
IAML - Week 9

Antonio León Villares

December 2021

Contents

1 Artificial Neural Networks 2
1.1 The Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Defining Artificial Neural Networks . . . . . . . . . . . . . . . . . 4

1.2.1 Classification: A Single Neuron . . . . . . . . . . . . . . . 5
1.2.2 Multilayer Networks . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Binary Classification . . . . . . . . . . . . . . . . . . . . . 7
1.2.4 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 Multiclass Classification . . . . . . . . . . . . . . . . . . . 8
1.2.6 Modifying Feedforward Neural Networks . . . . . . . . . . 9

1.3 ANNs to Represent Functions . . . . . . . . . . . . . . . . . . . . 10
1.4 Training ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Applications of Neural Networks . . . . . . . . . . . . . . . . . . 12
1.6 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6.1 Convolutional Neural Networks . . . . . . . . . . . . . . . 13
1.6.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . 15

1



1 Artificial Neural Networks

• ANNs are a bad model of the human brain, but good (and powerful) as
non-linear models

• Hidden units “learn” features of the input

• Backpropagation is used to solve the optimisation problem, and training
ANNs

• CNNs and RNNs can be used to analyse images, or model sequences of
data respectively

1.1 The Perceptron

• What is a perceptron? Short and sweet intro to the perceptron

– a simple linear binary classifier:

ŷ =

{
1, wTx+ w0 ≥ 0

−1, otherwise

– it uses a step function to determine the output of the classification

– the step functions outputs +1 and -1 for convenience when training
the perceptron

– the idea is to create a linear model (like logistic regression) but with a
simpler function than the sigmoid (we can think of the step function
as the limit of the sigmoid as its slope goes to infinity)

Figure 1: It is useful to think of the perceptron ike in this diagram

• How can we train a perceptron?

– a logistic regression classifier could be trained using gradient de-
scent, since computing the derivative was straightforward

2

https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53


– the step-function does not have a well behaved derivative

– the algorithm, due to Rosenblatt, iterates until the perceptron is able
to correctly classify all data instances:

Figure 2: Note, the above algorithm does not include the bias; if it did we
would also update the bias. Whilst convergence is not yet reached, we iterate
over each data instance. For each instance, we predict the label. If the label is
correct, we ignore. Otherwise, adjust the weights.

Figure 3: Same algorithm, but updating the bias.

• How does the algorithm work?

– General development of perceptrons

3

https://towardsdatascience.com/rosenblatts-perceptron-the-very-first-neural-network-37a3ec09038a


– Intuition behind why the training converges

– it might not seem immediately obvious how this simple algorithm
can lead to a working linear classifier

– if the prediction is correct, we don’t touch the weights: that’s easy

– consider the case in which ŷ = 1 but yi = −1. Then, the weights will
be modified by decreasing them (since we set w ← w − xi)

– that is, the algorithm is pushing to make the next output smaller, so
as to predict -1 next time

• How powerful is the perceptron as a classifier?

– if data is linearly separable, the perceptron will converge to a w, such
that it always separates the data

– if data is not linearly separable, the algorithm won’t converge (workarounds:
averaged perceptron, voted perceptron

– the issue is that Minsky showed that most real world (i.e interesting
data) is not linearly separable

1.2 Defining Artificial Neural Networks

Up to now, all outr tasks have worked around working with linear classifiers/clusters
(perhaps using kernels to handle non-linear data). Artificial Neural Networks
allow us to build non-linear classifiers/regressors, based on many linear units.

4

https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975


1.2.1 Classification: A Single Neuron

• What is a unit in ANNs?

– a unit is the term used to describe an artificial or simulated neuron
in neural networks

– a unit is a linear “object”, defined by a weight vector and a bias

– if we combine many units (or neurons), we obtain a neural network,
which will be non-linear

– whilst units are used as simulated nuerons, there are many nuances
and stark differences; we might use them itnerchangeably, but it is
more correct to talk in terms of units

• How does a unit work?

– a unit is very similar to a perceptron:

– the input is a vector:

x =


x1

x2
...

xn


– the unit is defined by a weight vector:

w =


w1

w2

...

wn


and a bias w0

5



– when the input x is fed to the unit, the activation is computed:

a = wTx+ w0

– the output y of the neuron is the result of applying a function to
the activation:

y = g(a)

• How can a unit be used to binary classification?

