IAML - Week 5

Antonio Ledn Villares

October 2021

Contents

1 Optimisation
1.1 The Importance of Optimisation in Machine Learning
1.2 Numerical Optimisation
1.3 Gradient Descent
1.3.1 Defining Gradient Descent
1.3.2 The Learning Rate
1.3.3 Batch vs Online Learning
1.3.4 Issues with Gradient Descent
1.3.5 Further Topics (Not Covered)

2 Regularisation
2.1 Defining Regularisation
2.2 Ridge Regression

3 Support Vector Machines
3.1 Imtroducing SVM
3.2 The Max Margin Optimisation Problem
3.2.1 Setting Up Optimisation for SVM
3.2.2 Deriving a Formula for the Margin
3.2.3 Solving the Optimisation Problem
3.3 Handling Non-Separable Data With SVM: The Slack Term . . .
3.4 Comparing SVM and Logistic Regression
3.5 Non-Linear SVMs: Using the Kernel Trick

1 Optimisation

e Sometimes error expression can’t be optimised analytically, so numerical
methods are used

e Gradient descent uses the partial derivative of the error function to change
the weights and reduce error

e Gradient descent can be done in batch, online or mini-batch

e Gradient descent can have problems if the error surface has a shallow
minimum, many local minima or if the surface has curvature

1.1 The Importance of Optimisation in Machine Learning

e How is optimisation related to solving a machine learning prob-
lem?

— learning problems are often described in terms of optimising a certain
quantity
— for example, in linear regression we want to minimise the least squares

error, or max likelihood in Naive Bayes

e Are minimisation and maximisiation different optimisation prob-
lems?

— any minimisation problem can be transformed into a corresponding
maximisation problem, and viceversa

— typically we transform optimisation problems into minimisation prob-
lems

What do we typically optimise in machine learning?

— we aim to optimise an error function E(w), where w represent the
weights of our model, and E(w) is compute by considering the error
between our model and the training data

e How can we visualise the process of optimisation?

— we can “see” E(w) as a surface in some dimension

— optimisation corresponds to moving down the surface, until we reach
a minimum of the surface

S T
R

ST Wy
Rl

et ook
CSOTSRIRIKS

S /]
RIRREIAL

e Is every problem in machine learning optimisable?

— problems which are optimisable in an intelligent way typically require
that E(w) is smooth

— if the error function is not smooth, optimisation can only done via

brute force (i.e try all possibilities for w)

E(w)

w

1.2 Numerical Optimisation

e Is it always possible to obtain an analytic solution to an optimi-
sation problem?

— more often than not, expression for F(w) can only be optimised via
numerical methods (i.e logistic regression, deep learning)

e How do derivatives represent the optimisation problem?

— if we consider:
oF
8wi
this is telling us how E changes locally, given some small change in
a component w; of w

— overall, if we consider the gradient vector:

OF
VE (M) = (971}

this is telling us the direction of greatest change of E given changes
in w

— thus, if we follow the direction of VE(w) we will be going in the
direction of least error (locally at least)

e How does numerical optimisation minimise the error?

— a numerical optimisation problem seeks to solve:

minF(w)

— in general, they need to compute F(w) and follow a systematic pro-
cedure to decrease F, either by:
* using derivatives
* using higher order derivatives
* some other method

— the general algorithm is:

initialize w
while E(w) is unacceptably high
calculate g = VE
Compute direction d from w, E(w), g
(can use previous gradients as well...)
w—w-nd
end while
return w

1.3 Gradient Descent
1.3.1 Defining Gradient Descent

¢ What is the gradient descent algorithm?

— Gradient Descent is a numerical optimisation algorithm in which:
d=VE

— in other words, we change the weights by using the gradient vector
of the error at a given iteration:

initialize w

while E(w) is unacceptably high
calculate g + 9=
W—WwW-17gd

end while
return w

1.3.2 The Learning Rate

e What is the learning rate?
— the learning rate is the positive constant n

e How does learning rate influence the rate of convergence to a
solution?

