
IAML - Week 4

Antonio León Villares

October 2021

Contents

1 Linear Regression 2
1.1 Defining the Linear Regression Problem 2
1.2 Linear Models . 3
1.3 Finding Model Parameters: The Pseudo-Inverse Matrix 4
1.4 Interpreting Linear Models Probabilistically 7
1.5 Problems With Regression . 7
1.6 General Regression . 8
1.7 Basis Expansion . 8

1.7.1 Basis Functions for Non-Linear Regression 8
1.7.2 Polynomial Regression . 10
1.7.3 Dealing With Categorical Features 11
1.7.4 Radial Basis Functions . 12

2 Logistic Regression 15
2.1 Linear Classifiers and Decision Boundaries 15
2.2 The Logistic Function . 16
2.3 Learning Parameters for Logistic Regression 19
2.4 Logistic Regression: A Discriminative Classifier 22
2.5 Logistic Regression for Multiclass Classification 23

1

1 Linear Regression

• Aims to predict a continuous output, given some vectorised input

• Linear comes from the parameters, which allows us to transform the labels
non-linearly

• Using the Pseudo-Inverse, we can efficiently compute the model parame-
ters (weights)

1.1 Defining the Linear Regression Problem

• How do classification and regression differ?

– in classification, we have a set of data points, and discrete class labels.
Given a new data point, we aim to predict its class label.

– in regression, we have a set of data points, and continuous class
labels (a real number). Given a new data point, we aim to predict
an associated real number.

– for example, predicting IQ score given test scores in Maths, History
and English

• How does training data look like in linear regression?

– formally, training is done using a set of n data points of the form:

{xi, yi}
n
i=1

where:

∗ xi ∈ RD represent all the features of a given observation as a
vector

∗ yi ∈ R represent the value associated to the observation

∗ for example, if we have a fish, xi can be a set of measurements
such as weight, length, and fin length, and yi could be the age
of the fish. For example:

x1 =

200
1.6
0.2

 y1 = 6

corresponds to a single observation of a 6 year old fish, with
weight 200kg, length 1.6m, and fin length of 0.2m.

• Is regression very simple?

– it is, if we consider the fact that data is typically not linear

2

– however, it is more powerful than it seems, and can be applied even
for non-linear data

– moreover, it helps teach the principles of more complex regression/classification
algorithms

• In what cases can regression be used?

– predicting position of robot arm after a set of forces are applied

– predicting electricity requirements for the grid 2 days in advanced

– predict machine failure based on environment and usage

1.2 Linear Models

• How can we define a linear model for prediction?

– a linear model can be thought as a linear combination of all the
features in an observation x:

f(x,w) = w0 + w1x
(1) + w2x

(2) + . . .+ wDx
(D)

– the vector w ∈ RD contains the weights (or parameters) of the
linear model:

w =


w0

w1

w2

...
wD


– fitting the model requires us to find w, such that the predictive power

of f(x,w) is the greatest

– more generally, we can define a vector function φ(x):

φ(x) =


1
x(1)

x(2)

...
x(D)


and thus, define the linear model in terms of matrix multiplication:

f(x,w) = wTφ(x)

• What is the geometric interpretation of linear model?

– if we have D features, f(x,w) will correspond to a hyperplane in
D + 1 dimensional space (we have D independent variables, and 1
dependent variable y)

3

– if we have 2 features, this is just a straight line (line of best fit)

– if we have 3 features, this is just a plane

• What is a design matrix?

– a design matrix Φ contains all our training information as a matrix:

Φ =


φ(x1)T

φ(x2)T

...
φ(xn)T

 =


1 x

(1)
1 x

(2)
1 . . . x

(D)
1

1 x
(1)
2 x

(2)
2 . . . x

(D)
2

...
...

...
. . .

...

1 x
(1)
n x

(2)
n . . . x

(D)
n


– Φ is an n× (D + 1) matrix (n observation, D + 1 variables)

– each row in the design matrix corresponds to 1 observation of the
data

– each column in the design matrix corresponds to the value of a single
feature across all the observed data

1.3 Finding Model Parameters: The Pseudo-Inverse Ma-
trix

See this stack exchange for the derivation of the Pseudo-Inverse Matrix

• How can the regression problem be formalised in terms of the
design matrix?

