
IAML - Week 8

Antonio León Villares

December 2021

Contents

1 Principal Component Analysis 2
1.1 The Curse of Dimensionality . 2
1.2 Dimensionality Reduction . 4
1.3 Principal Component Analysis 5

1.3.1 Aim of Principal Component Analysis 5
1.3.2 Computing the Principal Components 8
1.3.3 PCA . 14
1.3.4 Eigenfaces . 16
1.3.5 Issues with PCA . 19
1.3.6 PCA for Classification . 19
1.3.7 PCA vs Linear Discriminant Analysis 20

1.4 Evaluating Dimensionality Reduction 22

2 Hierarchical Clustering 23
2.1 Clustering and Granularity . 23
2.2 Hierarchical K-Means . 24
2.3 Agglomerative Clustering . 25

2.3.1 Algorithm . 25
2.3.2 Distance Measures . 27
2.3.3 Lance-Williams Algorithm 29

2.4 Clustering Summary . 32

1

1 Principal Component Analysis

• high dimensional data often results from bad representations which don’t
provide the underlying cause

• PCA performs feature extraction to reduce dimensionality of data

• PCA generates new basis vectors such that projected data has highest
variance

• Principal components can be used to decompose large pieces of data, by
using linear combinations

We can also think of PCA in terms of reducing the reconstruction error (i.e
error from going from PCA coordinates to origianl coordinates is minimised)

1.1 The Curse of Dimensionality

• What is observed dimensionality?

– the phenomenon by which data, which is relatively low dimensional,
seems to be of higher dimension

• Why is data typically high dimensional

– data tends to be high dimensional, because of how we choose to
represent it (for example, images which are represented pixel by pixel,
or sentences represented word by word)

– a clear example is considering data of 5 variables, reagrding car acci-
dents, heat strokes, days of school missed, burst water pipes and salt
expenditure. This might seem 5 dimensional, but it probably hghly
dependent on a single factor: temperature

– the key is to understand that data can be made to be highly dimen-
sional, when in fact its underlying structure can be low dimensional

• How can image analysis be dimensionally reduced?

– consider a 20× 20 bitmap, representing numbers

– the configurations of the bitmap which are actual numbers is in fact
a very low proportion of the 2400 possible bitmap

– think about it: if we pick any random bitmap, more likely than not
it will look like:

2

https://stats.stackexchange.com/questions/32174/pca-objective-function-what-is-the-connection-between-maximizing-variance-and-m/136072#136072
https://stats.stackexchange.com/questions/32174/pca-objective-function-what-is-the-connection-between-maximizing-variance-and-m/136072#136072

– however, a number can be represented based on how many strokes
are needed to draw it

– the strokes can be thought of as the “true dimensionality”

• What is the curse of dimensionality?

– the curse of dimensionality is used to convey the fact that, in adding
dimensions to data, the data becomes more prone to problems

– a higher number of dimensions theoretically allow more information
to be stored, but practically it rarely helps due to the higher possi-
bility of noise and redundancy in the real-world data.

– this can be easily seen by considering 10 points in 1, 2 and 3 dimen-
sions:

3

Figure 1: As we increase the dimensions, the distance between the points in-
creases, as more space is present within the same interval. In some way, we are
losing observations per unit volume

– more on the curse:

∗ https://stats.stackexchange.com/questions/99171/why-is-euclidean-distance-not-a-good-metric-in-high-dimensions

∗ https://analyticsindiamag.com/curse-of-dimensionality-and-what-beginners-should-do-to-overcome-it/

∗ https://en.wikipedia.org/wiki/Curse_of_dimensionality

• Why does the curse of dimensionality affect machine learning?

– machine learning is built on top of statistics, which is built on top of
counting

– if we have n observations in 5D space, we still have n observations in
10D space

– however, due to the curse of dimensionality, the n observations will
be more sparsely distributed in the space

– this overall makes it harder to extract significant results, since data
will seem “dilluted”

– high dimensions also affect distance metrics: distances in hgih diemn-
sions will seem nearly constant

1.2 Dimensionality Reduction

• How can we deal with high dimensional data?