— as its name indicates, the value of 1 determines the influence of the
gradient on the new value of the weights

— a small 7 means that learning will be slow, as at each iteration we
only take small steps

— a large n means that learning can be unstable, as it is possible to
completely miss out on the minimum, since we will be constantly
overshooting

Learning rate

w) Jw)

Overshooting Learn too slow

E(w) = w?
» Take = 0.1. Works well.

g

. Wy = 1.0
z Wy :W0—0.1-2W0:0.8
A wo =wy — 0.1-2w; = 0.64

2 w3 =wWo — 0.1 2w, =0.512

0 _| T T T T T T

3 2 -1 0 1 2 3 wos = 0.0047

e How does “Bold Driver” Gradient Descent improve on standard
gradient descent?

— Bold Drive Gradient Descent decreases the chance of picking an 7
which is too small or too large, by modulating its value at each iter-
ation depending on the effect of n on E:

Figure 1:
weights.

initialize w, 7
initialize e <~ E(w); g + VE(w) whilen > 0
Wi+ W-—1g
e = E(W1); g1 =VE
ifeg > e
n=n/2
else
n=101n W<+ Wy; g+« g1; €= e
end while
return w

At each step, computes the error given a new set of (temporary)

If the error increases from the previous iteration, we halve 7, and

repeat. Once we observe that the error decreases, we set the new weights, and

increase 7.

This means that we use small only when absolutely necessary, and

cautiosuly increase it to speed up training.

e the pitfall of BDGD is the fact that it is likely to get stuck in local minima

1.3.3 Batch vs Online Learning

e What are the differences between batch and online learning?

batch learning is as we have been doing thus far: compute the error
function using our weights and all of the training data:

n

E(w, (@,01),-- - (20, 90)) = > Ew, (z;,4:))

i=1

in the case of gradient descent, it means that we change change the
weights only after computing the error using all training instances:

O _ = 0F,
aw_z‘:l Ow

where F; denotes the error from training instance ¢. This is the same
algorithm as presented above.

in online learning, we change the weights after computing the error
of a single instance:

0F;

ow

an example of online learning is Stochastic Gradient Descent:

e When should one use batch or online learning?

— batch learning is good as:
* it is very powerful for optimisation
* easier to analyse

It should be used when the training data is not expected to be up-
dated, or when the amount of training instances is not too large, as
training can be quite expensive
— online learning is good as:
* it can be used with growing datasets
% has the possibility of jumping over local minima

e What is mini-batch learning?

— a hybrid between batch and online learning

— we can split the training data into mini-batches. Then, for each
mini-batch we use batch learning, and obtain a set of weights, which
are given as starting weights for the next mini-batch, which is then
trained, etc ...

1.3.4 Issues with Gradient Descent
e What are the main issues associated with Gradient Descent?

— setting 7
— shallow valleys
x if the surface gets shallow close to the minima, learning will be
slowed down
* can use momentum to reduce effect of shallowness:

dy = Bd; 4 + (1 - 5)77VE(Mt)

* [3 controls whether we want to give preference to the actual gra-
dient, or the previous direction of movement

* this comes at the cost on having to decide on values for and g
— curved error surface
* since derivatives are local, they might not point towards the local
optimum
* this is caused by curvature

Figure 2: The steepest direction is not pointing in the direction of the optimum
(more to the right)

*

some functions like parabolas don’t have this problem

— local minima

*

*

once the algorithm hits a local minimum it will stop

this is an inherent problem which can only be ameliorated, for
instance by repeatedly applying the algorithm

some functions (squared error, likelihood error) are convex, so
they only have a global minimum

1.3.5 Further Topics (Not Covered)

» Some of these issues (shallow valley, curved error
surfaces) can be fixed

>

>

Some of these are second-order methods like Newton's
method that use the second derivatives

Also there are fancy first-order methods like quasi-Newton
methods (e.qg., limited memory BFGS) and conjugate
gradient

They are the state of the art methods for logistic regression
(as long as there are not too many data points)

We will not discuss these methods in the course.

» Other issues (like local minima) cannot be easily fixed

» Sometimes the optimization problem has constraints

>

Example: Observe the points {0.5, 1.0} from a Gaussian
with known mean p = 0.8 and unknown standard deviation
o. Want to estimate o by maximum likelihood.