– if we set the function g to the sigmoid:

g(a) = σ(a) =
1

1 + e−a

the ouput of the unit can be thought as a probability, which we can
threshold to give a classification (i.e assign class 1 to x if y = g(a) ≥
0.5)

– notice, depending on how we train the unit (i.e what loss function
we use), a single unit is equivalent to a logistic regression
classifier

– On the relationship between logsitic regression and the unit

1.2.2 Multilayer Networks

• How can we construct an ANN, by combining units?

– the idea is to create a non-linear model, by by using outputs of units
as inputs for other units:

Figure 4: A multilayer ANN

– the input is the same, the vector x

• What are hidden units?

– this time, there are 2 hidden units, h1, h2

6

https://stats.stackexchange.com/questions/500948/is-logistic-regression-a-specific-case-of-a-neural-network


– the hidden units transform the input, but are not used to give the
output: they are “hidden”

– each hidden unit has its own set of weights (w1, w2 and biases (w10, w20)

• What is the output unit?

– the output of the hidden units is then fed to the output unit

– the output unit has weights v and bias v0, used to handle the ouput
of the hideen layer

– the network can be defined by the following “vector”:

〈w1, w2, v, w10, w20, v0〉

1.2.3 Binary Classification

To perform classification, consider a function g like the sigmoid:

1. Pass the input through the hidden layer:

a1 = g(wT
1 x+ w10)

a2 = g(wT
2 x+ w20)

2. Pass the activations of the hidden layer to the output unit:

y = g

vT
a1
a2

 + v0


3. Threshold y to output a classification (i.e f(x) = 1 if y > 0.5)

1.2.4 Regression

Regression is similar, but we 2 different functions to non-linearise the output
of the units: in the hidden layer, we can use the sigmoid, whilst in the output
unit, we can use g3(a) = a (the linear function):

7



1. Pass the input through the hidden layer:

a1 = g(wT
1 x+ w10)

a2 = g(wT
2 x+ w20)

2. Pass the activations of the hidden layer to the output unit:

y = g3

vT
a1
a2

 + v0


3. Return f(x) = y as the regression output

1.2.5 Multiclass Classification

For multiclass classification, we form an output layer, with one output unit per
class. The output yi of the ith output unit gives the probability of input x
belonging to class i. Again, the function in the output units will change, and
we will use the softmax function:

P (y = i|x) =
eyi∑n

k=1 e
yk

1. Pass the input through the hidden layer:

a1 = g(wT
1 x+ w10)

a2 = g(wT
2 x+ w20)

2. For i = 1, 2, . . . , n, we pass the activations of the hidden layer to the ith
output unit:

yi = vT

a1
a2

 + v0

8



3. This outputs a vector y. The classification is given by:

f(x) = max
i∈[1,n]

{P (y = i|x}

where:

P (y = i|x) =
eyi∑n

k=1 e
yk

1.2.6 Modifying Feedforward Neural Networks

• What is a feedforward neural network?

– the type of ANNs we have used up to now

– they can be thought as a DAG (directed acyclic graph)

– that is, information from layers moves in a given direction, and unit
output can’t go “back” through the network

– each layer in the FNN computes a non-linear function of the input

• What can we modify about a FNN?

– the number of hidden units

– the number of hidden layers

– the type of activation function g

Figure 5: We can use many layers in our FNN

• Which activation functions can be used in the output layer?

– for regression, the linear function

9



– for binary classification, the sigmoid

• Which activation functions can be used in the hidden layers?

– the sigmoid

– the hyperbolic tangent (tanh)

– the linear function

– gaussian density (radial basis)

– step function:

Θ(a) =

{
1, a ≥ 0

−1, a < 0

1.3 ANNs to Represent Functions

10

https://en.wikipedia.org/wiki/Radial_basis_function_network


Figure 6: The decision boundary of an ANN when dclasifying vowel sounds,
based on frequency information.

1.4 Training ANNs

• What do we train in ANNs?

– for each unit in the network, we seek to find the best set of weights
and biases

– the training problem can be converted into an optimisation func-
tion, by minimising a loss function

• Which loss functions can be used?

– the general idea is to compare the prediction with the true labe

– in linear regression, we used the sum of squared errors:

E =
∑

(yi − f(xi)
2

– in logistic regression, we use log loss:

E =
∑

yi log f(xi) + (1− yi) log(1− f(xi))

– others include maximum likelihood, or cross-entropy

– a regularisation paramer (λ‖w‖2) can also be used (known as weight
decay in the context of ANNs)

11



– however, unlike with linear or logistic regression, the optimisation
problem does not have a single optimum: for example, the same
network can be represented by permuting the units; this should not
change the accuracy, but techincally changes the network

• What is backpropagation?