– we can define a target vector containing all the expected labels:

y =


y1
y2
...
yD


4

https://stats.stackexchange.com/questions/266631/what-is-the-difference-between-least-square-and-pseudo-inverse-techniques-for-li

– then, our regression problem becomes finding the weights w such
that:

ŷ = Φw

where ŷ is our prediction, and we expect ŷ to be as close as possible
to y

– expanded:
ŷ1
ŷ2
...
ŷD

 =


w0 + w1x

(1)
1 + w2x

(2)
1 + . . .+ wDx

(D)
1

w0 + w1x
(1)
2 + w2x

(2)
2 + . . .+ wDx

(D)
2

...

w0 + w1x
(1)
n + w2x

(2)
n + . . .+ wDx

(D)
n


• Why can’t we use inverses to compute the weights?

– naively, we could think that we just need to invert Φ, such that:

w = Φ−1w

– however, Φ need not be square, so its inverse might not exist. This
is a consequence of the fact that if we have more equations than
variables, the system is overdetermined, and it generally has no
solutions (unless certain rows are scalar multiples of each other (see
this for a visual interpretation)

• How can we find the model parameters using the Pseudo-Inverse
Matrix?

– we can’t find w such that our predictions are perfect

– thus, we seek w such that it minimises the error between ŷ and y

– we can use the sum of squared residuals:

O(w) =

n∑
i=1

(yi − f(xi, w))2

=

n∑
i=1

(yi − wTφ(xi))
2

= (y −Φw)T (y −Φw)

– thus, if we minimise O(w) with respect to w, we will obtain w such
that the residuals are minimised: that is, our prediction approximates
the real values in the best way

– if we do this (partial derivatives with respect to w, and set the deriva-
tives to 0), we obtain:

w = (ΦTΦ)−1ΦT y

5

https://en.wikipedia.org/wiki/Overdetermined_system
https://en.wikipedia.org/wiki/Overdetermined_system

– (ΦTΦ)−1ΦT is known as the pseudo-inverse of Φ, since it acts
as an inverse of the matrix (you can verify that (ΦTΦ)−1ΦTΦ =
Φ(ΦTΦ)−1ΦT = I)

• What are the weights if a model has no features?

– if there are no features, then:

Φ =


1
1
...
1


– so:

ΦTΦ = 1 + 1 + . . .
n times

+ 1 = n

– but then:

(ΦTΦ)−1ΦT y =
y1 + y2 + . . .+ yn

n

– in other words, if there are no features, the regression model will
always predict the average of the target labels

• What is the general strategy when developing learning algo-
rithms?

1. Define a task (i.e regression)

2. Decide on model structure (i.e linear regression model)

3. Decide on score function (i.e root mean square error)

4. Decide on optimisation (i.e analytic solution via partial derivatives)

6

1.4 Interpreting Linear Models Probabilistically

1.5 Problems With Regression

• How do outliers affect linear regression models?

– outliers can greatly affect the regression parameters:

• Should we visualise linear regression models?

7

– visualising data is always useful:

∗ check for outliers

∗ check if relationship is linear

∗ is there a structure to the residuals

– in general visualising residuals can also indicates good model if there
is no correlation between residuals and outputs

1.6 General Regression

• What is general regression?

– we have discussed multiple linear regression as a means to compute
a single target value

– we can generalise this, as to output a vector, by computing new
models for each vector component

– that is, we calculate a new set of weights wi for each component

• How can we fit a general regression model?

– to compute each set of weights, we can still use the pesudo-inverse
method

1.7 Basis Expansion

The following are what I used to further understand the use of basis functions:

• Medium: Nonlinear Regression Tutorial with Radial Basis Functions

• Princeton: Features and Basis Functions

• Toronto: Modeling Data with Linear Combinations of Basis Functions

• Edinburgh: Linear regression

• Neil Lawrence’s Talks: Basis Functions

1.7.1 Basis Functions for Non-Linear Regression

• Why is linear regression called linear?

– contrary to what is expected, linear regression is linear precisely be-
cause the set of weights is linear

– in other words, linear regression can still be performed even if we are
considering non-linear features, such as:

∗ x1 × x2
∗ x41
∗ ex1

8

https://medium.com/analytics-vidhya/nonlinear-regression-tutorial-with-radial-basis-functions-cdb7650104e7
https://www.cs.princeton.edu/courses/archive/fall18/cos324/files/basis-functions.pdf
http://www.utstat.utoronto.ca/~radford/sta414.S11/week1b.pdf
https://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/notes/w1b_linear_regression.pdf
http://inverseprobability.com/talks/notes/basis-functions.html

• Can we use linear regression even if the underlying data is non-
linear?

