
IAML - Week 3

Antonio León Villares

October 2021

Contents

1 Decision Trees 2
1.1 Decision Trees as Classifiers . 2
1.2 The ID3 Algorithm . 5
1.3 Entropy, Information Gain and Information Gain Ratio 6
1.4 Dealing With Overfitting . 11
1.5 Decision Trees For Continuous Attributes 12
1.6 Decision Trees For Multiclass Classification 12
1.7 Decision Trees For Regression . 13
1.8 Evaluating Decision Trees . 14
1.9 Random Forest Algorithm . 15

2 Generalisation and Evaluation 16
2.1 Generalisation in Machine Learning 16
2.2 Overfitting and Underfitting . 16
2.3 Types of Error: Training, Generalisation and Testing 18

2.3.1 Types of Error . 18
2.3.2 Estimating Generalisation Error 19

2.4 Validation Methods in Machine Learning 20
2.4.1 Validation Sets . 20
2.4.2 k-Fold Cross-Validation 21
2.4.3 Leave-One-Out Cross-Validation 21
2.4.4 Stratified Sampling . 22

2.5 Evaluating Classification . 22
2.5.1 False Positives and False Negatives 23
2.5.2 Classification Error and Accuracy 24
2.5.3 Recall, Precision, Miss and False Alarm 24
2.5.4 Classification Cost and Utility 25
2.5.5 ROC Curve . 26

2.6 Evaluating Regression . 27
2.6.1 Root Mean Squared Error 27
2.6.2 Mean Absolute Error . 29
2.6.3 Median Absolute Deviation 29
2.6.4 Correlation Coefficient . 30

1

Here is a great set of videos about Decision Trees.

1 Decision Trees

• Decision trees are classifiers built by splitting data based on their features

• The aim is to obtain subsets of very similar data, leading to a tree that
can do classification

• Entropy (more exactly Information Gain) is used to split data based on
attributes to ensure high purity splits

• Decision trees can be used on continuous attributes by setting bounds
(≥ x)

1.1 Decision Trees as Classifiers

• What is a decision tree?

– a decision tree is a classifier

– it takes data, which is organised by attributes

– it generates a tree, in which each node splits into branches, based on
the different values of an attribute

• How is a decision tree a classifier?

– by training the decision tree, we are capable of splitting the data
based on a unique set of attribute values

– the aim is to have as the leaves the instances of the data which all
have the same label. If this is the case we have a pure subset

– when a new instance of the data is given, if we traverse the decision
tree, we should arrive at a leaf node, which will give us the classifi-
cation

– ultimately, a decision tree is attempting to understand what com-
bination of attributes lead to certain outcomes

– Example :

2

https://www.youtube.com/playlist?list=PLBq2sVJiEBvA9rPo3IEQsJNI4IJbn81tB

Figure 1: This is data representing whether I play tennis. It includes attributes,
such as the day in which I played, the outlook, how humid it was or whether it
was windy. These are all the attributes. Each attribute has a set of possible
values. For example, the attribute Outlook can be either sunny, overcast or rain.

3

Figure 2: This is one possible decision tree (many are possible, depending on
the attribute that we choose to split on) for the data above. Notice, there is a
subset of data associated with each node. For example, the bottom left node
corresponds to the subset of the data in which the outlook was sunny, and the
humidity was high. With the current split, we are capable of obtaining pure
subsets: each subset contains data in which I (exclusively) either played or
didn’t.

4

Figure 3: Based on the above, the following will be our decision tree. Once we
obtain a pure subset, we can stop adding nodes, as all our test data has the
same outcome at the given node. We label the leaf node with “yes” or “no”,
based on whether we played. If we then give it some new data, we just need to
traverse the tree, and see what the outcome is. Thus, if the outlook was rain,
the humidity was high, and the wind was weak, the decision tree predicts that
I do play.

• Why do we keep track of the counts at each node?