1. Domain Knowledge: if we know the format of the data, we can
ensure that we only focus on certain features (i.e image processing)

2. Dimension Assumptions: we can increase the counts we observer,
by for example assuming that the dimensions are independent (only
consider the x axis data, and replicate it across the y axis), that the
data is smooth (nearby regions in space should have similar distribu-
tions), or that the data is symmetric (if (x, y) is a data point, (y, x)
should also be a data point)

4

https://stats.stackexchange.com/questions/99171/why-is-euclidean-distance-not-a-good-metric-in-high-dimensions
https://analyticsindiamag.com/curse-of-dimensionality-and-what-beginners-should-do-to-overcome-it/
https://en.wikipedia.org/wiki/Curse_of_dimensionality

Figure 2: From top to bottom: independent dimension assumption, smoothness
assumption and symmetry assumption.

3. Dimensionality Reduction: determine a smaller set of dimensions
with which to describe the data., whilst preserving structure (depend-
ing on how we reduce dimension, “structure preservation” can have
different meanings)

• What are the 2 ways of applying dimensionality reduction?

1. Feature Selection: use a subset of the original features. How to
select the subset depends on the application. If we are interested in
classification, we can use information gain as a metric

2. Feature Extraction: linearly combine the current features to pro-
duce a new set of dimensions.

1.3 Principal Component Analysis

1.3.1 Aim of Principal Component Analysis

• What form of dimensionality reduction is PCA?

– PCA is a form of feature extraction

5

– we can think of points in a 2 dimensional plane in 3 dimensions. PCA
will rotate and scale the axes, such that the basis vectors of the plane
become the new axes on which the data is represented.

• What are principal components?

– the principal components are the vectors which act as basis vectors
for the new set of dimensions

– PCA produces the principal components, such that:

∗ the first principal component is in the direction of greatest vari-
ance in the data

∗ the second principal component is perpendicular to PC1, and is
in the direction of greatest variance in the remaining data

∗ the third principal component is perpendicular to PC1 and PC2
and . . .

Figure 3: Notice how most of the data spreads along with the first principal
component, and in less measure along the second principal component.

• Why choose to maximise variance across principal components?

6

– variance is used as a measure of structure preservation in PCA

– the idea is that by prioritising high variance, we increase the chances
that data which is close in the original set of axes, is also close in the
new set of axes

Figure 4: Consider projecting the data points on the blue and the green basis
vectors. Notice, the blue vector is in the direction of highest variance (points
are spread out the most in its direction). As a consequence, when we project
the points onto it, the relative positions of points is preserved. However, if we
were to project onto the green vector, all the data would be squished together,
increasing the chances of 2 distinct data points overlapping. For example, look
at the red points: they are very far away in the original data, but they would
be the same in the green space.

– hence, by projecting in the direction of highest variance, we reduce
the possibility of 2 distinct points being misrepresented

– alternatively, we can think of the principal components as reducing
the distance between the original data, and their projection

7

1.3.2 Computing the Principal Components

The Covariance Matrix

If X is the matrix of the data (N rows (observations), D columns (at-
tributes), we can compute the covariance matrix using:

Σ =
1

N
XTX

In particular for 2 attributes i, j, and letting xk be the kth data point, and xk,a
be the the element of xk corresponding to attribute a, then:

Σij = Cov(i, j) =
1

n

N∑
k=1

(xk,i − µi)(xk,j − µj)

It is easier to normalise the data, such that:

xk = xk − µ, µ =
1

N

N∑
k=1

xk

in which case:

Σij = Cov(i, j) =
1

n

N∑
k=1

xk,ixk,j

This tells us how much we expect i to change with j. For example, if for a
point i and j have the same sign, they contribute a positive. Alternatively,
if they are different, they contribute a negative amount to covariance. Hence,
if Cov(i, j) > 0, we expect both attributes to vary similarly, and otherwise if
Cov(i, j) < 0.