– yes. From the above, it is implied that we can modify each data input,
such as to remove non-linearities, and then fit a regresion model on
the modified inputs

– for example, if we have quadratic data, we can preprocess it, square
root the values, and then use them for our regression model

• What are basis functions?

– we use basis functions to attempt to convert non-linear data to
linear data

– called thus because wea are constructing a new basis for the data,
based on these functions

• How can we generalise design matrices when using basis func-
tions?

– if we use basis functions, we can pick an arbitrarily large number of
them. This changes the number of columns for our design matrix:

Φ =


φ1(x1) φ2(x1) . . . φm(x1)
φ1(x2) φ2(x2) . . . φm(x2)

...
...

. . .
...

φ1(xn) φ2(xn) . . . φm(xn)


– each φi is taken an input vector xj and converting it into a real

number, by means of combining the observations in xj in different
ways

– for example, our original design matrix was defined by:

φi(xj) = x
(i)
j

in other words, just extracting the i component of xj :

Φ =


1 x

(1)
1 x

(2)
1 . . . x

(D)
1

1 x
(1)
2 x

(2)
2 . . . x

(D)
2

...
...

...
. . .

...

1 x
(1)
n x

(2)
n . . . x

(D)
n



9

1.7.2 Polynomial Regression

For example, if we want to do a quadratic regression, we can define:

Φ =



1 x
(1)
1 x

(2)
1 . . . x

(D)
1

(
x
(1)
1

)2 (
x
(2)
1

)2
. . .

(
x
(D)
1

)2
1 x

(1)
2 x

(2)
2 . . . x

(D)
2

(
x
(1)
2

)2 (
x
(2)
2

)2
. . .

(
x
(D)
2

)2
...

...
...

. . .
...

...
...

. . .
...

1 x
(1)
n x

(2)
n . . . x

(D)
n

(
x
(1)
n

)2 (
x
(2)
n

)2
. . .

(
x
(D)
n

)2


or

Φ =


1 x

(1)
1 x

(2)
1 . . . x

(D)
1 x

(1)
1 x

(2)
1 x

(2)
1 x

(3)
1 . . . x

(n−1)
1 x

(n)
1

1 x
(1)
2 x

(2)
2 . . . x

(D)
2 x

(1)
2 x

(2)
2 x

(2)
2 x

(3)
2 . . . x

(n−1)
2 x

(n)
2

...
...

...
. . .

...
...

...
. . .

...

1 x
(1)
n x

(2)
n . . . x

(D)
n x

(1)
n x

(2)
n x

(2)
n x

(3)
n . . . x

(n−1)
n x

(n)
n


The way in which we combine the variables is really up to us, as we can techni-
cally use as many basis functions as we want to make these combinations.

If we have a single feature, then we can easily express it as:

f(x) = w0 + w1x+ w2x
2 + . . .+ wMx

M =

M∑
i=0

wix
i

which can be expressed via:

φ(x) =


1
x
x2

. . .
xM



10

Figure 1: Polynomial Regression using M basis functions

1.7.3 Dealing With Categorical Features

• What is a bad way of representing categorical features in linear
regression?

– it would be a bad decision to encode categorical numbers using num-
bers (ordinally). For example, if one of the features is an operating
system:

∗ Linux: 1

∗ MacOS: 2

∗ Windows: 3

– but then, observations with OS as Windows will lead to a systemat-
ically larger regression outputs than the rest

• What is a good way of representing categorical features in linear
regression?

– a better strategy is to create new features based on each possible
category:

∗ x1: 1 if Linux, 0 otherwise

∗ x2: 1 if MacOS, 0 otherwise

∗ x3: 1 if Linux, 0 otherwise

– then, by calculating the weights we can adjust the regression output
based on which OS is used

11

1.7.4 Radial Basis Functions

• What are radial basis functions?

– radial basis functions are a particular type of transformation, based
on using a Normal Distributions:

φi(x) = exp

(
−|x− ci|

2

2α2

)
where we need to determine ci and α

– ci are known as centres, usually constructed by using subsets of the
datapoints

– a radial basis function is thus larger the more that x is close to ci

– we can think of ci as µ in the normal distribution, and of α as σ

– to find the weights, we can still use the pseudo-inverse method

– Example:

Figure 2: Take this data, and define 2 radial basis functions. φ1 is centered at
c1 = 3 (blue curve). φ2 is centered at c2 = 6 (green curve).

12

Figure 3: Visualising how φ1 affects the data, we can see that the square cross
has the highest value (0.4), since it was closest to c1 = 3

Figure 4: Visualising how φ2 affects the data, we can see that the rhombus has
the highest value (0.4), since it was closest to c2 = 6

13

Figure 5: We get a design matrix:

Φ =


φ1(◦) φ2(◦)
φ1(4) φ2(4)

...
...

