
IAML - Week 7

Antonio León Villares

December 2021

Contents

1 K-Means 2
1.1 Defining Clustering . 2

1.1.1 Purpose of Clustering . 2
1.1.2 Types of Clustering . 2
1.1.3 Clustering Algorithms . 4

1.2 K-Means Clustering . 5
1.2.1 Basis and Uses . 5
1.2.2 Algorithm . 5
1.2.3 Properties . 6

1.3 Finding Number of Clusters . 7
1.4 Evaluating Clustering . 9

1.4.1 Intrinsic Evaluation: Comparison to Reference Clustering 10
1.4.2 Intrinsic Evaluation: Comparison to Human Clustering . 12
1.4.3 Extrinsic Evaluation: Applying Clustering to Image Rep-

resentation . 13

2 Gaussian Mixture Models 16
2.1 Motivating Mixture Models . 16
2.2 The Chicken and Egg Problem: Gaussian Mixture Models 16
2.3 The Expectation Maximisation Algorithm 18
2.4 EM in 1 Dimension . 19
2.5 EM for Multidimensional Data 21
2.6 Determining the Number of Mixture Models 22
2.7 Comparing K-Means and GMMs 23

1

1 K-Means

• Clustering is used to determine underlying patterns in subpopulations of
data

• Clustering can be monothetic or polythetic, hard or soft, flat or hierarchi-
cal

• K-Means produces K clusters, in which the intra cluster distance is min-
imised

• K-Means converges to local optima; to pick K, a scree plot can be used

• To evaluate clustering, we can use intrinsic methods (human clustering,
reference clustering) or extrinsic methods

1.1 Defining Clustering

Here is a good overview article of most of what will be discussed about clustering:
Clustering, and its Methods in Unsupervised Learning

1.1.1 Purpose of Clustering

• How does clustering differ from classification?

– in classification, we learn a model to predict the class of a new data
instance

– in clustering, we attempt to find underlying patters in unlabelled
data

• What questions does clustering answer?

– we can use it to ask questions on the composition and distribution
of subpopulations in the data

∗ how many subpopulations are there?

∗ how many members does each subpopulation have?

∗ what are common features in subpopulations?

– this need not mean that if the data had labels, clustering will perfectly
split the data based on these labels: it just finds common, impicit
patterns in the data

1.1.2 Types of Clustering

• What are the 3 types of clustering?

– Monothetic vs Polythetic

2

https://medium.com/analytics-vidhya/clustering-and-its-methods-in-unsupervised-learning-c1a59e14f867

– Hard vs Soft

– Flat vs Hierarchical

• How does monothetic clustering differ from polythetic cluster-
ing?

– in monothetic clustering, we are able to pinpoint the precise prop-
erty that elements in a cluster have in common (for example, a clus-
ter which represents children who prefer maths over sport - we can
quickly label the common property)

– in polythetic clustering, we can see that elements in the cluster are
similar, but we can’t pinpoint the exact reason for the similarity (in
this case we cluster based on distance - similar points will appear
close together, even if they don’t all share a common property)

• How does hard clustering differ from soft clustering?

– in hard clustering, each data point belongs to exactly one cluster
(that is, clusters partition space exactly)

– in soft clustering, single data points can belong to different clusters
(that is, clusters overlap)

– in soft clustering, its more interesting to think about the strength
of association of a point to a given cluster (for example, a platypus
can be part of a mammal and bird cluster, but will be more strongly
associated with a mammal)

• How does flat clustering differ from hierarchical clustering?