– notice, at each node we are keeping track of the number of data points
in the subset which was labelled as either “yes” or “no”

– for example, the subset of the data in which the outlook was sunny
is comprised of 5 data points: 2 in which I played tennis, and 3 in
which I didn’t

– we do this to allow pruning of the tree

– for example, if we decide to prune the humidity node, and don’t split
on it, then any new data in which the outlook was sunny would be
classified as a “no”, as in 3 out of the 5 data instances I didn’t play
tennis when it was sunny

1.2 The ID3 Algorithm

• What is the ID3 Algorithm?

5

– a recursive algorithm used to build decision trees

• What are other Decision Tree building algorithms?

– beyond ID3, we also have:

∗ CaRT, developed independently of ID3, uses different metrics

∗ C4.5, developed by the same person who developed ID3, it allows
non-categorical data for classification

• What are the step in the ID3 Algorithm?

– the pseudo-code for the algorithm is:

Algorithm 1 ID3

procedure Split(node, {examples})
A← best attribute to split the {examples}
childNodes← []
childSubsets← []
for value v in A do

childNodes.insert(v)
splitExamples← get {examples} in which A = v
childSubsets.insert(splitExamples)

end for
for i in range(len(childNodes) do

if childSubsets[i] is pure then
STOP

else
Split(childNodes[i], childSubsets[i])

end if
end for

end procedure

– to start it off node will be the root node, and {examples} will be the
whole data.

– at each step, we pick the best attribute; then over all possible values,
we create a new child node, and create a subset of the data in which
the data had a specific value. Then, we recursively call split if the
subset of data is not pure

– for example if A were Outlook, the values of v would be Sunny, Over-
cast and Rain

1.3 Entropy, Information Gain and Information Gain Ra-
tio

• In ID3, how do pick the “best” attribute to split on?

6

– we can define “best” attribute as that attribute which, when split
on, produces “purer” subsets

Figure 4: If we need to choose to split between Outlook and Wind, we can think
that Outlook is better in 2 ways: firstly, it leads to an immediate pure subset;
secondly, Wind leads to a subset with a 50-50 split; this is not helpful, as it
doesn’t lead to effective decision-making.

– ultimately, we seek some way of evaluating whether some split pro-
vides us with information to guide our decision

– a pure subset gives us 100% certainty, whilst a 50-50 split leaves us
completely uncertain

– we also a require a measure which is symmetric: 4 yes, 0 no is
equally pure as 0 yes, 4 no

• What is entropy?

– entropy is a measure that we can use to evaluate the “purity” of a
subset

– intuitively, from physics, entropy measures “disorder”, so a higher
entropy corresponds to more disorder (impurity)

– it is a value which ranges from 0 to 1, with 0 indicating a pure subset,
and 1 indicating a 50-50 subset

–
H(S) = −p(+) log2 p(+) − p(−) log2 p(−)

where:

∗ S: the subset on which we calculate the entropy

∗ p(+): proportion of positives (“yes”) in S. More generally, one
of the possible outcomes of our prediction.

∗ p(−): proportion of negatives (“no”) in S. More generally, the
other of the possible outcomes of our prediction.

7

– if we have a 50-50 subset, p(+) = p(−) = 0.5, so:

H(S) = −p(+) log2 p(+) − p(−) log2 p(−)

= −1

2
log2

1

2
− 1

2
log2

1

2

=
1

2
+

1

2
= 1

– if we have a pure subset, p(+) = 1, p(−) = 0 (or viceversa), so:

H(S) = −p(+) log2 p(+) − p(−) log2 p(−)

= −1 log2 1− 0 log2 0

= 0

(Please do ignore the fact that we actually find it acceptable to as-
sume 0× log2 0 = 0)

• What does entropy have to do with computer bits?

– in lectures, they described entropy as the number of bits required to
be certain about a classification.

∗ if you have a 50-50 split, you need 1 bit to be certain (the bit
telling you the outcome of the classification)

∗ if you have a pure subset, you need 0 bits to be certain, as the
subset is pure

∗ entropy thus gives you fractional bits to measure uncertainty:
the less bits you need to be certain, the purer the split

This idea of bits can be generalised for multiclass systems: if you
have 4 possible classes, you might need at most 2 bits if you get a
50-50 split. For more on information entropy, see this video by Khan
Academy

• What is information gain?