– Math behind backpropagation

– backpropagation is teh algorithm used to apply gradient descent dur-
ing optimisation

– for this, we need to compute ∂E
∂w , which is non-trivial for a ANN

– backpropagation employs the chain rule, alongside the layered struc-
ture of the network, to determine this (for example, if we want to
compute ∂E

∂v0
, we note that this will ultimately depends on the deriva-

tive of the set of weight at the hidden layer, like ∂E
∂w11

)

– backpropagation thus uses previous derivatives to compute deriva-
tives further along the network, allowing speedup in training

• Does backpropagation converge?

– yes, but it can do so to local minima

– this can be alleviated by training the network multiple times, and
selecting the best model (or combining models)

– From slides: Initialize weights near zero; therefore, initial networks
are near-linear; Increasingly non-linear functions possible as training
progresses]

– Article on initialising weights

1.5 Applications of Neural Networks

• handwritting recognition

• speech recognition

• financial forecasting

12

https://brilliant.org/wiki/backpropagation/
https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78


1.6 Recent Developments

1.6.1 Convolutional Neural Networks

• When are CNNs used?

– determining if an object is present in the image

– set a bounding box on an object in an image

– identify pixels belonging to object in image

• Why are CNNs used?

– when analysing images: vector representations of images are imprac-
tical (large, lose of spatial information)

– CNNs mitigate this problem, by compressing features of the image
data, without losing information

• What is a convolution?

– a mathematical operation used to extract feature information from
a set of pixels

– for example, the Sobel operators, to detect edges in pictures

• How do CNNs detect features?

– the hidden layers are made up of a set of convolution operators (these
are the weight matrices which we train)

– this means that if we are given the image as a 2D matrix, the output
of the hidden layer is a a 3D cube, resulting from applying different
convolution kernels on the image

– this turns the original image into a set of matrices which focus on
different features. These matrices (known as feature maps) will be
lower dimensional

13



Figure 7: Applying a convolution to the image reduces it in size. If we apply
different convolutions, we obtain matrices which represent different features of
the image.

Figure 8: The formula shows how the hidden unit hi,j (the jth unit of the ith
layer) considers an m×m pixel region, and applies the weights and bias of the
operator on the region. Notice, the set of weights and biases will be the same
over all the units in the layer. Applying this on the image it reduces each m×m
set of pixels into a single value, whicha re then combined to form the feature
map.

14



Figure 9: The general structure of a CNN works in 2 steps. The first step
focuses on feature extraction: each hidden layer is composed of a set of convo-
lutions (to extract feature maps) and pooling (to reduce the size of the feature
maps, by picking certain feature values). This is repeated, squashing the feature
maps more and more. At the second step, the squashed feature maps are then
converted into vectors (which are more manageable in size than if we took the
whole image and turned it into a vector). These vectors encode the underlying
structures that define the image. The vectors are then passed through a stan-
dard classifier (connected NN, with its standard wieghts and biases). Finally,
softmax can be used to output a classification (for example).

1.6.2 Recurrent Neural Networks

• When are RNNs used?

– when we have to model data which comes in sequences

Figure 10: The inputs are the . . . , xt−1, xt, xt+1, . . .. The input to the hidden
units is not only the previous hidden units (ht−1 → ht), but also part of the
data input (that is ht gives an output ot given what has previously happened
[represented using the hidden unit ht−1], and what is happening [represented
using the input xt]).

15



– used to for example predict an event,given all previous events

– predict the next word in a sentence

– translate sentences

– predict weather

– annotate motion capture data (label the action being performed, like
running or walking)

– tag speech (i.e adjective, verb, noun) in NLP

– LSTM (long-short term memory) is a complex RNN

16


	Artificial Neural Networks
	The Perceptron
	Defining Artificial Neural Networks
	Classification: A Single Neuron
	Multilayer Networks
	Binary Classification
	Regression
	Multiclass Classification
	Modifying Feedforward Neural Networks

	ANNs to Represent Functions
	Training ANNs
	Applications of Neural Networks
	Recent Developments
	Convolutional Neural Networks
	Recurrent Neural Networks