Multiplying Data by Covariance Matrix

Consider the following distribution of points:

8

With:

Σ =

 2 0.8

0.8 0.6


What this tells us is that there is high variance along the x1 axis. Moreover,
x1 and x2 have a positive covariance, so they tend to “move together” (this is
represented by the green squares; the red squares are those in which for example
x1 is negative but x2 is positive).

Now, consider applying the covariance matrix as a linear transformation to
the point (−1, 1):  2 0.8

0.8 0.6

−1

1

 =

−1.2

−0.2


The resulting vector is represented in the plot above as the second arrow (when
moving anticlockwise). If we continuously apply the matrix to the result, we
obtain the following sequence of vectors:−2.5

−1

 ,

 −6

−2.7

 ,

−14.1

−6.4

 ,

−33.3

−15.1


These are shown in the diagram above, where we can see that the vectors tend
to approach e2. We note 2 things:

• the slope of the lines produced tends towards 0.454 (0.4, 0.45, 0.454,
0.454). This indicates that the vectors are eventually just getting stretched
by the covariance matrix.

• e2 seems to go through the data, and in the direction of highest variance

What this indicates is that the vector e2 could be a principal component of
the data. Morover, such a vector seems to act as an eigenvector of Σ: it is
just getting stretched:

Σe2 = λe2

Determining the Eigenvector of the Covariance Matrix

We can check this hunch, by computing the eigenvalues of the covariance
matrix, using:

det(Σ − λI = 0

If we perform the calculations, we get that:

λ1, λ2 =
1

2
(2.6±

√
2.62 − 4 ∗ 0.56)

9

Notice, λ1 +λ2 = 2.6, which is the sum of variances across x1 and x2. Similarly,
we can find the (normalised) eigenvectors as:

ξ
1

=

0.91

0.41

 ξ
1

=

−0.41

0.91


(notice the slope of the first eigenvector (if we hadn’t rounded) is around 0.454,
as expected)

An important thing to notice is that since the covariance matrix is sym-
metric, its eigenvectors will be orthogonal.

Projecting Into a New Coordinate Space

A subspace is spanned by a set of linearly independent vectors. In particular,
any point in the subspace can be written as a linear combination of these vectors.
If in addition to this, the vectors are orthogonal, then if vi are the basis vectors,
we can write x in the subspace as:

x =

n∑
i=1

civi

We can find cj by computing the dot product of the above expression with vj :

x =

n∑
i=1

civi

=⇒ vj · x = vj ·
n∑

i=1

civi

=⇒ (vj , x) =

n∑
i=1

ci(vj , vi)

=⇒ (vj , x) = cj(vj , vj)

=⇒ cj =
(vj , x)

‖vj‖2

If on top of all this the vectors are orthonormal, then:

cj = (vj , x)

This tells us that cj is the coordinate of the jth attribute of x in the subspace
(the above formula RHS is equivalent to the vector projection of x onto vj).

We can use all of the above to determine the coordinates of data when
transformed by PCA. If we have a (normalised) data point x ∈ RD, and we

10

have m principal components (which are orthonormal), given by e1, e2, . . . , em,
then define:

E =
(
e1, e2, . . . , em

)
notice, since each principal component is an eigenvector of the covariance matrix,
each ei ∈ RD, so E ∈ RD×m. We can then project to the new space via:

xproj = ETx =


eT1

eT2
...

eTm

x =


(e1, x)

(e2, x)
...

(em, x)

 =


(x, e1,)

(x, e2,)
...

(x, em,)


Where we have used the fact that the dot product is commutative, and can be
defined as:

(ei, x) = eTi x

As a sanity check, we can see that ET ∈ Rm×D and x ∈ RD, so we expect xproj
to by a vector in Rm, as required. Using the matrix E is just a more compact
way of describing how each component of xproj is just the projection of x onto
each of the basis vectors.