– entropy allows us to discern the purity of a subset

– when deciding on which attribute to split on, we need to consider the
entropy of all the subsets which it produces

– the information gain is a measure which allows us to pick the at-
tribute that, when split, leads to the purest subsets - this is precisely
our “best” attribute

– informally, the higher the information gain, the more our uncertainty
decreases - that is, it measures how much entropy decreases by split-
ting on an attribute

8

https://www.khanacademy.org/computing/computer-science/informationtheory/moderninfotheory/v/information-entropy
https://www.khanacademy.org/computing/computer-science/informationtheory/moderninfotheory/v/information-entropy

– indeed, by splitting we reduce entropy, as we can never actually in-
crease the impurity of a subset

• How is information gain computed?

– for information gain, we need to consider a subset S of the data,
and an attribute A, where A will be the attribute used to generate
subsets from S

– to calculate information gain:

Gain(S,A) = H(S)−
∑

v∈V alues(A)

|Sv|
|S|

H(Sv)

where:

∗ v is one of the possible values of attribute A

∗ Sv is the subset of S in which we observe attribute A have value
v

∗
∑

v∈V alues(A)
|Sv|
|S| H(Sv) is a weighted average of entropies of

the child nodes

– Example :

• How do we use information gain to decided on the attribute to
split?

– we pick the attribute with the highest information gain:

max
a∈A

Gain(S, a)

The entropy for S = Wind is:

H(SWind) = − 9

14
log2

9

14
− 5

14
log2

5

14
= 0.94

If we split on Wind, then:

∗ the entropy resulting from the subset in which the Wind is Weak
is:

H(SWeak) = −6

8
log2

6

8
− 2

8
log2

2

8
= 0.81

This is expected, as 6 vs 2 is much more pure than 9 vs 5

9

∗ the entropy resulting from the subset in which the Wind is Strong
is:

H(SStrong) = 1

Thus, it follows that:

Gain(SWind,Wind) = 0.94−
(

8

14
0.81 +

6

14
1

)
= 0.049

• How is information gain used to build the Decision Trees?

– it is constantly used in the recursive step to build a node

– once we split on a certain attribute, we no longer split on it

• What is the main issue with information gain?

– since information gain is designed to detect purity, it will be biased
towards attributes with many values

– the more values, the more likely it is for a pure subset to appear
(more values = more specific)

Figure 5: If we split based on the days attribute, then each unique observation
corresponds to a unique day, which will be seen as a perfect split. However, this
is useless when classifying.

• How does gain ratio solve the problems of information gain?

– the gain ratio is a way of penalising those attributes which have
many values

– to compute it:

SplitEntropy(S,A) = −
∑

v∈V alues(A)

|Sv|
|S|

log
|Sv|
|S|

GainRatio(S,A) =
Gain(S,A)

SplitEntropy(S,A)

10

1.4 Dealing With Overfitting

• How is overfitting an issue for decision trees?

– since the ID3 algorithm splits until we reach a pure set, it can be the
case that each leaf node eventually contains a singleton subset (as
singleton subsets are pure)

– in other words, it can reach 100% accuracy for the training dataset

– this is clearly an issue for new data which doesn’t resemble the train-
ing data

• How can we fix overfitting for decision trees?

– 2 main methods:

1. Statistical Significance: stop splitting when the subsets be-
come “too small” (i.e when the split is no long statistically sig-
nificant). For example:

∗ if a set has 2 items, a non-statistically significant split would
be one that splits the 2 items into 2 subsets - this is like a
coin toss, it doesn’t add “value” to our decision

∗ if we have a set of 100 items, and upon the split we get 2
subsets, each of size 50, one positive and one negative, this
is statistically significant (a lot of the data “repeats” in its
label, it indicates underlying structure)

This is not a particularly effective method nonetheless.