» Constraint: o must be positive.
» In this case to find the maximum likelihood solution, the

optimization problem is

2
1
max) 5yz (0= 1)
=t
subjectto o > 0

There are ways to solve this (in this case: can be done
analytically). We will not discuss them in this course.

2 Regularisation

e Towards Data Science: Regularisation in Machine Learning

e On why large weights lead to overfitting

e Regularisation is the introduction of terms in error computation to avoid
overfitting

e Ridge Regression uses regularisation to prevent the model weights from
getting too large

2.1 Defining Regularisation

e What is the aim of regularisation, and how does it enforce it
during learning?

— regularisation aims at creating models which are less prone to over-
fit data

— it does this by penalising large weights in a model, making the model
less flexible

— larger weights are indicative of overfitting, since they overestimate
the effect of a given parameter; they can be made arbitrarily large to
perfectly fit the training data

e On which models can regularisation be applied?

— regularisation requires continuous models, such as linear regression

— it won’t work on discrete models, such as decision trees

2.2 Ridge Regression

e What is ridge regression?

— our standard linear regression, but using regularisation to avoid over-
fitting

e How is regularisation implemented within the error function for
polynomial regression?

— since we want to penalise big weights, we can alter error:

E(w) = ly — ®w|* + Aw|?

10

https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
https://stats.stackexchange.com/questions/351715/why-limiting-the-weights-to-not-grow-to-big-numbers-help-to-avoid-overfitting

— this is all derived by using Lagrangian Multipliers: we constrain
our original error function F(w) = |y—®w|? by requiring that [w[* <
C?. Then we know from Lagrangian Multipliers that:

L(w) = ly — ®w|* + A(|lw|]* — C?)

We reach the formula above by ignoring C' as it just a constant which
shouldn’t affect the error

Figure 3: The green concentric ellipses represent our error surface, whilst the
circle represents our constraint. The minimisation requires us to find the set of
weights at the intersection of the 2 curves.

e How are weights computed in Ridge Regression?
— they are very similar to standard linear regression weights:
w= (7P +) '@y
e How does the regularisation parameter affect the error?

— if A = 0, we can see that we will be getting the same weights as with
our standard linear regression

— if A = 00, the only relevant term in (@7 ® + AI)~" becomes the term
with A, so:

1
y—)X@Ty—M)

11

so our model weights just go to 0

— thus, we can see that, the larger the A\, the more we are penalising a
“complex” model, with large weights

Figure 4: We try to fit the data with a degree 9 polynomial. If we have no
regularisation term, we are overfitting. By introducing just a small A\, we already
get a much better model. Getting A too large produces an overly rigid model,
which will look nearly linear.

12

Training
— Test

ERrwms
(o]
Ln

—35 =30 o X —25 —20

Figure 5: This is a graph giving the training and testing error for the data above,
approximated by a degree 9 polynomial. We can see that by slightly increasing
A, we are slightly increasing the training error, but getting much better testing
performance.

e What is L, regularisation?

— using |w|? < C? is just one possible type of constraint

— L, regularisation refers to creating constraints involving w and the
p—norm. Using different norms means that instead of circles, the
constraint might define squares, or other curves, thus changing the
weights in different ways

13

https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm

L neee el = (T Pk

e

Lo ng L, #

— for example, using p = 1, our constraint becomes a square, which
leads to sparse weights (i.e the vecot rof weights has many 0). This
is called LASSO Regularisation:

Sparsity Weight Compromise...
inducing sharing Two parameters ...

L1 Norm L2 Norm L1 + L2 Norm

e How does the ridge regression task differ from standard regres-
sion?

— we could describe the standard linear regression task via:

14

+x Task: regression
* Model Structure: linear regression model
* Score Function: squared error

*

Optimisation/Search Method: analytic solution/calculus
— ridge regression is quite similar
+x Task: regression
* Model Structure: linear regression model
* Score Function: squared error with quadratic regularisa-
tion
* Optimisation/Search Method: analytic solution/calculus
— we can see that we can indeed train the same model structure, but
use different scoring function

e How can we use a validation set to evaluate a standard regression
model?
— we can split our data into training, validation and testing sets
— if we didn’t have a regularisation parameter, then we:

1. train M models on training data, using polynomials of orders
1,2,...,.M
2. measure error on validation set for each of the M models

3. select the model which performs the best on validation, and use
it for testing

e How can we estimate the regularisation parameter \?