Principal Components as Eigenvectors of the Covariance Matrix

We have defined principal components as basis vectors, such that data along
them has maximum variance. Lets assume a vector e is a principal component of
some mean normalised data. Lets consider the variance resulting from projecting
a given point of the data xi onto e. From the work above, we know that the
projection will be given by:

xTi e =

D∑
j=1

xijej

Let µ′ denote the average of the points projected onto e. Then, there are N
total projections, where the ith projection is given by

∑D
j=1 xijej , so:

µ′ =
1

N

N∑
i=1

 D∑
j=1

xijej


Interchanging the summations:

µ′ =

D∑
j=1

ej

(
1

N

N∑
i=1

xij

)

11

But notice, 1
N

∑N
i=1 xij is the average of attribute j in the normalised data, so

by definition, it must be 0 (since the data is mean normalised). Hence:

µ′ =

D∑
j=1

ej × 0 = 0

In other words, the variance of the points projected onto e is given by:

σ2 =
1

N

N∑
i=1

−µ′ + D∑
j=1

xijej)

2

=
1

N

N∑
i=1

 D∑
j=1

xijej

2

We can split the squared term into 2 terms, taking care to chang eth eindex of
summation:

σ2 =
1

N

N∑
i=1

 D∑
j=1

xijej

(D∑
k=1

xikek

)
We have infinite summations, so we can move them around:

σ2 =
1

N

N∑
i=1

 D∑
j=1

xijej

(D∑
k=1

xikek

)

=

N∑
i=1

D∑
j=1

D∑
k=1

(
1

N
xikekxijej

)

=

D∑
j=1

D∑
k=1

ekej

(
1

N

N∑
i=1

xikxij

)

But recall, 1
N

∑N
i=1 xikxij is precisely Cov(k, j), so we have:

σ2 =

D∑
j=1

D∑
k=1

ekejCov(k, j)

Notice, if we want to maximise this expression, we can simply make ‖e‖ →
∞, which will make each ej , ek extremely large. Hence, we shall enforce the
constraint ‖e‖ = 1 (and for convenience we will use ‖e‖2 = 1). This now
becomes a constrained optimisation problem, which can be solved via Lagrange
Multipliers (more on them here). The method of Lagrangian Multipliers tells
us that to optimise the expression above given a constraint, is equivalent to
optimising:

V =

D∑
j=1

D∑
k=1

ekejCov(k, j)−λ(‖e‖−1) =⇒ V =

D∑
j=1

D∑
k=1

ekejCov(k, j)−λ

([
D∑
c=1

e2c

]
− 1

)

12

https://tutorial.math.lamar.edu/classes/calciii/lagrangemultipliers.aspx

To optimise, lets consider the partial derivative with respect to some attribute
a (we want to optimise with respect to each element in a):

∂V

∂ea
= 0

=⇒ ∂

∂ea

 D∑
j=1

D∑
k=1

ek(ejCov(k, j))− λ

([
D∑
c=1

e2c

]
− 1

) = 0

=⇒
D∑

j=1

∂

∂ea

(
ej

D∑
k=1

ekCov(k, j))

)
− 2λea = 0

=⇒
D∑

j=1

[
∂ej
∂ea

(
D∑

k=1

ekCov(k, j)

)
+ ej

D∑
k=1

∂

∂ea
(ekCov(k, j)))

]
= 2λea

=⇒
D∑

k=1

ekCov(k, a) +

D∑
j=1

ejCov(a, j) = 2λea

=⇒
D∑

k=1

ekCov(a, k) +

D∑
j=1

ejCov(a, j) = 2λea

=⇒ 2

D∑
j=1

ejCov(a, j) = 2λea

=⇒
D∑

j=1

ejCov(a, j) = λea

=⇒
D∑

j=1

ejCov(a, j) = λea

Since this holds for a = 1, 2, . . . , D, it follows that for the principal compo-
nent a to lead to maximum variance, we must have:

∑D
j=1 ejCov(1, j)∑D
j=1 ejCov(2, j)

...∑D
j=1 ejCov(D, j)

 = λe

But notice, each row in the vector above is a dot product. In particular, if Σ is
the covariance matrix of the normalised data, if Σi represents the ith row vector

13

of Σ, we have: 
ΣT

1 e

ΣT
2 e
...