2. Validation Set and Pruning: split your training data into 2:
a training set and a validation set. Train a full decision tree
on the training set. Using the validation set, you can compute
the accuracy of the decision tree. For each node n, compute the
accuracy of the tree by (pretend) removing n. Prune the node

11

with the greatest accuracy improvement, and repeat. Stop once
the accuracy will no longer increase.

1.5 Decision Trees For Continuous Attributes

• How can we adapt categorical decision trees to handle continuos
attributes?

– if we deal with real valued attributes, we can do splits based on some
threshold value (for example, split if temperature > 20◦C)

– this leads to a decision boundary in which the xy plane is split by
straight lines

– it also allows us to split on one single attribute at different levels of
the tree (for example, at level 1 we can split if temperature > 20◦C,
and at level 4 we can split if temperature ≤ 37.8◦C)

• How do you decide the thresholds when using Decision Trees for
continuous attributes?

– we can train the thresholds in a similar way as to how we train on
the attribute for which we split

– we compute the threshold which allows us to best split the data. This
can also be evaluated with Information Gain.

– more on this StackOverflow Post

1.6 Decision Trees For Multiclass Classification

• How can we adapt decision trees to handle multi-class classifica-
tion?

12

https://datascience.stackexchange.com/questions/24339/how-is-a-splitting-point-chosen-for-continuous-variables-in-decision-trees

– Decision Trees work in the same way for binary or multi-class clas-
sification, the only difference being how we compute the information
entropy:

H(S) = −
∑

c∈Classes

pc log2 pc

1.7 Decision Trees For Regression

Here is a more in detail (includes examples, calculations) view of how regression
can be adapted for Decision Trees.

• How do regression and classification differ for Decision Trees?

– classification returns classes, whilst regression returns a real number

– without classes, entropy/gain can’t be computed

• How are splits calculated for Decision Trees when using regres-
sion?

– instead of entropy, we split based on the variance of the subsets

– the aim is to put data instances together in subsets, such that the
variance of the subsets (with respect to the variable we are trying to
predict) is minimised

– thus, we can think that at the leaf nodes, we have the subsets with
minimal variance

– for example, if we are trying to predict stock prices, we can have a
leaf node corresponding to all the data instances with low prices, and
another leaf node with data instances with high prices

• How is the output of regression computed using Decision Trees?

– each data point has a real number associated to the feature we are
trying to predict

– we can take the average of these for each subset at the leaf nodes,
and output that

– alternatively, we can fit a linear model to the subset data

13

https://www.saedsayad.com/decision_tree_reg.htm
https://www.saedsayad.com/decision_tree_reg.htm

Figure 6: Here, we try to predict how much time we played. Notice for example,
that the subset associated with the Hot node has an average of 27.5 which is
taken as the output of the regression model.

1.8 Evaluating Decision Trees

• What are the pros of using Decision Trees?

– highly interpretable: humans can look at decision trees and immedi-
ately understand why a certain classification was made

– irrelevant attributes ignored : they would have gain close to 0, so
wouldn’t be considered for splitting

– handle irrelevant data

– compact

– fast to test : most of the time taken is in training; once we have a
Decision Tree the complexity of getting a classification is O(depth),
and the depth is typically much less than the number of attributes;
other classifiers tend to be linear in the number of attributes

• What are the cons of using Decision Trees?

– non-optimal : Gain is a greedy heuristic, therefore ID3 only picks
locally optimal splits; might lead to non-optimal trees, but searching
all possible trees is unfeasible (exponential)

– axis aligned splits: since splits are done in the xy axes, data which is
diagonal or non-linear will be harder to classify

14

1.9 Random Forest Algorithm

• What is a Random Forest?

– consists on training many decision trees, which build the forest

– a classification is made by passing new data through all the trees,
and doing a majority vote on which class was predicted the most

• How do we build a Random Decision Forest?