— since A is continuous, we can’t search through all values, as with
polynomials of discrete order

— we typically select a set of geometrically distributed values (for ex-
ample, A € {0.01,0.1,0.5,1,10}). Then we can train the model, and
evalaute with the validation set, tweaking the value if necessary.

e Why don’t we set A based on the training set?

— if we did this, then the model would tend to using A = 0, since this
leads to the lowest training error (see graph above)

3 Support Vector Machines

e General, thorough explanations on SVM by UoT

e Decent overview of SVM, gives good intuition without getting too math-
ematical

e A derivation for SVM optimisation

15

http://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf
https://www.youtube.com/watch?v=efR1C6CvhmE
https://www.youtube.com/watch?v=efR1C6CvhmE
https://www.svm-tutorial.com/2015/06/svm-understanding-math-part-3/

e Slack variables 4+ nice diagrams to illustrate

e Everything SVM, including an intuitive idea of what the SVM decision
boundary illustrates + nice diagrams

e SVMs are linear classifiers, which construct a hyperplane, such that it
maximises the margin

o We can use slack variables to account for missclassifications in SVM models
with non-separable data

e We use the kernel trick to efficiently use SVMs with non-linear data

3.1 Introducing SVM
e What is the Support Vector Machine algorithm?

— an algorithm used to build a linear classifier
e How does SVM decide on the decision boundary?

— intuitively, it uses support vectors to build the decision boundary

— these support vectors correspond to the class instances that are
the most ambiguous

16

https://www.quora.com/What-is-the-purpose-for-using-slack-variable-in-SVM
https://towardsdatascience.com/svm-and-kernel-svm-fed02bef1200
https://towardsdatascience.com/svm-and-kernel-svm-fed02bef1200

X2 L/
y © ,
. 3
- [W g
Q/ &
o/
Support Vectors
X1

Figure 6: The support vectors are given by an apple that looks like a lemon,

and a lemon which looks like an apple. SVM will build a hyperplane with as
much distance from the support vectors as possible.

3.2 The Max Margin Optimisation Problem

3.2.1 Setting Up Optimisation for SVM

e What is the decision boundary of a linear decision classifier?
— for a general linear classifier, we construct a hyperplane define by:
w-z+wo =0

where w is a vector perpendicular to the hyperplane (this is just the
normal equation for a hyperplane from linear algebra)

¢ What makes a good decision boundary?

— there are infinitely many decision boundaries which can perfectly split
2 separable classes

17

— finding the best such decision boundary means finding a hyperplane
which maximises its distance from any instance of both classes

"
Cl 3
N - o ass 2 ks @ Class2
‘... H
*, L] L
- "] - ®
[] X o o o)
I RN E =
[] ™ "'.‘ [] m ¢
Class 1 e Class 1

Figure 8: A good decision boundary

e What is the margin in SVM?

— the margin is the distance between any given hyperplane, and the
closest training instance

— from the discussion above, it follows that maximising the margin
is the optimisation task for SVM

3.2.2 Deriving a Formula for the Margin

To derive the formula, we consider the following steps:

1. Compute the position vector of the point in the hyperplane closest to the
origin (this must be the point which is perpendicular to the hyperplane)

18

2. Compute the distance between any training instance and the hyperplane,
by using the previous result

3. Define constraints which the margin must satisfy

4. Derive a formula for the margin using the constraints

1) Compute the position vector of the point in the hyperplane
closest to the origin

The shortest distance between a line (hyperplane) and a point is the per-
pendicular distance. Let z be the position vector of the point in the hyperplane
closest to the origin.

By construction of the hyperplane w -z +wg = 0, we know that w is a vector
perpendicular to the hyperplane, and so, z must be in the direction of w. In
particular, we have:

w
z= |zl
[Jwll
Finally, since z is on the hyperplane, it must satisfy its equation, so:
w-z+wy =0
If we plug in the expression for z above:
w-z+wy=0

~@ﬂ1u)+m—0
Tl

[E]

!
=

= ——w-w+wy=0
]l
2
B P O
]|

Wo
= lzll = =7

]

Thus, the position vector of the vector on the hyperplane closest to the origin
is: wo

Z=—1sw
[[w]?