– in flat clustering, we aim to produce subpopulations which can’t be
further split (for example, a set of animals subdivided into “dog”,
“parrot”,“penguin”, “cat”, “goldfish”)

– in hierarchical clustering, we can vary the “grain” with which we
subdivided the populations (for example, we can choose to be more
coarse and split the set of animals into “mammals”, “birds” and
“fish” - it provides a taxonomical way of splitting the data)

3

1.1.3 Clustering Algorithms

1. KD-Trees: splits regions of space based on the median of the subpopu-
lations (each split region can be thought as a cluster

• monothetic (each element in a cluster is defined by the fact that its
attributes have values bounded by a set of medians)

• hard (space is partitioned exactly)

• hierarchical (we can reduce or increase the number of splits which we
do)

2. K-Means: split data into K distinct clusters based on distance

• polythetic (clustering is distance dependent, not based on a single
feature)

• hard (each element in a cluster belongs to the cluster only)

• flat (we specify the number of clusters, so subdivisions are more
coarse or fine depending on K)

3. Gaussian Mixture Models and Expectation Maximisation: fit a
mixture of K Gaussians to the data

• polythetic (clustering is dependent on mean and covariance of data,
so not one single feature which defines elements of cluster)

• soft (since this based on probability distributions, many Gaussians
can be thought as generating a single point)

• flat (we specify the number of Gaussians to fit, so no hierarchy)

4. Agglomerative Clustering: produce clusters by joining smaller clusters
together

4

• polythetic (clusters are grouped based on how close they are to each
other, not because of a distinguishing feature)

• hard (clusters won’t overlap)

• hierarchical (we can specify how many cluster groupings to perform)

1.2 K-Means Clustering

1.2.1 Basis and Uses

• How does K-Means define a cluster?

– data is clustered around K centroids

– a centroid is meant to represent the prototypical element of a given
cluster

– we need to determine how many clusters K to use

• How is K-Means used in practice?

– to determine classes in an unsupervised way (for example, using the
MNIST dataset, and setting K = 10, as to cluster the 10 numbers)

– provide a smooth representation of elements in data (elements within
a clsuter should be similar)

– dimensionality reduction (can make cluster membership an attribute
of each data point, and train a classification algorithm on that; al-
ternatively, set K to be the dimensions that we want to reduce to,
and redefine each point based on the distance to each of the clus-
ter centres, training a classifier on this modified data [see this stack
exchange and this medium article]

1.2.2 Algorithm

The input to the algorithm is:

• K (number of clusters)

• x1, x2, . . . , xn (data points)

1. Initialise K random centroids c1, c2, . . . , cK

2. For each xi, compute arg min
j
{D(xi, cj)} (the centroid to which xi is closest

to), and assign xi to cluster j

3. For each cluster j = 1, 2, . . . ,K, recompute its centroid. In the case of D
as the Euclidean Distance, this will just be the mean of all points in the
cluster:

cj =
1

nj

∑
xi∈j

xi

5

https://stats.stackexchange.com/questions/288668/clustering-as-dimensionality-reduction
https://stats.stackexchange.com/questions/288668/clustering-as-dimensionality-reduction
https://medium.com/analytics-vidhya/less-known-applications-of-k-means-clustering-dimensionality-reduction-anomaly-detection-and-908f4bee155f

4. Repeat until cluster members don’t change (in practice, if there are lot of
points, we perform these steps a given number of times, since convergence
may be too expensive)

Given N points in D dimensions, and assuming the algorithm runs for I
iterations, the runtime is:

O(KIND)

1.2.3 Properties

• Task: unsupervised/generative method to group data into K clusters

• Model: K centroids (D dimensional vectors)

• Score Function: average distance from centroid to cluster instance

• Optimisation: iteratively assign points to clusters and recompute cen-
troids

• What is K-Means optimising?

6

– the algorithm tells us that K-Means aims to minimise the aggregate
intra-cluster distance. That is, it wants to reduce the total distance
between each centroid and its cluster elements:

min

 K∑
j=1

∑
xi∈j

D(xi, cj)
2


(we square for convenience)

– if D is the Euclidean Distance, this is equivalent to minimising the
total variance within the clusters

• Is K-Means guaranteed to cluster optimally?

– K-Means will attain a local minimum

– this means that it is sensitive to the initial position of the centroids:
changing them means that clustering can change

– to mitigate this, K-Means can be run repeatedly, as to select a clus-
tering which provides the smallest aggregate intra-cluster distance

• Does K-Means always cluster like a human would?