1. original data set is S, we want K decision trees

2. pick K mutually exclusive, random subsets of S. Call one such in-
stance Sr

3. use ID3 to build a tree Tr using Sr. However, when splitting we don’t
consider all attributes, but rather a random subset of all attributes.
Gain is computed using Sr, not S

4. repeat for r ∈ [1,K]

This algorithm ensures that each Decision Tree is very decoupled

15

2 Generalisation and Evaluation

• Training, Testing and Generalisation are the amin types of error

• Testing error is used to estimate generalisation error, via confidence inter-
vals

• Validation sets allow us to gauge the predictive capacity of our model

• Measuring the performance of a classification algorithm can be done via
accuracy, recall, precision, miss rate, or false alarm rate

• Measuring the performance of a regression algorithm can be done via root
mean squared error, median absolute deviation or correlation coefficients

2.1 Generalisation in Machine Learning

• Why is generalisation important in Machine Learning?

– we build learning algorithms based on training data

– the idea is for our model to be general, so as to obtain good perfor-
mance on new/future data

– in particular, being good on training data is not that useful : it is
easy to be perfect in training, but that doesn’t necessarily translate
to high performance in future data

2.2 Overfitting and Underfitting

• When do we say that a predictor overfitting?

– when we learn a model that is too complex/flexible, and so, is too
adapted to the idiosyncrasies of the training data

– in particular, may take random noise as patterns to learn

• How do we formally describe when a model is overfitting?

– we say a predictor F overfits data, if we can find some other predictor
F ′, and:

∗ EF (train) < EF ′(train)

∗ EF (test) > EF ′(test)

– in other words, there are other predictors which fare better on test
data, even if they do worse in train data (compared to F)

• What is undefitting?

– opposite to overfitting, we obtain a model which is too rigid/simplistic

16

– it can’t pick up on the underlying patterns of data

– we say a predictor F underfits data, if we can find some other pre-
dictor F ′, and:

∗ EF (train) > EF ′(train)

∗ EF (test) > EF ′(test)

17

Figure 7: A model which underfits will have very high training/testing errors.
A model which overfits will have very low training errors, but very high testing
error. The key is to find a “sweet spot”.

2.3 Types of Error: Training, Generalisation and Testing

2.3.1 Types of Error

• What is training error?

– the error associated with what is predicted by the model, and the
training labels:

Etrain =
1

n

n∑
i=1

ERROR (fD(xi), yi)

where ERROR is the error function specific to the task.

• What is generalisation error?

– the error associated with predictions on future data

– naturally, we don’t know how the new data will look, nor what labels
it will have

– if we know the possible ranges of data and labels (for example, if
data are the pixels of a 20x20 image, and labels are a number from

18

0 to 9), then:

Egeneralisation =

∫
ERROR (fD(x), y) p(y, x)dx

with p(y, x) being the probability of seeing y and x on the future
data

– the issue is that we can’t know p, so at most we can attempt to
estimate the generalisation error

• How can we minimise generalisation error?

– most learning algorithms have “knobs” which can be fine-tuned, de-
pending on the specifics of the task

– for example, if data is limited, we prefer a rigid predictor, as the data
probably doesn’t give an accurate overview of the real data

– if we have a complex prediction problem, we prefer a more complex
predictor, as it will be able to better pick up underlying patterns

– examples of such knobs are:

∗ Regression: order of the polynomial used

∗ Naive Bayes: number of attributes used, σ2

∗ Decision Tree: number of nodes, pruning confidence

∗ kNN : number of nearest neighbours

• What is testing error?

– error associated with predictions on a testing set

– the testing error is what we use to estimate the generalisation error

– the testing set is taken from the training data, and never seen by the
predictor during training

2.3.2 Estimating Generalisation Error

• How good is testing error in estimating generalisation error?

– as the size of the testing data increases, it becomes more representa-
tive of the general population

– if the testing set is an unbiased sample from p(y, x), then by the law
of large numbers:

lim
n→∞

Etest = Egeneralisation

• How can we quantify the “goodness” of testing error as an esti-
mate for generalisation error?