φ1(�) φ2(�)


. If we apply the pseudo-inverse method, we get the residuals on the right,
which are very good.

• What are the issues associated with radial basis functions?

– in high dimensions, might need a lot of functions (i.e centre each
function at each point of the data), which can lead to overfitting

– we still don’t know how to set ci or α

14

2 Logistic Regression

• Logistic regression is a discriminative classification model which uses the
logistic function to determine probabilities of classifying as a certain class

• Whilst the weights can’t be computed analytically, numerical methods can
be used

• Linear classifiers produce decision boundaries which are hyperplanes

• Basis functions can be used to solve the linearly separable problem

2.1 Linear Classifiers and Decision Boundaries

For more details on linear classifiers

• What is a linear classifier?

– a classifier in which the outcome is computed by considering a linear
combination of given features

• What is a decision boundary?

– classifiers split the feature space into regions in which one class is
selected over the others

– the boundary between these regions is the decision boundary

• What is the decision boundary of a linear classifier?

– linear classifiers produce linear decision boundaries (generalising,
they produce a hyperplane)

• How can we represent a binary linear classifier?

– a binary, linear classifier will be a line in feature space dividing it
into 2 regions, via:

f(x,w) = wTx+ b

where:

∗ w are the parameters of the line (control the “angle”), which we
learn from data

∗ x are the features

∗ b is a bias (moves the decision boundary up/down)

– if we have 2 class labels y = 0 or y = 1, we typically classify based
on a threshold value r:

ŷ =

{
1, f(x,w) ≥ r
0, f(x,w) < r

15

However, r and b will be constants, so without loss of generality:

ŷ =

{
1, f(x,w) ≥ 0

0, f(x,w) < 0

Figure 6: A binary linear classifier. By construction, the parameters w will be
a vector perpendicular to the line

2.2 The Logistic Function

• Can we use linear regression for binary classification?

– the above looks very similar to linear regression, but the training
parameters are completely different (one seeks a line that divides
space, one seeks a line that fits the data well)

– this can lead to the question: can we use linear regression for binary
classification?

– due to the sensitivity of linear regression towards outliers, it is un-
feasible to use linear regression as a classifier

16

Figure 7: By adding an outlier for a certain class, the linear regression line
missclassifies most of the y = 1 class instances

• How can linear, probabilistic models lead to binary classifica-
tion?

– an alternative to interpreting a linear classifier as a hyperplane split-
ting space (difficult to imagine for high dimensions), is to take input
features, and compute the probability of said instances belonging to
a class. In other words, calculating:

P (y = 1|x)

– clearly, normal linear models of the form wTx are not well suited
(their output is not bounded by 0 and 1, as required for probabilities)

– here we are using w = 〈w0, w1, . . . , wd〉 and 〈1, x1, . . . , xd〉 (more
compact to just write wTx instead of wTx+ b)

– instead, we seek a function, such that:

P (y = 1|x) = f(wTx)

such that f squishes the real line to values between 0 and 1

– moreover, it should be such that:

P (y = 0|x) = 1− f(wTx)

• Why do we use the logistic function?

– the logistic function is one such f :

σ(x) =
ex

1 + ex
=

1

1 + e−x

17

– to see why, let:
p = P (y = 1|x)

– recall the definition of log odds:

ln

(
p

1− p

)
– then, if we consider:

ln

(
p

1− p

)
= wTx

=⇒ p

1− p
= ew

T x

=⇒ p = ew
T x − pew

T x

=⇒ p =
ew

T x

1 + ewT x

which is the logistic function

– σ(z) goes to 1 as z →∞, and to 0 as z → −∞
– moreover σ(0) = 0.5

Figure 8: If we consider σ(αx), then changing α will alter the shape of the sig-
moid. In particular, if α is bigger, the sigmoid will be “steeper” (i.e it converges
faster to 0/1)

• What is logistic regression?

– the use of the logistic function to perform classification:

P (y = 1|x) = σ(wTx)

18

– comes from the fact that we use linear weights within a logistic
function

– the decision boundary occurs when either class is equally likely. In
other words, it is the line defined by:

wTx = 0

Figure 9: Logistic regression is best suited for classification.

• How do the weights affect logistic regression classification?