– since K-Means is sensitive to its starting point, it might cluster in a
way that might not make sense to us, but is perfectly valid algorith-
mically

– for instance, it doesn’t guarantee that if 2 points are close to each
other, they will belong to the same cluster

Figure 1: An example of how initial conditions lead to a local minimum. If
the cluster centres (triangles) are placed to be equidistant between the red and
yellow points, we attain a local minimum. The centroid is already at the average
point of its cluster elements, so the clusters won’t change.

1.3 Finding Number of Clusters

• What is the optimal value of K?

– if we have N data points, K = N can be thought as optimal

– it means that the aggregate intra-cluster distance will be 0 (because
each point is its own cluster centre)

7

– however, this is not informative: it gives us no pattern with regards
to the data

• Can we use a validation set to determine K?

– we can define a validation set, run K-Means with different K, until
we find a minimum intra-cluster distance

– however, 2 problems:

∗ increasing K will tend to reduce intra-cluster distance

∗ in some cases, K = N will still be selected

• Can we use class labels to pick K?

– class labels can be used, but they remove the purpose of K-Means as
an unsupervised learning algorithm

• How is K determined in practice?

– we can plot a scree plot (aggregate distance vs K)

– we need to look out for the “knee” or “elbow” of the plot: the point
at which aggregate distance stops decreasing due to a better centroid,
and starts decreasing by virtue of adding cluster centres

– this is a consequence of the fact that aggregate distance won’t de-
crease uniformly, and will tend to decrease by less as K increases (as
more clusters are added, intra-cluster distance will already be small,
so hard to improve)

8

– the “elbow” represents the point at which adding clusters leads to a
big improvement in the metric

– mathematically, we can think of the “elbow” as the point at which
the rate at which the metric declines changes the most (so we aim to
maximise the second derivative of the metric)

– an alternative more complex method is the minimum description
length, considering the smallest number of bits required to encode
the K centroids and the distances from points to the centroids

1.4 Evaluating Clustering

There are 2 ways of evaluating a clustering algorithm. This is not as easy with
classification, where we have the “expected” labels available.

1. Intrinsic Evaluation

• aims at evaluating how “good” the produced clusters are

• qualitative: does the clustering improve our understanding of the
underlying data?

• quantitative: how well do the clusters compare with actual classes/labels?

2. Extrinsic Evaluation

• aims at evaluating how helpful the produced clusters are in solving
another problem

• for example, in using a classifier, does previously clustering the data
improve the classifier’s performance?

• improvements cna be brough by:

– alternative data representation (i.e expressing images in terms of
clusters)

– training a separate classifier on each cluster (and comparing this
with training the classifier on all of the data)

– eliminating outleirs before running classification

9

1.4.1 Intrinsic Evaluation: Comparison to Reference Clustering

• How can we use reference clusters to intrinsically evaluate our
clustering?

– let C1, C2, . . . , CK are the clusters from K-Means

– let R1, R2, . . . , RN be reference clusters (derived from using the class
labels from the data)

– we can produce a surjective correspondence between a Ci and a Rj

– once this correspondence is built, we can compute our standard eval-
uation metrics, such as the number of true positives, true negatives,
false positives and false negatives

– notice, the number of system clusters need not be equal to the number
of reference clusters

• How can we create the surjective correspondence between the
system and the reference clusters?