19

2) Compute the distance between any training instance and the
hyperplane

Let z be some training instance. It is easy to see that its (shortest) distance
from z to the hyperplane is:

Izl = llprojwz|

We know that:

1
el

L w-z

izl = lprojwz||| = lw - z + wol

IIwH]|

3) Define constraints which the margin must satisfy

We know that the margin must then satisfy:

|w + wol

The first constraint we enforce is that, if is a training instance:
minjw - x + wp| =1
w
This is always enforcible, since w and wg depend on the training instances, so we
can always define them to satisfy this. This is a useful constraint for 2 reasons:

e both w-z+wy =0 and cw -z + cwy = 0 define the exact same hyperplane.
By creating the constraint we remove scalability, and ensure we can select
a single hyperplane.

e if we have min|w -z + wp| = 1, then we can ensure that the margin can be
K2

simply described by:

lw
But then this constraint leads to another set of constraints:
yi=1 = w-z+w =1
Yi=—-1 = w-z+wy < -1
Which can be simplified into a single constraint:
yi(w -z +wo) > 1

Finally, notice that:

1
max
w|wll
is equivalent to:
min||uw||
w
which is equivalent to:
min||w||*
w
Thus, our optimisation problem is:
min|w||*
w

Subject to the constraint:
yi(w -z +wo) > 1

21

3.2.3 Solving the Optimisation Problem
e What are the optimal parameters for SVM?

— since we are optimising with respect to a constraint, we can once
again use Lagrange Multipliers:

L(w) = [|w]* - Zai (yi(w - z; +wo) — 1)

where we have rewritten our constraint as:
yi(w-z; +wo) —1>0

Each «; corresponds to one Lagrange Multiplier for each data point

L

— applying the method:

oL
w2 Z iy,

where:
o 2 (|lwl?) is just V(w? +wd + ... +wd) = 2w
* o (yi(w-gi + wo) — 1) = aiyi(w x4 wo) — o1 = auyw - T +
a;y;wo — a1 so the partial derivative with respect to w will be
Y,

— so it is easy to see that our weights will be given by g—f) =0 so:
w= Z QiYL
i

where we have removed the 2, since each «a; are constants

— to get wp, we do the same thing, but consider 6%) = 0, which results

m: a
£ = Zaz‘yz‘ =0

8w0
¢ How can we optimise for o;?

— if we plug back in our expression for w into L:

22

— this expression is convex, so it has no local minima
¢ What are support vectors?

— it turns out that, in the above formulation, if z; is within the margin
(so w -z, + wo =1, then «; will be non-zero. Otherwise o; =0

— in other words, w is dependent only on those vectors with «; # 0
— these vectors are what are known as support vectors

— intuitively, it makes sense that w should only depend on these support
vectors, as any other training instance further away shouldn’t affect
the placement of the hyperplane

e How does SVM classify a new data instance?

— since w = Zz oy xz;, we classify a new instance u as class 1 if:

(Z aiyﬂi) "u+wo =0
i

— moreover, classfication is solely dependent on support vectors

3.3 Handling Non-Separable Data With SVM: The Slack
Term

¢ Why can’t the implementation above handle non-separable data?
— if the data is no separable, then our optimisation problem

min||w||*
w

subject to the constraint:
yi(w -z +wo) > 1

won’t have a solution

23

— for example, if we have a positive training instance which is below
the hyperplane, so w -z + wy < —1, but y; = 1, so it won'’t satisfy
the constraint

e Why can’t we ignore outliers when training a SVM model?

— if we did this, then we’d be free of ignoring all the data points which
don’t get correctly classified

e What is a slack variable?
— if we have non-separable data, we can make SVM “ignore” points, as
to create a hyperplane which correctly classifies most points

— we then use slack variables to quantify the effect of ignoring one
training instance when building the hyperplane

— slack variables are given by the distance £ from the outlier to the
margin that it should have

o ©

/ .
¥ \m gin
¢ How do we account for slack variables in our optimisation prob-
lem?