– if we ignore the bias (this just shifts up and down):

∗ w affects the direction of the hyperplane (since they are perpen-
dicular)

∗ if |w| is small, this is equivalent to σ(αz) with small alpha, so the
sigmoid will be more “loose”, and so, most probabilities close to
the decision boundary will be close to 0.5

∗ alternatively, larger |w| means that for points in the same region,
they’ll have probabilites closer to 0 or 1

∗ in other words, |w| quantifies how certain we are about a classi-
fication

2.3 Learning Parameters for Logistic Regression

• How can we learn the parameters of a logistic regression model?

– since we are dealing with probabilities, we want to maximise the
likelihood that our parameters w explains the data. That is, we
maximise:

L(w) = P (Dy|Dx, w)

where Dy is our data (labels), and Dx are our data points (features)

– to simplify the derivation, we can consider the negative log likeli-
hood:

− ln(L(w))

because:

19

∗ computers are better at minimising, so we negate

∗ logs help because they turn multiplication into addition

– assuming each data point is independent and identically distributed,
the likelihood is:

L(w) =

n∏
i=1

P (y = yi|xi, w)

=

n∏
i=1

P (yi = 1|xi, w)yi × (1− P (yi = 1|xi, w))1−yi

=

n∏
i=1

σ(wTxi)
yi(1− σ(wTxi))

1−yi

where the second step follows from the fact that if yi = 1, we con-
sider the probability P (yi = 1|xi, w), and if yi = 0, we consider the
probability P (yi = 0|xi, w) = 1− P (yi = 1|xi, w)

– then, the negative log likelihood is:

NLL(w) = − ln

(
n∏

i=1

σ(wTxi)
yi(1− σ(wTxi))

1−yi

)

= −
n∑

i=1

yi ln(σ(wTxi)) + (1− yi) ln(1− σ(wTxi))

– we can then minimise by taking the partial derivative with respect
to w:

20

from which we get:

∂NLL

∂wj
=

n∑
i=1

(σ(wTxi)− yi)xij

– unfortunately, we can’t anlytically solve for w, so we use numerical
optimisation, such as gradient descent

• How does logistic regression fit into the general structure of
classifiers?

– Task: discriminative classification

– Model Structure: logistic regression

– Score Function: log likelihood

– Optimisation/Search Method: numerical optimisation (stochas-
tic gradient descent, BFGS)

• What is a linearly separable problem?

– a problem for which there exist weights w such that:

∗ y = 1 =⇒ wTx ≥ 0

∗ y = 0 =⇒ wTx < 0

– in other words, we can find a linear model which splits the data into
2 perfectly

– an example of a non-linearly separable problem is that of XOR. This
can however be solved by using a non-linear transformation for the
input.

– as with linear regression, we can use basis functions to convert inputs
non-linearly

21

Figure 10: No line can separate the y = 1 and y = 0 labels

Figure 11: To the left, data which is not linearly separable. By applying 2
Gaussian Basis functions, one centered on the blue cluster (φ2), and one centered
in the green cluster (φ1), we are able to separate them.

2.4 Logistic Regression: A Discriminative Classifier

• Why is logistic regression a discriminative classifier?

– Naive Bayes is generative, because we modelled how to generate
the distribution P (x|y) , and then use this to compute P (y|x) by
using:

P (y|x) ∝ P (x|y)P (x)

– on the other hand, Logistic Regression is discriminative, as it di-
rectly learns P (y|x)

– discriminative advantage: what’s the point of constructing a model
of P (x) if its given as input?

– generative advantage: good at handling outliers, or missing data.
Can also be used to generate new input.

22

• Are there linear generative classifiers?

Naive Bayes can be a linear classifier in 2 cases

2.5 Logistic Regression for Multiclass Classification

Logistic regression can also be used for multiclass classification:

1. for each class k, train a logistic regression classifier for a set of weights wk.
The resulting model determines whether something is k or not.

2. use the softmax function to determine the probability of a certain class:

P (y = k|x) =
exp

(
wT

k x
)∑C

i=1 exp
(
wT

i x
)

23

	Linear Regression
	Defining the Linear Regression Problem
	Linear Models
	Finding Model Parameters: The Pseudo-Inverse Matrix
	Interpreting Linear Models Probabilistically
	Problems With Regression
	General Regression
	Basis Expansion
	Basis Functions for Non-Linear Regression
	Polynomial Regression
	Dealing With Categorical Features
	Radial Basis Functions

	Logistic Regression
	Linear Classifiers and Decision Boundaries
	The Logistic Function
	Learning Parameters for Logistic Regression
	Logistic Regression: A Discriminative Classifier
	Logistic Regression for Multiclass Classification