– we can follow a greedy algorithm

– firstly, construct a grid by using the system clusters as rows, and the
reference clusters as columns

– each cell (i, j) in the grid should tell us the number of elements which
are in both Ci and Rj

– at the start, we can then assign a system cluster to the reference
cluster with which it has maximum overlap

– however, this can result in many system clusters being assigned to
the same reference cluster

– we follow a greedy approach: assign Ci to the reference cluster Rj ,
such that Ci is the system cluster with the largest intersection with
Rj

– for all other system cluster which have intersections with Rj , assign
them to the next reference cluster with which they have the highest
intersection

– continue in this way, until all the reference clusters are mapped to

– this can result in certain system clusters having no assignment, but
the greedy approach maximises the data points that can be compared
between clusters

10

Figure 2: At the start, the algorithm assigns C1 → R2, C2 → R3, C3 →
R3, C4 → R2. To resolve R2, we notice that C1 has 3 overlaps, whilst C4

only has 2 overlaps. Hence, we assign C1 → R2, and C4 → R3. Clearly, C3

has the highest intersection, so C3 → R3, and C4 → R1, C2 → R1. Once again
we have to resolve this tie. We can choose to drop C4, and we get the final
assignment given below:

– once we have the table, computing accuracy is extremely easy: its
the sum of the number of intersections, divided by the number of
elements in the reference clusters

• Why can’t multiple system clusters be assigned to one reference
cluster?

– consider a system clustering, in which each data point is a cluster

11

– if we allowed multiple system clusters to be assigned to one reference
cluster, each singleton cluster (data point) will just be assigned to its
correct reference cluster (since it will have 1 intersection with it, and
0 intersections with the rest)

– this then means that we would get 100% accuracy, even if the single-
ton clusters don’t represent the reference clusters well

• Why can’t a single system cluster be assigned to multiple refer-
ence cluster?

– consider a system clustering, in which all data points are in one
cluster

– if we allowed a cluster to be assiegned to multiple reference cluster,
then we could assign this giant cluster to all reference clusters

– again, we would get 100% accuracy, even though the large cluster is
not representative of the class distribution, and it isn’t useful

• Why can’t we allow system clusters to overlap?

– consider a clustering technique which produces soft clusters

– assume that we don’t allow multiple assignments

– we could still cheat the system

– for example, a clustering system which clusters using the power set
of the data

– then, since the reference clusters are just subsets of the data, this
power set clustering will always have a cluster which is in one-to-one
correspondence with another reference cluster

– again, we would get 100% accuracy, but the power set is literally giv-
ing all possible ways of clustering the points, which is not informative

1.4.2 Intrinsic Evaluation: Comparison to Human Clustering

• How can humans help to intrinsically evaluate a clustering?

– we can’t ask humans to cluster the whole dataset

– instead, we can ask whether 2 instances xi, xj should be clustered
together

– once the algorithm clusters, we can count errors in clustering, com-
pared to what humans say, and derive measures such as accuracy,
TP, TN, FP and FN

– TP : xi, xj clustered together & human says they should be clustered
together

– TN : xi, xj not clustered together & human says they should not be
clustered together

12

– FP : xi, xj clustered together & human says they should not be clus-
tered together

– TN : xi, xj not clustered together & human says they should be clus-
tered together

Figure 3: Given the sample of 4 pairs, we can see that (a,b) is a TP, (c,d) is a
FP, (e,h) is a FN, and (g,h) is a TN.

• How does this strategy compare with the alignment strategy
above?

– simple: don’t need to compute alignments with reference clusters

– it can handle soft clustering (a given pair can be computed as 2
different metrics, like TN and FP)

• Can this process be automatised?

– if we have class labels, we can automaticlaly generate the pairins

1.4.3 Extrinsic Evaluation: Applying Clustering to Image Repre-
sentation

We consider the goal of detecting an object in an image.

• Can we represent an image as a vector of pixels?

– not too practical: decent resolution RGB images can have millions
of pixels

– not too useful for learning

• Can we represent an image using a bag of words representation?

– naively, not too practical again: we would require humans to deter-
mine the elements of the image

13

– we might as well use the human to determine if the object is present
or not

• How does segmenting an image help detect an object?

– the idea is to “cut” the image up into small segments

– for each segment, we can compute a feature vector, containing meta-
data on that image (colour distribution histogram, orientation, edges,
etc ...)