— beyond making the margin as large as possible, we’d want the slack
variables to be as small as possible, so we want to minimise:

lw|®+C> ek

subject to some constraints, which can be naturally refactored to
incorporate the slack variables:

yi=1 = w-z+w>1-¢

y=—1 = w-z4+ws<-14+¢

24

e How do we set k£ and C with slack variables?

— we typically use k =1
— C modulates how lenient we want to be with misclassifications: as C'
gets larger, we penalise misclassifications much more

¢ What is the resulting SVM model, after accounting for slack
variables?

— overall, we will end up with the same model for w, but this time, the
support vectors will further include all those vectors for which &; > 0
(that is, missclassified instances)

— intuitively, this is because by including &;, we are “moving” the miss-
clasified instance onto its margin, so it acts as if it were part of the
instances which define said margin

e How is using slack variables equivalent to using regularisation?
— from the optimisation formula above, we can see it is very similar to
ridge regression:

* CY . ¢F evaluates how well we have fit the data (equivalent to
the standard error/likelihood)

* |lw||? penalises weight vectors with large norm

— thus, we can view C as a regularisation parameter A
e Should we use slack variables even in separable data?

— it certainly doesn’t hurt, and in some cases it can even help

— for example, even if data is separable, there might be a class in-
stance which is very separated from all other members, so it could
be thought as an “outlier”; we’d get a better hyperplane if we just

ignored it
X,
[+] 0
L] o
o o
o o]
(v}
X W o
[+]
x x\< .
X ox X,

25

3.4 Comparing SVM and Logistic Regression
» Minimize (over w and & € R Vi)

Iwl[>+C D &

subject to
y,-f(x,-) >1-¢&,i=1,...,n,
where & > 0 for all all i, and f(x;) = w'x; + wg
» This optimization problem can be re-written as

: 2
min_lwl|*+ szax(O, 1 - yif(x))

(To see this check the three conditions where y;f(x;) > 1,
yif(xi) =1 and y;f(x;) <1.)

Figure 9: We can define hinge loss as g, (z) = maxz(0,1 — 2)

26

Let y labels take on values 1 or —1.

1
1+ e f(¥)
11
S l+e)T 14 ef

ply = +1lx) =

ply = —1lx) =

Combining these, we have

(rlxi) = -
plyilxi) = 1+ e—vif(xi)

Hence the log loss is given by

— log p(yi|xi) = log(1 + e if(x))

» Incorportating a ridge regression penalty, optimization
problem is

' 2 —yif(x;)
min ||w||*+ C log(1+ e
omin [+ € 3 o)
where C =1/
» Define g,(z) = log(1 + e ?)
» SVM classifier has a similar optimization problem, but with
ghf'nge(z)

27

3.5

s — log(1 +exB{ -2)
. --- max(1]

Of . .
-2 0 1 4

Non-Linear SVMs: Using the Kernel Trick

A very thorough, incredible,fantastic, great, lovely explanation regarding
the kernel trick

Kernel Trick explained live - easy to understand for recap
Another one on the kernel trick

Kernel Trick by Towards Data Science

What is a kernel?

— recall, for logistic or linear regression, we made use of basis functions
to transform the non-linear data in our input space into another
space, which was separable linearly

— for SVMs we use something very similar: a kernel
What is the kernel trick?

— if our original input space uses vectors x, we might want another
space which can be transformed to via ¢(x)

— now, to classify an instance u, we consider the sign of:

(Z oy, - U)> + wo

— so if we do the transformation to the new space, we must consider
the sign of:
(Z ayi(lz;) - ¢>(u>>> +wo
i

28

https://www.quora.com/What-is-the-kernel-trick
https://www.quora.com/What-is-the-kernel-trick
https://www.youtube.com/watch?v=OmTu0fqUsQk
https://www.quora.com/What-is-the-difference-between-kernel-function-and-basis-function
https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f

— the issue is that ¢ : R — R so if D is too large (or even infinite),
having to transform every training instance to the new coordinates,
¢(z;), and then taking the dot product of this with ¢(u) can be
expensive

— the ideas is to use the kernel trick: instead of having to convert
everything to the new coordinates, we define a convenient function
K (z;,x;) which can immediately give us the result of taking the dot

T, Z;
product in R? space. In other words:

K(z;z;) = o(z;) - ¢(z;)

but without needing to explicitly compute ¢(z;) or ¢(z;)

— by using this, we are reducing the amount of computation that we
have to do, and we can even handle infinite dimensional transforma-
tions (for example, the radial basis kernel is:

K _ llz; — €L 12
(£i7£j) = exp T og2
which is infinite, as it is computed by using its Taylor Expansion)

» Example 1: for 2-d input space

X2
1,1

¢(Xi) = | V2% 1X>2
2

Xio

then
k(xi, X;) = (X/ x;)?