19

– we can use confidence intervals to give a bound on how much the
generalisation error can differ from the testing error

– for example, if we define a 95% confidence interval Etest ± ∆E, we
would expect 95% of future data to have an error within this interval

• How do we compute confidence intervals for generalisation er-
ror?

– let E is the true error rate (probability of predictor misclassified),
and let Etest be the estimate for E

– if we take n instances, the number of misclassified instances can be
described by a binomial distribution, with:

µ = nE

σ2 = nE(1− E)

– the error is then given by #misclassified
n , so by the law of large num-

bers, the error will follow a Gaussian Distribution:

Efuture ∼ N
(
E,

E(1− E)

n

)
– thus, the p% confidence interval will be:

E ±
√
E(1− E)

n
× Φ−1

(
1− p

2

)
where Φ−1 represents the inverse of a Normal Distribution

2.4 Validation Methods in Machine Learning

2.4.1 Validation Sets

• Which 3 sets are used when developing a Machine Learning
Model?

1. Training Set: to train the model

2. Validation Set: pick algorithm (which one is best for the task?) or
fine tune the parameters (“knobs”) of the model

3. Testing Set: estimate future error rate

• What are the issues with using a naive validation set?

– naively, from the training data, we split it into 3 subsets, 1 for train-
ing, 1 for validating, 1 for testing

– this is an issue, as dividing the data up comes at a cost of model
performance:

20

∗ accurate estimates of generalisation error can only occur if the
testing set is large

∗ an accurate model can only occur if the training set is large

However, ntrain + ntest = constant, so both can’t be large

2.4.2 k-Fold Cross-Validation

• What does k-Fold Cross-Validation consist on?

– split the training data into k parts

– use k − 1 of the parts to train a model, and test it on the remaining
“fold”

– repeat, but this time using a different fold for testing

– the estimate for the generalisation error can then be taken as the
average error over all k of the training instances (overall we will have
trained k different models)

– lastly, use 100% of the data to train the final model

• this is “allowed”, since we are never using the same subset to both train
and test

2.4.3 Leave-One-Out Cross-Validation

• if we have n data points, Leave-One-Out Cross-Validation performs n-Fold
Cross Validation: create n folds, train on n − 1 of them, and test on the
remaining

• in general, this will train a better classifier (a lot of training data)

• however:

– it is computer intensive

21

– there are issues with certain class distribution. For example, if we
have 2 classes, A and B, and data is 50-50 split between them. Imag-
ine we train a majority classifier: it classifies based on which class
appeared the most in training. Notice, if we use Leave-One-Out, then
we will get 100% error. After all, if a class is most popular in train-
ing, it must be because the test instance must be of the opposite class
(for example, if we have 100 samples, and the test sample is A, then
we will have 50 B, and 49 A). Thus, the classifier will always pick
the most popular class, which will never be the class of the training
instance.

2.4.4 Stratified Sampling

• What is an underlying issue of k-Fold Cross-Validation/LOOCV?

– in doing the random splits, it is possible that training and testing
sets are unbalanced in terms of the classes present in each of the sets

– classes in different proportions across sets might influence the perfor-
mance of a model

• What is stratified sampling?

– a method to ensure that class distribution across trianing/testing
folds is balanced

– can be achieved by:

1. split each class into k parts

2. the ith fold of the data is done by joining the ith folds of each
of the class folds

2.5 Evaluating Classification

• How can we evaluate the “goodness” of a Machine Learning
model?

22

– we need to be able to evaluate a model, in order to decide what the
best algorithm for a given task is

– depending on the task, we might ask different questions:

∗ Classification: how often do we classify something right/wrong?

∗ Regression: how close are we to what we are trying to predict?

∗ Unsupervised: how well do we describe our data?

2.5.1 False Positives and False Negatives

• What is a false positive?

– in binary classification, a data point which is labelled as negative,
but is classified as positive

• What is a false negative?

– in binary classification, a data point which is labelled as positive, but
is classified as negative

• What is a confusion matrix?