– if we can meaningfully label such feature vectors (for example, as
“grass”, “water”, “tiger”), we could potentially create a representa-
tion

• How does K-Means help when segmenting the image?

– the idea is that the feature vectors of segments which are similar
should be close together in space

– if we apply K-Means, we could cluster similar feature vectors within
a cluster (say C27)

– in essence, we are then able to ID an image segment, based on to
which cluster it belongs, with the idea that similar looking segments
should have the same ID

14

– we can then produce a K dimensional representation of an image,
based on how many times a given cluster ID appears in the image
(for example, 〈0, 0, 0, 4, 12, 0, 0, 13〉 could indicate that C4 appears 4
times, C5 appears 12 times, and C9 appears 9 times)

15

2 Gaussian Mixture Models

• GMMs are probabilistic clustering models which perform soft clustering

• GMMs aim to maximise the likelihood, but can’t do this directly, so they
use expectation maximisation

• Selecting the number of Gaussians is a complex problem; Occam’s Razor
can be used as a heuristic

• In many cases, GMMs are similar to K-Means

2.1 Motivating Mixture Models

• What are the 2 types of clustering?

– hard clustering: points belong to a single cluster (2 clusters never
overlap)

– soft clustering: points can belong to more than one cluster (clusters
may overlap, with a point having different “strength of association”
for different clusters)

• What are mixture models?

– a probabilistic form of soft clustering

– clusters are defined by generative models

– for continuous cases, the model can be a Gaussian

– for discrete cases, the model can be a Multinomial

2.2 The Chicken and Egg Problem: Gaussian Mixture
Models

• What are Gaussian Mixture Models?

– the use of Gaussian distributions to form a mixture model

– we can think of the data as being sampled from K Gaussian distri-
butions

• Are GMMs unsupervised methods?

– yes, GMMs are constructed in order to determine the parameters of
the Gaussian Distributions

– these parameters include:

∗ the mean µ of the distribution (vector or real number)

16

∗ the variance σ or covariance matrix Σ

∗ the prior probabilities of the classes that need clustering

• How could the Gaussians be estimated if we knew the class la-
bels?

– lets assume we want to use 2 Gaussians to estimate the distribution
of data, and we now the class labels

– even if we don’t know the parameters of the Gaussians, we can esti-
mate them, since we know the labels of each point. For example, for
some class b:

µb =
1

nb

∑
xi∈b

xi

σb =
1

nb

∑
xi∈b

(xi − µb)
2

Figure 4: We consider points whose source (class) we know. From these, we can
estimate the parameters of the Gaussians which generate said points.

• How can the class labels be estimated if we know the Gaussian
parameters?

– lets assume the data is generated by 2 Gaussians of known parame-
ters, but we have unlabelled data points

– even if we don’t know the labels of the points, we can use the Gaus-
sian parameters to determine the probability of a given point being
generated by the Gaussians. We can then assign a class label based
on the highest probability.

– to compute the probability we just have to use Bayes’ rule, along-
side the probability density formulae. For example, for the Gaussian
modelling class b with mean µb and variance σb, alongside the prior
of a point belonging to class b, P (b):

P (xi|b) =
1√

2πσ2
b

× exp

(
−0.5×

[
xi − µb

σb

]2)

17

P (b|xi) =
P (xi|b)× P (b)

P (xi|b)× P (b) + P (xi|a)× P (a)

Figure 5: We consider unlabelled points generated by known Gaussians. From
this, we can compute the probability of a given point being generated by a
certain Gaussian.

• What is the chicken and egg problem?

– we have seen that if we have the labels, we can estimate the Gaussian
paramters

– similarly, if we have the parameters, we can estimate the labels

– in the case of GMMs, we have neither, so we can’t figure out the
parameters from the labels, or viceversa

2.3 The Expectation Maximisation Algorithm

• Generla overview of GMMs

• Thorough explanation of EM, explanation of which max log likelihood
can’t be used and even example of convergence of EM

• Can we use likelihood to figure out the model parameters?