29

0.5 Q0 2

of ©
o
O%
-0.5
@5’%
|
-1 -0.5

F gure 1: Example of a labeled data nseparable n 2-D mens on s separable n 3-
D mens on. Source: [4 []

In the above example, the or g nal data s n 2-d mens on. Suppose we denote t as,
X = {x;,%x2}. We can see nFg. 1{(left) that X s nseparable n ts space. But they
are separable nth s transformed space (see Fg. 1, r ght),

D(x) — x%.x%, V2x1%x2

where, @ s atransform funct on from 2-D to 3-D appl ed on X. These po nts can
be separated w th @(x) — x%, x% transformat on as well, but the one above w Il
help expla n the use of a h gher d mens on space. The \ff s not necessary but will
make our further explanat ons mathemat cally conven ent.

We can now have a dec s on boundary nth s 3-D space of @ that wll look | ke,
Po + bix} + fox} + fsvV2xyix =0 (2)

If we were do ng log st ¢ regress on, our model would look | ke ths Eg. 2. In SVM, a
s m lar dec s on boundary (a class f er) can be found us ng the Kernel Trck n ts
ob ect ve funct on. In short, for that we need to f nd the dot products of

{D(x;), P(X;)) (see Eq. 13 n [6]). (Note that the dot product s also a s m lar ty
measure.) Let's do that. I'll do tlkeths,

30

My way:

(P(x;), P(x;))

= ({x;-zp Xias ﬁxelxﬁ V/_x_.llx_.lz (3.1

Jl’

= x”x + xizx + 2x1x2%,1 X2 (3.2)
Instead, my fr end Sam, who s smarter, d d the follow ng,

Sam’s way:

{xi'sx_.l‘)z
= ({xi, xin b, (x50, x0})?
= (xpxj + xpxp) (4.1)

= +xlz Jz+2x¢1x‘2xﬂx_,2 (4.2)

Figure 10: If we transformed to the new space and then computed the dot
product we would need to: convert the 2 variables into the new space (3 ele-
ments), and then compute the dot product for 3 terms. I other words, 6 + 3
= 9 operations. By using the kernel trick, we just need to do a dot product of
two elements in the original coordinates, and just square the result. Overall, 3
operations.

e What does the kernel represent?

— we can interpret K (z;, gj) as giving a measure of the relationship of
z; and z; in the new feature space. In particular, it is a measure of
“distance” in the feature space.

e How can we use kernels when optimising max margins?

— as shown above, since the kernel represents the dot product in the
new feature space, we get that:

w = Z i yip(z;)

and our prediction is given by the sign of:
(Z aii(@(z;) - <z><u>>> +wo

31

classification fix)=sgn(Z hk(x,x)) + b)

weights

comparison: k(X.X;), e.g. k(x,x,-):(x-x,-)d
k(xx)=exp(-lx-x 1% / ¢)
support vectors
X e Xy k(x,x;)=tanh(k(x-x;)+8)

input vector X

Figure 11: Example of using kernels and support vectors to classify numbers.

32

	Optimisation
	The Importance of Optimisation in Machine Learning
	Numerical Optimisation
	Gradient Descent
	Defining Gradient Descent
	The Learning Rate
	Batch vs Online Learning
	Issues with Gradient Descent
	Further Topics (Not Covered)

	Regularisation
	Defining Regularisation
	Ridge Regression

	Support Vector Machines
	Introducing SVM
	The Max Margin Optimisation Problem
	Setting Up Optimisation for SVM
	Deriving a Formula for the Margin
	Solving the Optimisation Problem

	Handling Non-Separable Data With SVM: The Slack Term
	Comparing SVM and Logistic Regression
	Non-Linear SVMs: Using the Kernel Trick