ΣT
De

 = λe =⇒ Σe = λe

In other words, it follows that if e is a principal component onto which data is
projected, e must be an eigenvector of the covariance matrix of the data.

Eigenvalues of the Principle Components

Once we know that the eigenvectors of Σ are the principal components, what
are their corresponding eigenvalues? Recall, above we derived that the variance
of the points projected on a principal component e is given by:

σ2 =

D∑
j=1

D∑
k=1

ekejCov(k, j)

But in the work above, we showed that:

D∑
k=1

ekCov(j, k) = λej

So:

σ2 = λ

D∑
j=1

e2j = λ‖e‖ = λ

In other words, the eigenvalues of the principal components correspond to the
variance of the data along the principal component. Hence, the ith principal
component will be the eigenvector with the ith highest eigenvalue.

1.3.3 PCA

• How do you select the number of principal components?

– when we compute the eigenvectors, we will obtainD new basis vectors

– however, for dimensionality reduction, we should only pick m of these

– in order to select what m should be, there are 2 methods:

∗ pick the first m eigenvectors, such that the sum of the variance
that they explain is more than 90% of the total variance (90% is
arbitrary)

14

∗ alternatively, a scree plot can be used, alongside the the elbow
method

• How can we use PCA to reduce dimensionality?

15

1.3.4 Eigenfaces

PCA on Image Data

We can apply PCA to image data. For example, a K × K image can be
turned into a vector with K2 elements. From this, we can get the eigenvectors
(which will be K2 dimensional), and unfold them to produce a K×K image. If
we do this with the first principal component, it should outline the areas of high
and low variance; in other words, it will tell us the most distinguishing features
of the image.

16

PCA of Transposed Data

In this case, they represent the data using the variables as rows, and the
observations as columns. The analysis is similar. IfX is the matrix of data (rows
represent observations, columns represent variables), the covariance matrix is
typically given by Σ = XTX. If we however transpose the data, the covariance
matrix will be XXT (we are omitting the 1

N factor). Then, assume v is an
eigenvector (principal component) of Σ. Then:

XTXv = λv

=⇒X(XTXv) = λXv

=⇒XXT (Xv) = λ(Xv)

Hence, from the principal coomponents of the original data, we can derive the
principal components of the transposed data, by applying the transformation
Xv. In a similar way, if v were an eigenvector of XXT :

17

XXT v = λv

=⇒XT (XXT v) = λXT v

=⇒ Σ(XT v) = λ(XT v)

The Eigenface Space

The eigenvectors form a space, with which we can represent faces, by em-
ploying linear combinations of the basis vectors. For example, if x is a face, and
E is the matrix of eigenvectors (as columns), then as discussed above, the face
can be projected into the eigenface space via:

ETx

If we then take the elements of the projected vector, these are the coefficients
of each eigenface basis vector which we need to use to recompose the face. For
example:

Figure 5: We need to add the mean back, since we normalised the data.

Figure 6: The result of adding a principal component to the mean face. The first
face represents the average face in the data. As we add principal components,
the face resembles the original a lot more.

Turns out, this method is relatively robust, in the sense that different lighting
or face orientation or facial expression shouldn’t strongly affect the eigenface
decomposition (since PCA won’t pick up on sporadic feature changes, but rather
how features differ throughout). Moreover, we can use this to turn normal
objects into faces:

18

1.3.5 Issues with PCA

• Should we also scale data by its variance?

– PCA depends on the covariance matrix, so high covariance can greatly
affect the eigenvectors and in particular, the eigenvalues

– if we have a dimension which has an abnormally large scale, its covari-
ance will be abnormally large, so it will dominate, and that varaible
will become the first principal component

– because of this, it is recommended that we scale data to have 0 mean
and unit variance:

x− µ
σ

• Does PCA perform well with non-linear data?

– PCA assumes that data the underlying space which “explains” the
data is linear

– even if the data is non-linear, it will always return an eigenvector in
the direction of greatest variance, albeit this will be a straight line

– this isn’t always ideal

1.3.6 PCA for Classification

• How useful is PCA for classification?