– if we have n classes, an n × n grid, in which we include the number
of data points which were classified in a certain way

– the axes are the actual label of the point, and the classified label

– it allows us to visually evaluate the prediction capability of a classifier

– we seek large numbers in the main diagonal (indicating points being
classified correctly)

23

2.5.2 Classification Error and Accuracy

• How are classification error and accuracy related?

– classification error is the proportion of points which we predicted
incorrectly:

error

total
=

FP + FN

TP + TN + FP + FN

• classification accuracy is the proportion of points which we predicted cor-
rectly:

1− classification error =
TP + TN

TP + TN + FP + FN

• What are the issues associated with classification error/accuracy?

– quite useless if we are dealing with unbalanced classes

– Example: if a Nobel Prize is awarded to 0.0001% of the population,
a very accurate classifier would be one which predicts that no one
gets the Nobel Prize, as that is 99.9999% accurate. As Humans, we
would prefer a classifier which gets some predictions wrong (False
Positives), but is capable of correctly predicting who gets the prize

2.5.3 Recall, Precision, Miss and False Alarm

• What is the False Alarm Rate/False Positive Rate?

– the proportion of negative instances which were classified as positive
(that is, the proportion of false positives, over all negatives):

FP

FP + TN

24

– think of false alarm as in: we predict an earthquake will happen, but
it actually doesn’t, it was a false alarm

• What is the Miss Rate/False Negative Rate?

– the proportion of positive instances which were classified as negative
(that is, the proportion of false negatives, over all positives):

FN

FN + TP

– think of miss as in: we predict an earthquake won’t happen, but it
actually does, we missed the classification

• What is Recall/True Positive Rate?

– the proportion of positive instances which were classified correctly as
positives (that is, the proportion of true positives, over all positives):

TP

FN + TP
= 1−miss rate

• What is Precision?

– the proportion of true positives, out of all instances which we pre-
dicted as positive:

TP

TP + FP

• Which of the measures above should we report about?

– it is meaningless to put them individually: it is easy to get 100%
Recall, or 0% False Alarm

– together, they provide an overview of the strnegths and weaknesses
of the model

– typical combinations include:

∗ recall and precision

∗ miss and false alarm

∗ true positive and false positive rates

2.5.4 Classification Cost and Utility

• When is single-value evaluation used?

– accuracy is not useful with unbalanced data, but it is useful since it is
a (meaninful) single-value, unlike recall, precision, false/miss alarm

– single values are useful in tasks such as competitive evaluation (is
one better than the other?), or automatic learner optimisation

25

– sometimes there are domain-specific measures

• What is detection cost?

– if we know the cost of a misclassification (i.e material costs derived
from a false positive/false negative), we can compute the detection
cost:

CFP × FP rate + CFN × FN rate

– it is a weighted average of the FP,FN rates

– useful when evaluating event detection

• What is F-Measure?

– the harmonic mean of recall and precision:

2
1

recall + 1
precision

– used in information retrieval (i.e search engines), as it gives a measure
similar to accuracy, but without including false negatives

2.5.5 ROC Curve

• Can you evaluate a system solely on performance?

– no, as the performance may be affected by other factors

– for example, consider 2 predictors:

∗ Predictor 1: TP = 50%, FP = 20%

∗ Predictor 2: TP = 100%, FP = 60%

it can be the case that both these predictors are the exact same
model; the only difference being the threshold which we use to
classify instances

• How do thresholds affect error rates?

– classifiers train a function f(x) and typically use f(x) > t to define
whether x is class A or B

– thus, the threshold t will determine error rates

– for example, in Naive Bayes, P (spam|x) > 0.5 we have a 0.5 thresh-
old. If we have the exact same model, but using P (spam|x) > 0.2
we are likely to get more true and false positives

• What is a ROC curve?

– a curve which illustrates the classification ability of a predictor as
the threshold varies

26

– it plots the true positive rate (proportion of positives correctly clas-
sified as positives) vs the false positive rate (proportion of negatives
incorrectly classified as positive)

Figure 8: A diagonal line indicates a random classifier; the perfect classifier
is thus because there is a point in which its true positive rate is 1 (always
correctly classified positive instances as positive) and its false positive rate is 0
(never misclassifies a negative as positive).