– before, when fitting a Gaussian to data, we used maximum log likli-
hood to derive our estimates for µ, σ2, so it could make sense to use
it for GMMs

– the issue is that we are trying to fit many Gaussians, so the log
likelihood becomes of fitting K mixture models to N data points
results in:

L =

N∑
i=1

log

(
K∑

k=1

P (k)× 1√
2πσ2

b

× exp

(
−0.5×

[
xi − µk

σk

]2))

– the issue is that differentiating this and attempting to solve anlyti-
cally for µk, σ

2
k is impossible

• What is Expectation Maximisation?

18

https://brilliant.org/wiki/gaussian-mixture-model/
https://stephens999.github.io/fiveMinuteStats/intro_to_em.html
https://stephens999.github.io/fiveMinuteStats/intro_to_em.html

– expectation maximisation (EM) is the technique used in order to, in
a completely unsupervised manner, numerically derive the Gaussian
Parameters for the K GMMs

– EM is guaranteed to reach a local optimum (in terms of log likelihood)

• What is the EM algorithm?

1. Initialise K random Gaussians

2. For each point xi in the data, compute P (k|xi) (expectation step),
and assign xi to the label with max probability (does xi look as if its
generated by k?)

3. Readjust µk, σ
2
k based on the points assigned to class k (maximisation

step)

4. Iterate until convergence (for example, when the likelihood changes
by very little)

2.4 EM in 1 Dimension

We consider an example in which 2 Gaussians are fit to n datapoints.

1. Initialise 2 random Gaussians, calling them a and b, and defined the pa-
rameters µa, σ

2
a, P (a), µb, σ

2
b , P (b):

(technically, we only need P (b) as a parameter, since P (a) = 1−P (b). In
general, if we have K classes, we only need K − 1 priors).

2. Compute the probability of a point belonging to one of the Gaussians.

(a) First, determine the probability of Gaussian b generating xi. This is
just P (xi|b), which can be computed using the Gaussian (technically
this is a density):

P (xi|b) =
1√

2πσ2
b

× exp

(
−0.5×

[
xi − µb

σb

]2)

19

(b) Then, we can determine the probability of Gaussian xi being of class
b:

P (b|xi) =
P (xi|b)× P (b)

P (xi|b)× P (b) + P (xi|a)× P (a)

(c) We can use the same formulae with µa, σ
2
a to compute P (xi|a) and

P (a|xi)

3. Once we have the probabilities for each data point, we can recompute the
parameters of the Gaussians. For example, for class b:

µb =
1∑n

i=1 P (b|xi)
×

n∑
i=1

P (b|xi)× xi

σ2
b =

1∑n
i=1 P (b|xi)

×
n∑

i=1

P (b|xi)× (xi − µb)
2

We recompute the parameters by giving each point a weighting, depen-
deing on how probable xi is of being generated by b. The same formulae
apply by using P (a|xi) instead. Notice, we are not saying whether a point
is generated by exactly one of the Gaussians, but rather that both Gaus-
sians can potentially generate the point. As EM progresses, we expect the
probabilities to be better defined.

4. After these steps, we can either keep the priors P (a), P (b) the same as at
the start, or update them, via:

P (b) =
1

n
×

n∑
i=1

P (b|xi)

P (a) can be updated in a similar way (in this case, we can just use P (a) =
1− P (b) since there are only 2 classes)

5. We then repeat these steps, until the parameters don’t change too much.
For the example shown above:

Figure 6: We can see that the blue Gaussian has high variance, since it is trying
to be generative for most data points. On the other hand, the yellow Gaussian
is only close to 2 points, so it has much lower variance.

20

Figure 7: After more steps, the Gaussians are more differentiated.

2.5 EM for Multidimensional Data

For multidimensional data, we follow very similar steps. The main difference is
that we work with vectors and matrices. Consider n points of D dimensions.
We consider fitting K Gaussians c1, c2, . . . , cK .