19

– reducing dimensions reduces the effect of the curse of dimensionality,
which can be usefu for classification

– however, PCA can also damage the task of classification

• Why can PCA reduce classification power?

– PCA only deal with coordinates, so it has no idea about labels (un-
supervised)

– hence, it can be possible that when projecting data into the prin-
cipal components, data with different labels gets shuffled, making
classification impossible

Figure 7: Upon projecting onto PC1, the red and green classes will get jumbled
up, so classifiying will be hard. If we had chosen PC2, however, the data would
have been fully separated.

1.3.7 PCA vs Linear Discriminant Analysis

• How does LDA compare to PCA?

– PCA seeks dimensions which maximise variance along them

– LDA seeks dimensions which, when projected to, data (mean) from
different classes have the maximum separation, whilst data from the
same class has minimal variance

– in other words, LDA is built to produce a new space which will be
the most useful for a classifier

20

• What does LDA assume to produce the new dimensions?

– data is Gaussian

– there exists a boundary between data points of classes

• Does LDA always perform better than PCA for classification
dimensionality reduction?

– not necessarily

– if the data has similar means, but drastically different variance, inde-
pendently of how big we wnat to make the difference between means,
it will never be too much, meaning that data points from classes will
be projected close to each other

– PCA will pick up the big difference in variance between the classes,
and much better distribute the classes in the new space

21

– PCA projected data won’t be separable linearly (since the means are
close together), but a non-linear classifier would be able to separate
the data

1.4 Evaluating Dimensionality Reduction

3 extracts underlying factors which explain the data (i.e reflects intuition of
how temperature can be causing factor of different phenomena)

3 PCA converts data into data with independent attributes, so dimensions
will be uncorrelated, meaning that probabilities in high dimension are
easier to compute (independence assumption is valid, so we can use Naive
Bayes)

3 less variables, so less space required to represent data

7 can be expensive to apply (not good for large dataset)

7 if classes are fine-grained (close to each other), PCA can do harm

7 if assumptions don’t hold (i.e linear subspace), it won’t help

22

2 Hierarchical Clustering

• Hierarchical clustering removes the need to determine the number of clus-
ters to create

• Top-down methods subdivide the data to generate the hierarchy (hierar-
chical K-Means), whilst bottom-up methods join small clusters together
(agglomerative clustering)

• There are 5 clustering distance measures (single, complete, average, cen-
troid and Ward)

• The Lance-Williams Algorithm provides an efficient way of forming ag-
glomerative hierarchical clustering

2.1 Clustering and Granularity

• What is inconvenient about K-Means as a clustering method?

– the main issue of K-Means is that we need to select the number of
clusters

• What is wrong about the question “how many clusters should
we use”?

– the number of clusters to select depends on how finely we want to
subdivide the data

– within any real world data, it is always possible to select larger and
smaller clusters: it depends on the features of interest

– however, no clustering algorithm gives us the number of clusters

23

Figure 8: We can think of clustering as analogous to classifying waves in the
ocean: we can consider tsunamis or just ripples, but the sea is composed of
this and everything in between. The same with clustering: there is no one way
which tells us everywthing we need to know about the underlying structure of
the data. In this exampl,e we can identify 16, 4 or 2 clusters, depending on
what interests us.

• How does hierarchical clustering solve the issue of choosing K?

– instead of choosing the number of clusters, determine a hierarchy of
clusters

– we can then choose a level in the hierarchy to define the granularity
of the clusters

• How is hierarchical clustering organised?

– at the top level of the hierarchy, we have coarser clusters - they give
us the main, more apparent differences in the data.

– the topmost cluster corresponds to all of the data

– at the bottom level of the hierarchy, we have a fine grain clustering,
looking at the small features that distinguish 2 clusters of data

– the bottom cluster corresponds to singleton clusters of all the data

• What are the strategies used to build a hierarchical cluster?

– top-down clustering: hierarchy from recursively splitting all of the
data

– bottom-up clustering: hierarchy from merging singleton clusters
together

2.2 Hierarchical K-Means

• What is the hierarchical K-Means algorithm?

