C, such that D = f(C). Then:

u(x, y) = − 1

y +D
= − 1

y + f(C)
= − 1

y + f(y − x)

We are given the initial condition:
u(t,−t) = t

We can then find f for this initial condition:

t = u(t,−t)

=⇒ t = − 1

−t+ f(−2t)

=⇒ f(−2t) =
t2 − 1

t

Hence, define:

f(α) =

(
−α

2

)2 − 1(
−α

2

) =
4− α2

2α
, α ∈ R

It thus follows that:

u(x, y) = − 1

y + f(y − x)

= − 1

y + 4−(y−x)2

2(y−x)

= − 1
2y(y−x)+4−(y−x)2

2(y−x)

= − 2(y − x)

2y2 − 2yx+ 4− (y2 − 2xy + x2)

=
2(x− y)

4− (x2 − y2)

In particular, u along the parabola x2 − y2 = 4 goes to infinity, as expected.
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