1. Enumerate theK Gaussians randomly, such that cj is defined by µ
cj
,Σcj , P (cj).

2. For each point xi, determine the probability of each cj generating xi:

P (xi|cj) =
1√

(2π)D × |Σcj |
× exp

(
−0.5× (xi − µcj

)T Σcj (xi − µcj
)
)

P (cj |xi) =
P (xi|cj)P (cj)∑K

m=1 P (xi|cm)P (cm)

3. We now compute a weight indicating the importance of xi for the Gaus-
sian cj . We can think of this in teh following way: out of all the points
generated by cj , how important is xi. This is just for algebraic conve-
nience:

wi,j =
P (cj |xi)∑n

m=1 P (cj |xm)

4. We can now recompute the parameters of cj . The mean is given by:

µ
cj

=

n∑
i=1

wi,jxi

The mean of attribute a will be given by:

µcj ,a =

n∑
i=1

wi,jxi,a

The covariance of 2 attributes a and b is given by:

Σcj ,a,b =

n∑
i=1

wi,j(xi,a − µcj ,a)(xi,b − µcj ,b)

21

so we can construct:

Σcj =


Σcj ,0,0 Σcj ,0,1 . . . Σcj ,0,D

Σcj ,1,0 Σcj ,1,1 . . . Σcj ,1,D

...
. . .

...
Σcj ,D,0 Σcj ,D,1 . . . Σcj ,D,D


5. If we want to recompute the prior:

P (cj) =
1

n
×

n∑
i=1

P (cj |xi)

6. We repeat this until convergence

2.6 Determining the Number of Mixture Models

• Can we use likelihood to determine K?

– no, since to maximise likelihood, we can just pick K = n

– this means that each data point has its own Gaussian, with extremely
small variance

– this clearly won’t generalise well

–

L =

N∑
i=1

log

(
K∑

k=1

P (k)× P (xi|k

)
=

N∑
i=1

log

(
K∑

k=1

P (k)× 1√
2πσ2

b

× exp

(
−0.5×

[
xi − µk

σk

]2))

• Can we use validation to determine K?

– create a validation set V , and for each K, compute the likelihood of
the model on V

– in some cases this can still give K = n

• What other technique can we use?

– Occam’s Razor: pick the simplest model

– if p are all the parameters of the GMM, we can measure simplicity
via:

∗ Bayes Information Criterion: max
p

{
L− 1

2p log n
}

∗ Akaike Information Criterion: min
p
{2p− L}

– recall the parameters are given by the means, variances and priors.
For K GMMs, we expect 3K − 1 parameters.

– ultimately, we can decide on a good value of K based on how it helps
us solve another task that requires clustering (extrinsic evaluation)

22

2.7 Comparing K-Means and GMMs

• How are K-Means and GMMs similar?

– performance can depend on initial conditions (centroids, Gaussian
parameters)

– converge to local maximum

– convergence when likelihood is small

– likelihood grows with K, so can’t magically find it

• How are K-Means and GMMs dissimilar?

– GMM performs soft clustering, whilst K-Means performs hard clus-
tering

– K-Means clusters based on distance; GMM clusters based on covari-
ance (K-Means and GMM will be similar if data is spherical)

23

	K-Means
	Defining Clustering
	Purpose of Clustering
	Types of Clustering
	Clustering Algorithms

	K-Means Clustering
	Basis and Uses
	Algorithm
	Properties

	Finding Number of Clusters
	Evaluating Clustering
	Intrinsic Evaluation: Comparison to Reference Clustering
	Intrinsic Evaluation: Comparison to Human Clustering
	Extrinsic Evaluation: Applying Clustering to Image Representation

	Gaussian Mixture Models
	Motivating Mixture Models
	The Chicken and Egg Problem: Gaussian Mixture Models
	The Expectation Maximisation Algorithm
	EM in 1 Dimension
	EM for Multidimensional Data
	Determining the Number of Mixture Models
	Comparing K-Means and GMMs