24

– use K-Means to produce a top-down hierarchical clustering

– we use K-Means to split the data into K clusters

– we recursively apply this on each cluster produced to further split it

Figure 9: We originally split the data using K = 2 into the red and yellow
clusters. At the next step, the red cluster is split into the red and pink clusters,
whilst the yellow cluster is split into the yellow and green clusters.

• What are the benefits and drawbacks of hierarchical K-Means?

– since at each step it gets recursively called on smaller subsets of the
data, the algorithm is fast:

O(K × n×D × logK n)

– however, once clusters are formed, points from different clusters can
never be part of the same cluster. In particular, points which are
close together might not get put into the same cluster. This is
apparent in the diagram above, where the bottom left red and yellow
clusters could form a good cluster.

2.3 Agglomerative Clustering

2.3.1 Algorithm

• What is the purpose of agglomerative clustering?

– agglomerative clustering is a bottom-up hierarchical clustering
algorithm

– it guarantess that if 2 points are close together, they will be clustered
together

– the definition of “close together” is the most important part of this
algorithm

• What is the agglomerative clustering algorithm?

1. Initialise a collection C of clusters, using n singleton clusters ci from
each of the n data points

25

2. Repeat n times (until only one cluster is left):

– determine the 2 clusters which are closest together. This is
defined by some distance measure D and:

min
i,j
{D(ci, cj)}

– merge ci and cj into ci+j

– remove ci, cj from C, add ci+j

• What are the benefits and drawbacks of agglomerative cluster-
ing?

– it ensures that if 2 points are close togehter, they are clustered to-
gether

– the hierarchy can be nicely visualised by a dendrogram

Figure 10: At the bottom left a dendrogram. At the bottom level, we place
the singleton clusters. At each step when 2 clusters are merged, a line is
drawn joining them. For example, the first cluster formed will be between
a and b. The height of the line represents how close the 2 clusters were.
The red line “cuts” the dendrogram, and this cut represents a clustering:
{a, b, c, d, e}, {f}.{g}, {h, i, j, k,m, n}, {l}. The distance threshold defines
were the line is placed, such that no further clustering is undertaken. This
clustering is shown at the top right by the circled nodes. At the bottom right,
a scree plot, which can be used to determine the number of clusters to consider.
At the x-axis, we have the number of clusters; at the y-axis, we have the merge
distance/distance threshold.

26

– however, the algorithm is very slow: you need to create a distance
matrix, and at each step recompute distances:

O(n2d+ n3)

– moreover, we need to define a distance metric, to determine when 2
clusters are close enough to merge

2.3.2 Distance Measures

There are 5 types of cluster distance measures in hierarchical clustering:

1. Single Link

2. Complete Link

3. Average Link

4. Centroids

5. Ward’s Method

• What is the single link distance?

– the shortest distance between elements in 2 clusters:

D(c1, c2) = min
x1∈c1,x2∈c2

D(x1, x2)

– tends to produce enlongated, flat clusters, since to cluster we consier
the smallest distance, and the distance itself is based on the smallest
distance between elements in clusters

Figure 11: In this case we would cluster the red and yellow clusters.

• What is the complete link distance?

– the longest distance between elements in 2 clusters:

D(c1, c2) = max
x1∈c1,x2∈c2

D(x1, x2)

27

– tends to produce more spherical clusters

– we then cluster based on the smallest of the largest distances between
sub-clusters

Figure 12: In this case we would merge the yellow and blue clusters.

• What is the average link distance?

– the average pairwise distance between elements in the clusters:

D(c1, c2) =
1

|c1|
1

|c2|
∑
x1∈c1

∑
x2∈c2

D(x1, x2)

– this is useful when clustering to avoid outliers

• What is the centroid distance?

– the distance between cluster centroids:

D(c1, c2) = D

(
1

|c1|
∑
x1∈c1

x1,
1

|c2|
∑
x2∈c2

x2

)

28

• What is Ward’s Method?