2.6 Evaluating Regression

• How is evaluating regression different from evaluating classifica-
tion?

– in classification, we assign labels to data instances, and we hope that
we are right

– in regression, the output is almost guaranteed to never be the exact
value

– thus, to evaluate regression, instead of considering how often we are
wrong, we compute by how much are we wrong

2.6.1 Root Mean Squared Error

• What is Root Mean Squared Error?

27

– the average, squared deviation from the true value:

RMSE =

√√√√ 1

n

n∑
i=0

(f(xi)− yi)2

• How do outliers affect RMSE?

– RMSE is extremely sensitive to outliers

– data with a small number of large errors can have the same MSE as
data with many small errors:

∗ 99 exact predicitons, 1 prediciton off by 10

∗ 100 predictions off by 1

– adding one outlier to the data can completely change the regression
model if we use RMSE

• How does mean/scale affect RMSE?

– mean can greatly affect the prediction

– we can build a model which captures the pattern in the data, but
has a different mean

– then, this model will have a larger RMSE than a regression model
which just predicts the mean of the data

28

Figure 9: In the above figure, the orange line is good at capturing the essence
of the data, but it is considered a worse model than the mean if we use RMSE

• What is Relative Squared Error?

– an alternative to RMSE, which scales the RMSE by the RMSE of
using a regression model which just predicts the mean of the data:

RMSE =

√∑n
i=0 (f(xi)− yi)2∑n
i=0 (µy − yi)2

2.6.2 Mean Absolute Error

• What is Mean Absolute Error?

– like RMSE, but instead of squaring the differences, we consider the
absolute value:

MAE =
1

n

n∑
i=0

|f(xi)− yi|

– by removing the squaring, MAE is less sensitive to outliers (one big
error won’t lead to the same value as many small errors)

– in the same way as RMSE was sensitive to mean, MAE is sensitive
to the median of the data

2.6.3 Median Absolute Deviation

• What is Median Absolute Deviation?

– like MAE, but instead of averaging, we consider the median:

MAD = med{|f(xi)− yi|}

29

– extremely robust, as it ignores outliers

– can also define MAD2

– however, unlike with the mean, the median is not differentiable, which
makes minimising it hard

2.6.4 Correlation Coefficient

• What is the Correlation Coefficient?

– a measure which is completely insensitive to mean and scale:

CC =

∑n
i=1(f(xi)− µf)(yi − µy)√∑n

i=1(f(xi)− µf)2
∑n

i=1(yi − µy)2

– informally, measures how well our prediction changes with yi (i.e
expect bigger f(xi) if yi is larger)

– the main issue is that completely unrelated data can have the same
CC, so they would have the same; it is always important to vi-
sualise data

Figure 10: This is known as Anscombe’s quartet, and shows the “danger” of
relying solely on CC

30

	Decision Trees
	Decision Trees as Classifiers
	The ID3 Algorithm
	Entropy, Information Gain and Information Gain Ratio
	Dealing With Overfitting
	Decision Trees For Continuous Attributes
	Decision Trees For Multiclass Classification
	Decision Trees For Regression
	Evaluating Decision Trees
	Random Forest Algorithm

	Generalisation and Evaluation
	Generalisation in Machine Learning
	Overfitting and Underfitting
	Types of Error: Training, Generalisation and Testing
	Types of Error
	Estimating Generalisation Error

	Validation Methods in Machine Learning
	Validation Sets
	k-Fold Cross-Validation
	Leave-One-Out Cross-Validation
	Stratified Sampling

	Evaluating Classification
	False Positives and False Negatives
	Classification Error and Accuracy
	Recall, Precision, Miss and False Alarm
	Classification Cost and Utility
	ROC Curve

	Evaluating Regression
	Root Mean Squared Error
	Mean Absolute Error
	Median Absolute Deviation
	Correlation Coefficient