– for a pair of clusters, we simulate joining them. We then compute
the sum of squared distances from each point in the cluster and the
cluster centroid:

TDc1∪c2 =
∑

x∈c1∪c2

D(x, µc1∪c2

– this TD is compared with TDc1 + TDc2

– Ward’s method aims so that when clustering, we minimise the dis-
tance of cluster elements from their centroid (as we merge, this dis-
tance will increase, since clusters become bigger)

– more on Ward’s Method

2.3.3 Lance-Williams Algorithm

• What is the Lance-Williams Algorithm?

– an efficient way of performing agglomerative clustering (still cubic
runtime)

• How does the algorithm work?

1. Define a distance matrix, whereD[i, j] = D(xi, xj), for i, j = 1, 2, . . . , n.
This holds the distances between the original points in the data.

2. For n iterations (until only 1 cluster left):

– determine the smallest D[i, j] (so that i, j is the pair of closest
clusters)

– merge the closest clusters −→ i+ j

29

http://www.stat.cmu.edu/~cshalizi/350/lectures/08/lecture-08.pdf

– add the cluster i+ j, delete the clusters i and j

Figure 13: i and j are the closest clusters, so join them as a single cluster

Figure 14: We can then “disconnect” i and j, since they are a single cluster

– now, for each remaining cluster k, we can “disconnect” k from i
and j, and we need to compute D[k, i+ j]. Here is where Lance-
Williams obtains an efficiency improvement: instead of brutely
recomputing all values, they define:

D[k, i+ j] = αiD[k, i] +αjD[k, j] + βD[i, j] + γ|D[k, i]−D[k, j]|

– turns out, depending on the distance measure, we can set val-
ues of the constants, such that we obtain the updated distance
measure:

30

Figure 15: Errate: αi in second column shuld be αj

How does the Lance-Williams formula work?

– lets consider single link

– if we were to update the distance, we would just set:

D[k, i+ j] = min{D[k, i], D[k, j]}

since we just want the minimum distance between k and any element
of the cluster

– if we apply the Lance-Williams formula, it tells us that:

D[k, i+ j] = 0.5(D[k, i] +D[k, j]− |D[k, i]−D[k, j]|)

– it might not seem immediately obvious that the RHS is indeed the
minimum of the 2 distances, so lets consider a numerical example:

D[k, i] = 0.8

D[k, j] = 0.2

|D[k, i]−D[k, j]| = 0.8− 0.2 = 0.6

=⇒ D[k, i+ j] = 0.5(0.8 + 0.2− 0.6) = 0.2 = min{0.8, 0.2}

– why did this work? Notice, we can write 0.8 = 0.2 + 0.6. In other
words:

max{a, b} = min{a, b}+ |b−a| =⇒ min{a, b} = max{a, b}−|b−a|

– thus, if we imagine D[k, i] = max{D[k, i], D[k, j]} and D[k, j] =
min{D[k, i], D[k, j]}, then:

D[k, i+ j] = 0.5(D[k, i] +D[k, j]− |D[k, i]−D[k, j]|)
= 0.5(2×min{D[k, i], D[k, j]}
= min{D[k, i], D[k, j]}

as required.

31

2.4 Clustering Summary

• Clustering focuses on determining patterns in subpopulations

• K-Means: fast, iterative, reaches local minimum. Pick K based on high
decrease in intra-cluster variance

• Mixture Models: probabilistic K-Means using Expectation-Maximisation
to increase likelihood of models

• Hierarchical Clustering: top-down (K-Means) or bottom-up (Agglom-
erative). Performance depends on the measure used to define the dsitance
between clusters (single, complete, average, centroids, ward)

32

	Principal Component Analysis
	The Curse of Dimensionality
	Dimensionality Reduction
	Principal Component Analysis
	Aim of Principal Component Analysis
	Computing the Principal Components
	PCA
	Eigenfaces
	Issues with PCA
	PCA for Classification
	PCA vs Linear Discriminant Analysis

	Evaluating Dimensionality Reduction

	Hierarchical Clustering
	Clustering and Granularity
	Hierarchical K-Means
	Agglomerative Clustering
	Algorithm
	Distance Measures
	Lance-Williams Algorithm

	Clustering Summary

